IEEE TRANSACTIONS ON MAGNETICS, VOL. 57, NO. 3, MARCH 2021

3100406

Minimum-Bit-Error Rate Tuning for PDNP Detection

Shanwei Shi

and John R. Barry

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA

A dominant impediment in magnetic recording is pattern-dependent media noise, and its impact will only grow more severe
as areal densities increase. A widely used strategy for mitigating media noise in a trellis-based detector is pattern-dependent
noise prediction (PDNP); in this approach, each bit pattern (which determines a trellis branch) will have its own set of branch
metric parameters (including the signal levels, noise predictor coefficients, and residual variances). Because the number of states
grows exponentially with the number of tracks being detected, a multitrack detector has far more parameters than a single-track
detector. In this article, we propose the adaptive minimum-bit-error rate (AMBER) algorithm for adapting these pattern-dependent
multitrack detector parameters with the aim of minimizing BER. Numerical results for a 2-D-PDNP multitrack detector based on
a quasi-micromagnetic simulated channel show that, when compared to a conventional MMSE criterion, the AMBER algorithm

decreases the BER by 17%.

Index Terms— Data-dependent noise prediction (DDNP), minimum-bit-error rate (MBER), multiple-input multiple-output (MIMO),

two-dimensional magnetic recording (TDMR).

I. INTRODUCTION
KEY feature of media noise in magnetic recording is
its dependence on the pattern of bits being written [1].
The pattern-dependent noise prediction (PDNP) algorithm [2],
[3], widely used as an effective strategy for mitigating pattern-
dependent media noise in single-track detection, has recently
been extended to the multitrack scenario [4]; it uses 2-D
patterns (spanning multiple tracks) to mitigate both downtrack
and crosstrack pattern-dependent noise.

Moving from 1-D to 2-D PDNP detection results in an
explosion in the number of detector parameters, primarily
because the number of patterns grows exponentially in the
number of tracks being detected, and further because some
of the parameters (like equalizer coefficients and predictor
coefficients) become matrix-valued instead of scalars. This
paper examines the question of how best to choose the
parameters of a PDNP detector.

Traditionally, the PDNP parameters are chosen to minimize
some form of a minimum-mean-squared-error (MMSE) crite-
rion, due to its quadratic form which ensures a closed-form
solution and a single local minimum. however, the MMSE
parameters do not necessarily minimize the bit-error rate
(BER), which is the more relevant performance metric from
the perspective of the end user interested in maximizing areal
density. Furthermore, a closed-form solution for the MMSE
parameters requires full knowledge of the noise second-order
statistics for each pattern, which can be impractical for a
multitrack detector, where the number of patterns is large and
may exceed the amount of training data available.

Adaptive strategies aiming to minimize BER instead of
MSE have been widely studied in a variety of applications.
Yeh and Barry [5] derive the exact MBER full-response equal-
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izer, and propose an adaptive MBER (AMBER) algorithm.
An extension to partial-response equalization called the near
minimum-BER (NMBER) algorithm was proposed in [6],
which yielded a 1.2 dB SNR gain with respect to the least
mean squares (LMS) algorithm for an optical storage system.
In [7] and [8] a deep neutral network is used to estimate
detector parameters that reduce BER and computation time.
An AMBER algorithm for tuning the parameters of a single-
track PDNP detector was recently proposed in [9].

In this paper, we present for the first time an adaptive
algorithm for tuning the parameters of a multitrack PDNP
detector (namely the 2-D-PDNP detector of [4]) so as to
minimize BER. We test the proposed algorithm on a set of
simulated channel waveforms and compare its performance to
traditional MMSE parameters.

This paper is organized as follows. In Section II, we intro-
duce the AMBER algorithm in the context of single-track
detection, extend it to multitrack detection, and explore its
properties. In Section III, we evaluate the performance of
the proposed algorithm using simulated waveforms, and in
Section IV, we summarize this paper.

II. AMBER ALGORITHM

We consider the problem of adapting the parameters of
a typical magnetic recording read channel, such as those
illustrated in Fig. 1. For example, consider the 1-D scenario
depicted in Fig. 1(a), where the readback waveform from
a single reader is sampled, equalized, and fed to a 1-D
trellis-based detector, which ultimately results in a sequence
of decisions aj; about the written bits a;. In this case, the
parameters to be adapted are the coefficients of the equalizer
along with any parameters within the detector. As another
example, we consider the multitrack scenario depicted in
Fig. 1(b), where multiple readback waveforms are sampled
and equalized by a multiple-input multiple-output equalizer
before being fed to a trellis-based multitrack detector, which
produces decisions a; about the bits written on the multiple
tracks. Throughout this article, we will use ® to denote the set
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Fig. 1. Illustration of the parameters to be optimized, for two scenarios.
(a) For single-track detection using a single reader. (b) For multitrack detection
using multiple readers.

of read channel parameters that are to be optimized. In the case
of a PDNP detector, ® includes the equalizer coefficients, the
pattern-dependent signal levels, the pattern-dependent predic-
tor coefficients, and the pattern-dependent residual variances.

A. AMBER Update Equation

While the aim of the AMBER algorithm proposed in [9]
for single-track detection is to minimize BER, it is driven
not by a direct measure of BER but instead by a closely
related performance metric known as the path metric margin.
Roughly, the path metric margin at time k& measures the gap
between the metric of a competing path and that of the correct
path. More precisely, assume that the written bits ag through
ay are known, as would arise during a training phase. In this
case, if 0, denotes the state at time k of a Viterbi detector
[10], this implies that the correct path with state sequence
{6o, ..., 0} leading to the correct state 6y is known. We define
the competing path at time k as the “best of the rest” of the
paths that lead to state 6§ at time k; in particular, when the
Viterbi algorithm aims to find the path with minimum metric,
the competing path at time k is the partial path that leads to the
correct state at time k, excluding the correct path, with minimal
metric. The competing path can be traced back from &; until
it merges with the correct path, defining the competing path
sequence {ék_gk, R ék}, where {; denotes the length of the
separation between the correct and competing paths. Because
the competing path starts and ends on the correct path, we have
ék—fk = Ok—¢, and ék = 6. The path metric margin is then
simply the difference between the competing and correct path
metrics

Cr—1 Cr—1
My = Z Y (Ok—i, Ok—i—1; ©®) — Z Y Ok—i, Ok—i—1; O)
i=0 i=0

ey

where y (Ok, Or—1) is the branch metric from state Gy to .

A large margin implies that the correct path is easily
distinguishable from the incorrect path, while a small positive
margin implies that the correct path is barely preferred over
the incorrect path. A negative margin (when Mj < 0) implies
that a Viterbi detector that ignores the training information
would make bit errors, either at or near time k. Note that one
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bit error can result in multiple negative margins. Based on this
observation one might be tempted to choose the parameters ®
to minimize the probability that Mj is negative, or (in terms
of the unit-step function) so as to minimize the following cost
function:

J(©) = E(u(—My)) )

where E(-) is the expectation and u( - ) is the unit step
function. However, this function is not differentiable and is
difficult to minimize directly. Therefore, we instead propose
to choose © so as to minimize the following cost function:

J:(©) = E((r — Mi)u(t — My)) 3)

where 7 is a small positive threshold. Not only is J; (®) differ-
entiable, but under certain circumstances (explained in the next
section) minimizing J; (®) is equivalent to minimizing J(©).

Applying the stochastic gradient algorithm to J; (®) leads
to the AMBER algorithm for adapting the parameters ©

Oit1 = Ok + lu(r — My)Ve My 4)

where A is the step size. The unit step factor in (4) acts
as an indicator function: it ensures that the parameters only
update when M < 7. In other words, the parameters update
only when the margin is dangerously small; otherwise, the
parameters do not change. This feature is in stark contrast
to MMSE algorithms like LMS and recursive least squares
(RLS), which would continually update the parameters.

The AMBER algorithm of (4) is general and can be applied
to a wide range of detector architectures, in any specific
application one must first find an expression for the path metric
margin in terms of the detector parameters, so that the gradient
in (4) can be computed explicitly. We close this section with
three specific examples.

1) AMBER for Viterbi Without PDNP: We first consider a
2#-gstate Viterbi detector without PDNP, where u is the channel
memory. In this case, the only parameters to optimize are the
equalizer coefficients and the signal levels associated with each
state transition. The signal levels can be viewed as the entries
of a look-up table, one signal level for each state transition.
Each state transition can be represented by a vector or pattern
a of u + 1 bits (containing the current input bit as well as the
4 previous input bits). We use the notation s(a) to denote the
signal level associated with the bit pattern a. In this case the
path metric margin of (1) reduces to

Cr—1
My = D (i — s@-))* — Gii — s@—0)°
i=0
Ok —1
= Z 2T rp_i (s(ak—i) — s@r—i)) + 5> (Ax—;)
i=0
— 5% (ax—i) )

where a; = [ay, ..., ak_ﬂ]T is a vector of bits for the correct
path, where a; are the corresponding bits for the competing
path, and where c is the vector of equalizer coefficients and
r; is the vector of relevant waveform samples at time k.
Differentiating My with respect to ¢ and s and substituting
into (4) leads to explicit AMBER update equations for ¢ and s.
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2) AMBER for 1-D PDNP: As a second example, con-
sider the AMBER algorithm applied to a single-track PDNP
detector, so that the parameters ® to be optimized are the
equalizer c, the signal levels s(a), the residual prediction-error
variances v(a), and the N, x 1 predictor coefficient vectors
p(a) associated with each bit pattern a. In this case, the path
metric margin of (1) reduces to

Ik—1
B . T g k—i=Np
My = ; {Inv@—) + @) (1, —p" @)1 (¥y_;
. |
_S(ﬁllz—i Np)))Z —Ino(ag—) — v(ar_;)
x (L —p" -] (yi_s ™ —s(a "))}
(6)

Differentiating and substituting into (4) leads to explicit
update equations for the detector parameters.

3) AMBER for 2-D-PDNP: Here, we show how the
AMBER algorithm can be applied to a multitrack detector
that uses 2-D-PDNP [4], where two readers spanning a pair
of neighboring tracks are used to jointly detect the bits on
the two tracks. Synchronous samples of the two readback
waveforms are filtered by a two-input two-output equalizer
with N, coefficients (each a 2 x 2 matrix), represented by
a 2 x 2N, matrix C, resulting in the vector output y; at
time k. The equalizer outputs are then passed to a 2-D-PDNP
multitrack detector [4]. The 2-D bit pattern A is a matrix of
bits with two rows, one for each track. Associated with each
2-D bit pattern is a signal level vector s, a standard deviation
diagonal matrix A, and a set of matrix-valued predictor
coefficients {Pg, Py, ..., PNp,l}. The number of parameters
is 26(5 + 4(N, — 1)) + 4N, (for each of the 2% patterns there
are two signal levels, two residual variances, and 4(N, —1)+1
predictor coefficients), a number which can easily reach into
the hundreds, depending on the number of bits b in each 2-D
pattern, the number N, of matrix-valued predictor coefficients,
and the number N, of matrix-valued equalizer coefficients.

The branch metric for an edge e in the 2-D-PDNP Viterbi
detector is [4]

yi(e) = log (o (Ak)o3 (Ax))
2

Np
+ (AT AN D BiAD i — sAr-))| (D)

i=0
where Ay is that pattern at time k associated with e, where o
and o7 are the diagonal components of A, and B; = ;1 — P;
are the coefficients of a prediction-error filter, defined in terms

of the unit impulse J; (satisfying dp = 1, djx0 = 0).

By plugging (7) into (1) and applying the AMBER algo-
rithm, we arrive at the update equations for C, A, s, and P;.

B. Exponential Assumption and Threshold Optimization

The threshold parameter v of the AMBER algorithm is not
arbitrary. Instead, it must be chosen carefully to ensure good
performance and avoid trivial solutions with bad performance.
In this section, explore the role of 7 and propose a strategy
for its optimization.
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Fig. 2. Margin pdf and its tail fit to an exponential function.

The basis for our analysis is the observation that the tail
of the probability density function (pdf) for the path margin
M. often appears to have an exponential shape. For example,
consider the upper left inset of Fig. 2, which shows an exper-
imentally measured pdf for the margin Mj in a single-track
PDNP Viterbi detector operating on a quasi-micromagnetic
simulated channel with a track pitch of 22.1 nm and a 70%
centered reader (see Section III for clarification). The bottom
of Fig. 2 shows a close fit between the tail of the pdf and an
exponential distribution (the red dashed curve).

Because we observed similar good fits to an exponential
distribution over a wide range of channel conditions and
detector parameters, we were encouraged to adopt the expo-
nential model for the pdf tail described below, to facilitate
analysis. It should be noted that the tail is not strictly speaking
exponentially distributed, and that ultimately the value of the
AMBER algorithm rests not on the exponential assumption
that facilitates some of its analysis but on the good experi-
mental results of the algorithm itself (see Section III).

When the rail of the pdf for Mj follows an exponential
distribution:

f(m) =a(@)"®" m << (8)

where a and b are parameters that depend on @, then the cost
functions (2) and (3) reduce to

a(®)

J(©) = b(©)’ )
_ a(®) b(O)r
J:(®) = —bz((-))e . (10)
Straightforward differentiation of (9) and (10) results in
1
Ve /J(®) = W@)(Va(@)b(@) —a(®)Vb(®)) (11)
b (©)7
Ve J:(©) = (Va(©)b(®) — (2 — b(O)7)

b*(©)

x a(®)Vh(O)). (12)

Let ®* denote the set of parameters that minimizes J(©),
so that substituting ®* into (11) yields Vg J(®*) = 0. Let
% = 1/b(O®). Substituting % into (12) reveals that
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Algorithm 1 Iterative Algorithm to Ensure Optimal

Input: Initial threshold 7¢, stop criterion €

Output: Optimal 7 and ©.

:1=0

2: repeat

3:  Run AMBER to get ©(z;) that minimizes J;, (©)

4:  Fit steady-state margin tail pdf (for m < 7) to an
exponential distribution, and estimate its b(O(z;))

50 Set 741 = m

coi=i+1

cuntil |7, — 71| <€

9 o

the same @ that minimizes J(®) also minimizes J;.(®).
The implication of this observation is that, when the margin
tail is exponential, and when the AMBER threshold is chosen
carefully (according to = 1/b(0©%)), the cost function J(®)
can be minimized by the AMBER algorithm.

As stated there is a circular flaw: the optimal value for
depends on the optimal value ®* for the parameter set. Clearly,
there would be no need for AMBER or its threshold if @*
were already known. To help break this cycle, we make use
of the following fixed-point relationship.

Corollary 1: Let ©(t) denote the parameter set that min-

imizes J;(®). If 7 satisfies the fixed-point relationship 7 =
(1/(b(©(7)))), then 7 = 7% and O(r) = O*.
Inspired by this corollary, we propose a fixed-point iterative
strategy for automatically finding the best threshold. Starting
with an arbitrary threshold, we run the AMBER algorithm
until it converges, fit the margin tail that results to an expo-
nential shape with parameter b, and then set the new threshold
to 1/b. This process is repeated until the threshold converges.
The pseudocode of the proposed iterative algorithm is shown
in Algorithm 1.

As an illustration of how Algorithm 1 works, consider the
example of a conventional ten-coefficient equalizer followed
by a single-track two-state Viterbi detector without PDNP, so
that the parameter set @ consists of ten equalizer coefficients
and four signal levels. To ensure that the optimal ® is unique,
we constrain both the equalizer energy and the signal level
energy. The input to the detector is the simulated channel
described in [11], based on a 70% centered reader and a track
pitch of 24.1 nm.

We sweep the threshold 7 from O to 3, and for each value
we use the AMBER algorithm to find the ®(7) that minimizes
J: (®). We then estimate the path metric margin pdf and fit its
tail (for My < 7) to an exponential shape, resulting in a b para-
meter we denote b(®(7)). In Fig. 3, we plot 1/b(O(t)) versus
7 in red (right-hand scale). The goal of the iterative algorithm
is to find the value of 7 where the fixed-point relationship
is satisfied, namely where the dashed line (representing 7)
intersects the red curve [representing 1/b(®(7))]. Starting
with an arbitrary initial value of 79 = 2, Algorithm 1 produces
71 = 1.1, 70 = 0.75, and 73 = 0.75, converging quickly after
only three iterations. The blue trajectory graphically illustrates
how the algorithm bounces between the red and dashed curves
until it converges to their intersection. Finally, overlaid on the
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Fig. 3. Relationship between 7 and 1/b(®(z)). The simulation is run in
training mode, with a 70% centered reader over a 24.1 nm track pitch.

same graph, we also plot J(®(z)) from (2) as a function of 7
in black (left scale). Observe that the value of 7 that minimizes
this cost function coincides with the value of r that satisfies
the fixed-point relationship.

C. Hamming-Weighted Step Size

As written, when the margin tail is exponential and the
threshold 7 is optimized, the AMBER algorithm of (4) min-
imizes J(®) = P(My < 0). If each instance of the error
event My < 0 led to a single bit error, then this would
be equivalent to minimizing BER. However, because some
error events cause more bit errors than others, the AMBER
algorithm as written does not minimize BER. We can improve
the BER performance of the AMBER algorithm by a simple
modification of the step size 4 in (4), namely by introducing
an adaptive Hamming-weighted step size 1 = Apwpy, where
Ao is a fixed nominal step size, and wp is shorthand for the
number of message bits that differ between the correct subpath
{Ok—¢;,...,0k} and the competing subpath {HAk,gk,...,ék}.
The Hamming-weight factor ensures that a large burst of bit
errors will cause a bigger change in parameters than a small
burst of errors.

To illustrate the benefit of the Hamming weight fac-
tor, consider again the example from the previous section
(a ten-coefficient equalizer followed by a two-state Viterbi
detector without PDNP, based on a 70% centered reader and
a track pitch of 24.1 nm from the simulated channel in [11]).
Let us fix the equalizer to be MMSE, and further constrain the
signal levels to be symmetric: either 51 when two consecutive
bits are the same, or 45, when two consecutive bits are
different. There are thus only two parameters to optimize:
O = {51, 5}.

In Fig. 4, we show a contour plot of BER as a function of
the parameters s; and s2. Overlaid on the same graph are a pair
of trajectories for the AMBER algorithm, both starting from
the same arbitrary initial condition (—1.1, 0.9). The red curve
has no Hamming-weight factor, while the blue curve includes
the Hamming-weight factor. In both cases, the initial A¢ is
1074, and it decays with a half-life of 25. After convergence
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Fig. 4. BER contour with trajectories of AMBER parameters.

the BER with the Hamming factor is 0.0130, while the BER
without the Hamming factor is 0.0133. Also shown in the
figure is the MBER point, found by exhaustive search, which
achieves BER = 0.0120, along with the MMSE point, which
achieves BER = 0.0164. This example illustrates not only the
benefit of the Hamming weight factor in the step size, but also
the general suboptimality of MMSE with respect to BER, and
further the effectiveness of the AMBER algorithm to seek out
the minimum of the BER surface.

III. QUANTITATIVE RESULTS

We tested our algorithm on simulated waveforms provided
by Ehime University, which were produced by realistic
head fields and a Voronoi medium with Stoner—Wohlfarth
switching [11]. Five consecutive tracks were written in a
shingled fashion. In each track, there are 40 950 independent
pseudorandom bits sequence and 128 bits preamble and
postamble, respectively. A total of 900 readback waveforms
were produced with a fixed bit length of 7.3 nm, track pitches
from 16.1 to 26.1 nm in 2 nm increments, reader widths
from 70% to 145% in 15% increments (relative to a nominal
reader width, whose full-width at half-maximum (FWHM)
of the reader sensitivity function is 20.8 nm), and 25 reader
positions in one-eighth of a track pitch increments, spanning
from the second to the fourth tracks. The readback waveforms
from different tracks were perfectly synchronized and no
modulation coding or error-control coding was applied. No
electronic noise was added.

A. Performance of AMBER PDNP Detection

Unlike the genie-aided tests performed in [9], we use the
second track for training parameters, and the third (middle)
track to detect in the following simulation. We now present
numerical results for the AMBER algorithm presented in
Section II, which applies to the case of a fixed MMSE equal-
izer followed by a PDNP Viterbi detector. The parameters to be
adapted are the parameters of the PDNP detector, namely the
pattern-dependent signal levels, noise variances, and predictor
coefficients. We consider two-bit patterns, so that the number
of patterns is four, and a single predictor coefficient for each
pattern. The total number of parameters being adapted is

3100406
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Fig. 5. Learning curves for the AMBER PDNP algorithm.
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Fig. 6. Parameter evolution versus iterations for AMBER PDNP.
thus 12: four signal levels, four variances, and four predictor
coefficients.

To start with, we investigate the convergence properties
by plotting BER versus iterations in Fig. 5. The AMBER
algorithm was tested on waveforms of track pitch 24.1 nm
with a 70% centered reader. A decaying step size 10~* with
a half-life of 100 iterations was employed, and the parameters
are initialized to those of a non-PDNP Viterbi detector. We
trained the parameters on track 2 by AMBER algorithm and
plot the training BER curve plotted in blue versus iterations.
The red curve is the testing BER achieved by detecting
track 3 with the training parameters after each iteration. The
figure shows that the AMBER algorithm converges fast and
the BER gets close to the MBER line found via an exhaustive
search on track 3, and becomes stable after 60 iterations,
achieving a 20% reduction in BER compared to MMSE line
plotted in black. We also plot the parameter evolution in
Fig. 6. The signal levels (blue dashed curves), variances (red
solid curves) and predictor coefficients (black dotted curves)
converge fast.

B. Performance of AMBER 2-D-PDNP Detection

In this simulation, we consider a scenario where two read-
ers detect two tracks. We use tracks 2 and 3 to train the
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Fig. 7. Learning curve for the AMBER 2-D-PDNP algorithm.

parameters, and we use the resulting parameters to detect the
bits written on track 3 and 4, with 11 matrix-valued equalizer
coefficients. The detector has 16 2-D patterns, and there are
only two prediction matrices Py and Py (N, = 1), so that the
number of states with 2-D-PDNP is 16. The total number of
parameters is 188. We do not consider longer pattern lengths
because there are not sufficient training data for each pattern.

We investigate the convergence properties of the AMBER
algorithm by plotting BER (averaged over the two tracks)
versus iterations. In this experiment, there are two 130%
readers one-eighth track offset inside the two tracks of interest,
and the track pitch is 26.1 nm. The step size is initialized to
107> and decreases exponentially with a half-life of 300 iter-
ations, and the threshold is 7 = 1. Fig. 7 shows the training
curve for the AMBER algorithm (in blue), where we see its
convergence after about 450 iterations. The detection curve
converges 50 iterations faster. Compared with 2-D-MMSE
parameters, 2-D-AMBER parameters achieve a 17% decrease
in BER.

IV. CONCLUSION

In this article, we proposed the AMBER algorithm for
adapting the parameters of a multitrack detector known as the
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2-D-PDNP detector. We proposed a fixed-point iterative strat-
egy for optimizing the AMBER threshold. Simulated wave-
forms demonstrate that the AMBER 2-D-PDNP parameters
measurably outperform conventional MMSE parameters. We
expect further gains in performance by increasing the length
of the training sequences, pattern lengths, and the number of
prediction coefficients.
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