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A magnetic recording read channel has numerous parameters that must be carefully tuned for best performance; these include
not only the equalizer coefficients but also any parameters inside the soft-output detector, some of which may be pattern dependent,
including signal levels, predictor coefficients, and residual noise variances. Conventional tuning strategies based on a minimum-
mean-squared error criterion are not optimal in terms of frame-error rate and ultimately areal density. Here we propose a
strategy for optimizing the parameters with the aim of minimizing the frame-error rate after error-control decoding. The proposed
strategy exploits the close connection between the frame-error rate and the gap between the two curves in an extrinsic information
transfer chart. A stochastic gradient algorithm applied to a cost function that quantifies this gap leads to our proposed adaptive
minimum-frame-error rate (AMFER) algorithm for adapting the equalizer and detector parameters. Numerical results based on a
quasi-micromagnetic simulated channel show that the AMFER parameters can reduce the frame-error rate by more than two orders
of magnitude, leading to a 7% gain in areal density over conventional MMSE parameters.

Index Terms—Soft-output detection, turbo processing, extrinsic information transfer (EXIT) chart.

I. INTRODUCTION

THE exploding demand for cloud storage [1] is motivating
a push for higher areal densities, with narrower track

pitches and shorter bit lengths. The resulting increase in
interference and media noise requires improvements in read
channel signal processing to keep pace. A widely used tech-
nique for mitigating media noise is pattern-dependent noise
prediction (PDNP) [2, 3]; in this approach, each bit pattern
has its own set of parameters for computing a branch metric.
PDNP was extended to multitrack detection in [4].

The traditional strategy for choosing the read channel pa-
rameters (including the signal levels, noise predictor coeffi-
cients, and residual variances) is based on a minimum mean-
square-error (MMSE) criterion, in part because it guarantees
a closed-form solution and a single local minimum. However,
MSE is not as relevant to the end user as other metrics such as
bit-error rate (BER), frame-error rate (FER), and areal density.
The adaptive minimum-bit-error rate (AMBER) algorithm for
tuning the parameters to minimize BER instead of MSE was
recently proposed [5, 6]; results showed that AMBER can
provide a 20% decrease in BER and an 8% increase in
areal density. In [7, 8], the parameters to reduce BER and
computation time are estimated via deep neural networks.

The BER after detection, while more relevant than MSE,
is still not as relevant to the end user as the FER after error-
control decoding, because the FER is what ultimately deter-
mines areal density. In a state-of-the-art read channel, a soft-
output detector and a soft-input error-control decoder work
iteratively in a turbo fashion with soft information transferring
between them. The soft-output detector is typically either
the BCJR algorithm [9] or the soft-output Viterbi algorithm
(SOVA) [10].

Techniques for analyzing the convergence of iterative de-
coding schemes have been widely studied. Density evolution
for low-density parity-check (LDPC) codes was developed by
tracking the probability distributions of extrinsic log-likelihood

ratios (LLR’s) [11]. This tracking is simplified considerably
when the probability density function (PDF) depends on only
a single parameter. Other single-parameter metrics include the
fidelity of [12] and the mutual information of [13]. In [13],
Ten Brink developed the extrinsic information transfer (EXIT)
chart to visualize the evolution of LLR’s and analyze the
convergence behavior. Prior work regarding EXIT charts has
been limited to the design of error-control codes [14]–[16],
not detectors.

In this paper, we propose a cost function for optimizing
the detector parameters based on an EXIT chart. By choosing
detector parameters to minimize this cost function, the FER
can be dramatically reduced. We develop an adaptive algo-
rithm for tuning the parameters of the equalizer and detector
aiming to minimize FER. We apply the algorithm to a SOVA
detector, and test it on both a simple intersymbol interference
(ISI) channel and a more realistic set of simulated magnetic
recording channel waveforms.

This paper is organized as follows. In Section II, we review
EXIT charts. In Section III, we propose the minimum-FER
tuning strategy and the AMFER algorithm. In Section IV,
we evaluate the performance of the proposed algorithm, and
compare it to traditional MMSE parameters. In Section V, we
summarize this paper.

II. THE EXIT CHART

We consider the magnetic recording read channel illustrated
in Fig. 1 [17]. A vector r of readback waveform samples is fed
to an equalizer, producing a vector y of equalizer outputs. An a
posteriori probability (APP) detector has two inputs: the equal-
izer output y, and a vector λ2 = [λ2,0, ..., λ2,N−1]T of a priori
LLR’s about the N written coded bits a = [a0, ..., aN−1]T ,
where λ2,k = ln(P (ak=1)

P (ak=0) ). Based on these inputs, the APP de-
tector estimates the vector L = [L0, ..., LN−1]T of APP LLR’s
about the written coded bits, where Lk = ln(P (ak=1|y)

P (ak=0|y) ).
The difference λ1 = L − λ2 is a vector of extrinsic LLR’s,
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Fig. 1. A soft-output detector interacting with an LDPC decoder in an iterative
(turbo) fashion.

which are fed as a priori information to the LDPC decoder.
In a symmetric fashion, the LDPC decoder estimates the
APP LLR’s about the coded bits, which after subtracting the
decoder a priori information leads to the vector λ2 of extrinsic
information from the decoder. As shown in the figure, λ2

is then interpreted as a priori information by the detector in
the next iteration. The detector and decoder thus work in an
iterative (turbo) fashion until a coded frame is successfully
decoded or a maximum iteration number is reached.

As indicated in Fig. 1, we use Θ to denote all of the param-
eters to be optimized, including the equalizer coefficients and
any parameters within the detector. For simplicity, Fig. 1 omits
any interleavers that might be used to prevent burst errors.

A Gaussian distribution is characterized by two parameters,
mean and variance. A Gaussian distribution is said to be
consistent when the variance is twice the mean, and is thus
characterized by a single parameter. Likewise, the a priori
information λ2 is said to be consistent when the random
variables {z2,k = λ2,kak} are i.i.d. N (µ2, 2µ2) for some
parameter µ2. These random variables will be neither consis-
tent nor independent in general; nevertheless (as recognized
in [13]) they can be roughly approximated as such, and we
will see that optimizing the detector is dramatically simplified
when the a priori information coming from the decoder is
assumed to be consistent.

The quality of the a priori LLR’s is captured by the mutual
information I2 , I({λ2,k}; {ak}) between the written bits and
the a priori LLR’s [13], which (under the consistent Gaussian
approximation) reduces to (see the Appendix):

I2 = 1− E(log2(1 + e−Z2)), (1)

where Z2 ∼ N (µ2, 2µ2).
The mutual information I1 , I({λ1,k}; {ak}) after the

detector will depend in a predictable way on the mutual
information I2 after decoding. Let

I1 = T1(I2) (2)

denote the function that relates I2 to I1; it is an increasing
function that approaches T1(I2)→ 1 as I2 → 1. Similarly, let
T2 denote the function that relates I1 to I2:

I2 = T2(I1). (3)

The T1( · ) and T2( · ) functions are the so-called extrinsic
information transfer (EXIT) functions. Given readback wave-
forms, the shape of T1 is determined by the parameters of
the equalizer and detector. Closed-form expressions for these
transfer functions are unknown, they must be measured em-
pirically. We simplify the calculation of T2 by implementing

a time-averaged version of (1), which strictly speaking only
applies when {akλ2,k} are i.i.d. consistent Gaussian, even
when they are not:

I2 = 1− 1

N

N−1∑
k=0

log2(1 + e−akλ2,k). (4)

Likewise, the mutual information between the extrinsic LLR’s
after the detector and the written bits can be estimated using:

I1 = 1− 1

N

N−1∑
k=0

log2(1 + e−akλ1,k). (5)

A chart showing both T1 and T2 is known as an EXIT
chart, and is a powerful tool for understanding convergence
of iterative detectors. We illustrate an EXIT chart with an
example.

Example 1. Consider an ISI channel H(z) = 0.5 + z−1 +
0.5z−2 with AWGN, and suppose the written bits are coded
by a rate-8/9 LDPC code of length 16200 from DVB-S2
[18]. A five-tap equalizer and a two-tap partial-response monic
target are jointly chosen according to the MMSE criterion,
followed by a two-state SOVA detector. In Fig. 2 we plot the
transfer function T1(I2) versus I2 for SNR =

∑
k h

2
k/(2σ

2
n)

values of 6.7 dB, 6.3 dB, and 5.9 dB. Each curve is found
by sweeping through all possible I2 values, or equivalently
through all possible µ2 values, and for each one generate an
artificial consistent Gaussian a priori vector λ2 = µ2a + w2,
where the components of w2 are i.i.d. N (0, 2µ2). After SOVA
uses λ2 as a priori information to generate L, the extrinsic
information λ1 = L − λ2 is used to estimate I1 via (5).
Improved estimates are found by averaging these I1 values
over repeated trials. Also shown in the figure is the transfer
curve T−12 (I2) for the LDPC decoder, which is independent of
SNR and is found in a symmetric way. For each possible µ1

generate a consistent Gaussian a priori vector λ1 = µ1a + w1,
where the components of w1 are i.i.d.N (0, 2µ1). The extrinsic
information λ2 is achieved by subtracting a priori information
λ1 from the decoder outputs and is used to estimate I2 via (4).
As shown in the figure, the T1 curve drops lower as the SNR
decreases, and the two curves intersect when SNR = 5.9 dB.
The green dashed staircase curve shows a sample decoding
trajectory for the case when SNR = 6.7 dB. The trajectory
starts at (0, 0), bounces between the two transfer functions,
and stops near (1, 1), after the decoding is successful.

III. ADAPTIVE MINIMUM-FRAME-ERROR RATE
ALGORITHM

A direct optimization of the parameters Θ to minimize FER
would require an analytical expression for FER in terms of the
parameters to be optimized; such an expression is unknown
and likely to be unwieldy even if it were known. Instead, we
propose to indirectly optimize FER by optimizing the EXIT
chart. It has been shown in [13] that when the curves in an
EXIT chart intersect, there is a high probability of decoding
failure. In contrast, a clear tunnel between the two curves
means the decoding is very likely to be successful. The wider
the tunnel is, the faster the convergence will be.
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Fig. 2. EXIT chart for Example 1 under different SNR’s.

Decoding success is not so much dependent on the entire
shape of the two curves in an EXIT chart, but is instead
determined largely by what the two curves look like when
they are closest to each other. Motivated by this observation,
and with the understanding that a larger gap between the two
curves leads to a higher probability of decoding successfully
and faster decoding, we propose to choose the parameters Θ so
as to maximize the gap between the two curves at a particular
value I∗2 for I2, where I∗2 is chosen in the “bottleneck” region
of the chart where the two curves are closest. In the example
of Fig. 2, a value of I∗2 around 0.2 would be an appropriate
choice when SNR = 5.9 dB.

Since only the T1 curve depends on Θ, maximizing the gap
is equivalent to maximizing T1. Exploiting (5), we propose to
choose Θ to minimize the following cost function:

J(Θ) =
1

N

N−1∑
k=0

log2(1 + e−akλ
∗
1,k), (6)

where {λ∗1,k} are the extrinsic LLR’s produced by the detector
when it is fed with a consistent Gaussian a priori vector λ2 =
µ∗2a + w2, where the components of w2 are i.i.d. N (0, 2µ∗2),
where µ∗2 is the value of µ2 that leads to I∗2 in (1).

As a result, the cost function does not depend on any
features of the decoder or of the code itself. The proposed
cost function requires knowledge of the written bits, which
can be viewed as a form of training.

By either enlarging the bottleneck or opening a tunnel in
the EXIT chart, we enhance the probability that the decoding
trajectory passes through the bottleneck region. In the end, the
FER will decrease. We should point out that maximizing T1
at one point I∗2 may cause the mutual information to degrade
at other values of I2; if this effect is undesirable one could
swap different parameter sets for different I2 values, so that
the detector parameters would change from one iteration to
the next.

Applying the stochastic gradient algorithm to J(Θ) leads
to the adaptive minimum-frame-error rate (AMFER) algorithm

for adapting the parameters Θ:

Θk+1 = Θk +
αak

1 + eakλ
∗
1,k
∇Θλ

∗
1,k, (7)

where α is the step size. Note the factor αak/(1 + eakλ
∗
1,k)

in (7) can be interpreted as a time-varying step size that is
negligible when akλ∗1,k is large; only when akλ∗1,k is negative
or small will the parameters change significantly.

The AMFER algorithm of (7) is general and can be ap-
plied to a wide range of detector and equalizer architectures.
Here we present a concrete example based on a 2µ-state
SOVA detector, where the parameters Θ to be optimized are
the equalizer coefficients c, the noise standard deviation σ,
and the signal levels s(ak) associated with each bit pattern
ak = [ak, ..., ak−µ]T . SOVA estimates the extrinsic LLR for
ak using:

λ∗1,k = âk∆k − λ2,k, (8)

where âk is the bit chosen by the detector, ∆k is chosen from
a path metric margin Mk after time k (see Algorithm 1), and
where the path metric margin Mk is the difference between
the survivor path metric and the competing path metric:

Mk =

`k−1∑
i=0

− logP (āk−i) +
(cT rk−i − s(āk−i))2

2σ2

−
`k−1∑
i=0

(− logP (âk−i) +
(cT rk−i − s(âk−i))2

2σ2
)

=

`k−1∑
i=0

âk−i − āk−i
2

λ2,k−i +
1

2σ2
(2cT rk−i(s(âk−i)

− s(āk−i)) + s2(āk−i)− s2(âk−i)), (9)

where `k is the separation length of the two paths, and āk
is the competing bit. Plugging (9) and (8) into the AMFER
algorithm (7), along with the relationship between Mk and
∆k described in Algorithm 1, leads to the following update
equations for the parameters Θ:

ck+1 = ck +
akâk

1 + eakλ
∗
1,k

`k−1∑
i=0

rk−i
σ2

(s(âk−i)− s(āk−i)),

σk+1 = σk −
akâk

1 + eakλ
∗
1,k

`k−1∑
i=0

1

σ3
(2cT rk−i(s(âk−i)

− s(āk−i)) + s2(āk−i)− s2(âk−i)),

for each i ∈ {0, 1, ..., `k − 1} :

s(âk−i)k+1 = s(âk−i)k +
akâk

1 + eakλ
∗
1,k

(
cT rk−i − s(âk−i)

σ2
)

s(āk−i)k+1 = s(āk−i)k −
akâk

1 + eakλ
∗
1,k

(
cT rk−i − s(āk−i)

σ2
).

(10)

A common modification in iterative detectors (see e.g. [7])
is to introduce an extra parameter that scales the LLR’s after
the detector and before the decoder. Instead of choosing this
parameter based on an ad hoc search based on empirical
results, as is commonly done, it can be folded into Θ and
optimized by AMFER.
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The pseudocode of a SOVA detector whose parameters
are adapted according to the proposed AMFER algorithm is
shown in Algorithm 1. Code lines 5 to 18 are the conventional
SOVA detector, while lines 19 to 20 implement the AMFER
algorithm.

IV. QUANTITATIVE RESULTS

A. Linear ISI Example

In this subsection we continue the linear ISI channel of
Example 1. We set the maximum number of decoder iterations
to ten, and the maximum number of overall (turbo) iterations
to twenty. For the training process, we train the parameters (the
equalizer, signal levels and residual noise variance) with one
frame of 16200 bits for 500 epochs. MMSE initials are used
for the first epoch. In each epoch, we generate different a priori
information and the step size is α = 10−5. The bottleneck
point we try to break through is I∗2 = 0.2.

In Fig. 3 we compare MMSE and AMFER EXIT charts,
when SNR = 5.9 dB. The red curve shows T1 with AMFER

Algorithm 1 A SOVA detector with parameters adapted by
AMFER
Input: Equalizer input y; I∗2 ; initial values s( · )0, c0 and σ0;

step size α; training bits {a0, a2, ..., aN−1}; termination
conditions.

Output: AMFER parameters s( · ), c and σ.
1: Get µ∗2 from I∗2 by inverting (1)
2: repeat
3: generate λ2 = µ∗2a + w2,

where the components of w2 are i.i.d. N (0, 2µ∗2)
4: Run Viterbi algorithm to get {âk}
5: Φ0(0) = 0, Φ0(p) =∞ ∀p 6= 0
6: for k = 1 to L do
7: for q = 0 to Q− 1 do
8: for p ∈ predecessors(q) do
9: p∗ = argminp{Φk(p) + γk(p, q)}

10: Φk+1(q) = Φk(p∗) + γk(p∗, q)
11: πk+1(q) = p∗

12: if q is the survivor state at time k then
13: Calculate Mk using (9)
14: ∆k =∞
15: Trace back to get the competing

bit subsequence {āk, ..., āk−`k+1}
16: for i = 1 to `k − 1 do
17: if âk−i 6= āk−i and ∆k−i > Mk then
18: ∆k−i = Mk

19: Restore previous update on
parameters at stage k − i, if any

20: Update Θk using (10)
21: end if
22: end for
23: end if
24: end for
25: end for
26: end for
27: until Termination conditions are satisfied

MMSE (FER = 0.605)

AMFER (FER = 0.068)

I2

I 1

Fig. 3. EXIT chart with MMSE and AMFER parameters.

0.4 dB

MMSE

AMFER

Fig. 4. FER vs SNR with MMSE and AMFER parameters.

parameters, while the orange curve shows T1 with MMSE
parameters. The blue curve shows T−12 for the LDPC decoder,
which is independent of the parameters. From the figure
we can see that in the case of MMSE parameters, the two
curves intersect. On the other hand, in the case of AMFER
parameters, there is a distinct gap near I∗2 = 0.2 between the
T1 curve and the T−12 curve. We also observe that although
the AMFER curve is not superior to the MMSE curve when
I2 > 0.6, the ultimate FER is dramatically better; the FER
with AMFER is 0.068, as opposed to an FER of 0.605 with
MMSE.

In Fig. 4, we plot the FER versus SNR for both the
MMSE and AMFER parameters. The error bars indicate the
95% confident interval. At around FER of 10−5, the AMFER
parameters outperform MMSE parameters by 0.4 dB.
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B. Ehime waveforms

We tested our algorithm on simulated waveforms provided
by Ehime University, which were produced by realistic head
fields and a Voronoi medium with Stoner-Wohlfarth switching
[19]. Five consecutive tracks were written in a shingled fash-
ion. In each track, there are 40950 independent pseudorandom
bits sequence and 128 bits preamble and postamble, respec-
tively. A total of 900 readback waveforms were produced with
a fixed bit length of 7.3 nm, track pitches from 16.1 nm to
26.1 nm in 2 nm increments, reader widths from 70% to 145%
in 15% increments (relative to a nominal reader width, whose
full-width at half-maximum (FWHM) of the reader sensitivity
function is 20.8 nm), and 25 reader positions in one-eight of a
track pitch increments, spanning from the second to the fourth
tracks. The readback waveforms from different tracks were
perfectly synchronized. Despite the fact that the waveforms
were not created using an error-control encoder, we can still
test the turbo detector of Fig. 1 through the use of coset
leaders; an uncoded block c of written bits can be interpreted
as a codeword in the coset code c⊕ C for any linear code C.
We also consider the written bits are interleaved and thus an
interleaver and a de-interleaver are applied in the system.

We used the first 16200 bits for training the AMFER
parameters, and the following 24999 bits to measure FER.
Because the codeword length 16200 is much shorter than
24999, we are able to test multiple codewords from a single
waveform by looking at different segments of the waveform.
In particular, we consider 8800 consecutive bits as different
starting locations for 8800 different codewords, and these
frames are used for estimating FER. To limit any correlation
between consecutive frames, we apply independent electronic
noise (with an electronic SNR value of SNRe = 24.6 dB) to
each frame.

We test the AMFER algorithm in two scenarios. For the first
scenario, the detector is SOVA without any pattern-dependent
noise predictor. We consider the case of ten equalizer coef-
ficients and four signal levels. For the second scenario, the
detector is SOVA with PDNP. We set ten equalizer coefficients
and eight patterns. Each pattern has three parameters (one sig-
nal level, one residual noise variance and one noise predictor
coefficient). The update equations can be obtained by plugging
the PDNP path metric [2, 3] into (8) and applying AMFER
algorithm. The AMFER parameters are initialized with MMSE
parameters and I∗2 = 0.3.

We compare the EXIT charts for different schemes in Fig. 5,
assuming the track pitch is 24.1 nm and a centered reader with
70% width. The dashed curves are for the detectors without
PDNP, while the solid curves are for the PDNP detectors.
The MMSE curves are orange, while the AMFER curves
are red. Without PDNP, the MMSE detector achieves FER
= 0.937, while the AMFER detector achieves FER = 0.212,
an improvement by more than a factor of 4. With PDNP, the
MMSE detector achieves FER = 0.805, while the AMFER
detector achieves FER = 0.009, an improvement by more than
a factor of 89.

The areal density advantage of the AMFER algorithm is
illustrated in Fig. 6, where we plot FER versus track pitch for

MMSE PDNP (FER = 0.805)

AMFER no PDNP (FER = 0.212)

AMFER PDNP (FER = 0.009)

MMSE no PDNP (FER = 0.937)

I2

I 1

Fig. 5. EXIT chart from the Ehime waveforms.

22.1 24.1 26.1

TRACK PITCH (nm)

10 -3

10 -2

10 -1

10 0

FE
R

7%

5%

Fig. 6. FER versus track pitch with Ehime waveforms.

the case of a centered reader with 70% width. The legend
in this figure is as same as that in Fig. 5. The horizontal
distance between two curves translates to areal density gain
at a given value of FER. From the figure we see that the
areal density advantage of AMFER over MMSE is roughly
5% without PDNP, and it is roughly 7% with PDNP.

V. CONCLUSION

In this paper we propose a strategy for adapting the parame-
ters of an equalizer and a soft-output detector so as to minimize
the FER. The AMFER algorithm is general and applies to a
wide range of detectors and read channels, including those
using multiple readers and multitrack detection. For the case of
single-track detection using PDNP SOVA and a single reader,
numerical results using realistic readback waveforms show that
the parameters found by the AMFER algorithm can lead to
dramatic improvements in FER and areal density compared to
MMSE parameters.
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APPENDIX
DERIVATION OF (1)

The mutual information between a discrete random variable
a ∈ A and continuous random variable λ is

I =
∑
a∈A

∫ +∞

−∞
P (a, λ) log2

P (λ|a)

P (λ)
dλ.

When P (a = −1) = P (a = 1) = 1/2 and P (λ|a) =
1√

2π2µ
e−

(λ−aµ)2
2(2µ) , I reduces to:

I =
∑

a∈{−1,1}

∫ +∞

−∞
−P (a, λ) log2

1 + e−aλ

2
dλ

= 1− E(log2(1 + e−aλ)).
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