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SUMMARY

Multipath fading has been long viewed as an impairment in wireless communication

systems that limits the reliability and data rate of the communication link. By deploying

multiple antennas at the transmitter and receiver, multipath fading can be turned into

an advantage, allowing for greater reliability and higher data rates than would otherwise

be possible. Furthermore, the rate and reliability benefits can be achieved without extra

cost of bandwidth, making multiple antenna technology a cornerstone of current and future

wireless systems.

The potential benefits of multiple antenna systems can be harnessed through the use of

space-time coding. In space-time coding, information symbols are coded across two dimen-

sions, the spatial dimension, which corresponds to the multiple antennas at the transmitter,

and time dimension, which corresponds to the multiple signaling intervals. In this thesis,

we focus on linear space-time block codes, in which the information symbols are linearly

combined to form a two-dimensional code matrix, wherein the rows of the matrix corre-

spond to transmission across multiple intervals, and the columns of the matrix correspond

to transmission from different antennas.

In this thesis, we consider the problem of designing space-time block codes that have

low maximum-likelihood (ML) decoding complexity. We first present a unified framework

for determining the worst-case ML decoding complexity of space-time block codes. We use

this framework to not only determine the worst-case ML decoding complexity of our own

constructions, but also to show that some popular constructions of space-time block codes

have lower ML decoding complexity than was previously known. Specifically, we show that

the golden code, which harnesses both the reliability and rate benefits of the two-input two-

output channel, has a worst-case ML decoding complexity that is substantially lower than

that of an exhaustive-search decoder.
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Recognizing the practical importance of the two transmit and two receive antenna sys-

tem, we propose the asymmetric golden code, which is designed specifically for low ML

decoding complexity. Unlike some previous constructions, which lose their reduced com-

plexity decoding when the channel varies during the transmission period of the code matrix,

the asymmetric golden code maintains its low decoding complexity regardless of channel

variability. The asymmetric golden code has the lowest decoding complexity compared to

previous constructions of space-time codes, regardless of whether the channel varies with

time.

Space-time codes that layer or multiplex rate-one space-time codes to achieve arbitrary

rates ranging from one to maximal rate have been proposed in literature. Two of the most

important constructions are the threaded algebraic and perfect space-time codes. These

codes, however, suffer from high decoding complexity and worse bit-error-rate performance

when compared to other space-time codes that have been proposed for a particular rate

and a particular number of transmit and receive antennas. In this research, we propose the

embedded orthogonal space-time codes, which is a family of codes for an arbitrary number

of antennas, and for any rate up to half the number of antennas. The family of embedded

orthogonal space-time codes is the first general framework for the construction of space-time

codes with low-complexity decoding, not only for rate one, but for any rate up to half the

number of transmit antennas. Simulation results for up to six transmit antennas show that

the embedded orthogonal space-time block codes are simultaneously lower in complexity

and lower in error probability when compared to some of the most important constructions

of space-time block codes with the same number of antennas and the same rate larger than

one.

Having considered the design of space-time block codes with low ML decoding complex-

ity on the transmitter side, we also develop efficient algorithms for ML decoding for the

golden code, the asymmetric golden code and the embedded orthogonal space-time block

codes on the receiver side. Simulations of the bit-error rate performance and decoding

complexity of the asymmetric golden code and embedded orthogonal codes will be used to

demonstrate their attractive performance-complexity tradeoff.

xii



CHAPTER 1

INTRODUCTION

In the last decade, there has been a dramatic increase in the demand for higher data rates

in cellular networks, wireless local area networks and high-definition audio and video broad-

casting services. Providing wireless access to the Internet and multimedia services requires

an increase in data rates that is orders of magnitude beyond the capability of today’s tech-

nology. One of the most significant and promising advances in digital communications that

can meet the demand for higher data rates is the use of multiple antennas at the trans-

mitter and receiver. Deploying multiple antennas at the transmitter and receiver creates

a multiple-input multiple-output (MIMO) channel that not only offers higher transmission

rates, but it can also improve the system’s reliability and robustness to noise compared to

single antenna systems.

Signal transmission over the wireless channel suffers not only from additive noise, but

also from multipath fading. Specifically, a transmitted radio signal propagates through

multiple paths, due to scattering and reflections from different objects in the environment,

before it reaches the receive antenna. At the receiver, the multipath signals combine,

and depending on the amplitude, delay and phase of each of the multipath signals, the

result could be that the signals cancel each other completely or significantly attenuate the

combined signal. Due to multipath fading, the received signal can be significantly attenuated

that the receiver cannot correctly detect the transmitted signal.

One way to overcome the problem of multipath fading is diversity. The basic concept

of diversity is to transmit the same information symbols over multiple channels that are

fading independently. This way, if one of the channels is in a deep fade, the receiver can

still recover the transmitted signal if one of the other channels is in a good enough state

to allow for reliable detection. Diversity can be harnessed along the time, frequency and

spatial dimensions, wherein the same information is transmitted at different time instances,
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transmitted in different frequency bands, or transmitted or received from different points

in space, respectively.

Space or spatial diversity can be exploited by using multiple antennas that are suffi-

ciently separated at the receiver such that the signal received at each antenna undergoes

independent fading. Many modern day communication systems use receive diversity at the

base station. For example, the base stations in the global system for mobile communica-

tions (GSM) typically have two receive antennas [1]. Receive diversity at the base station

improves the quality of the communication link from the mobile unit to the base station

(uplink).

In the early 1990’s, researchers realized that the spatial diversity benefits of receive

antennas can also be harnessed at the transmitter by using multiple antennas to achieve

transmit diversity. Since then, several transmit diversity techniques have been developed

with early development efforts focusing on using the antennas at the base station, which

were used for receive diversity, to harness transmit diversity. These techniques attracted

a lot of attention because they improved the quality of the link from the base station to

the mobile unit (downlink) without incurring the additional cost of antennas at the mobile

unit. Combined with receive diversity at the base station, the quality of both the uplink and

downlink is improved. Wireless links with receive and transmit diversity enabled by multiple

antennas at the base station are shown in Figure 1.1(a) and Figure 1.1(b), respectively. By

deploying multiple antennas at the transmitter and receiver, we can harness transmit and

receive diversity at the base station and the mobile unit as shown in Figure 1.1(c).

Early research efforts focused on harnessing the diversity benefit of the MIMO channel.

An additional benefit of the MIMO channel in Figure 1.1(c) is that we can increase the

throughput of the communication link, and do so at both ends of the link. The seminal work

in [2] showed that the capacity or throughput of the channel can be significantly increased

by using multiple antennas at both the transmitter and receiver. Under certain conditions,

multiple independent data streams can be sent or multiplexed from the transmit antenna

array and be decoded reliably at the receiver. The prospect of improving the reliability and

throughput of the wireless communication link - at no cost of extra spectrum - is largely

2



(a) Receive diversity.

(b) Transmit diversity.

(c) Transmit and receive diversity in a MIMO channel.

Figure 1.1: Wireless links with transmit and receive diversity.
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responsible for the incorporation of MIMO technology into current and future commercial

wireless products and standards such as CDMA-2000, W-CDMA, Long Term Evolution

(LTE), IEEE 802.11n (WiFi), and IEEE 802.16e (WiMAX).

The use of multiple antennas to increase the throughput of the communication channel or

increase its reliability has been quantified by defining three related terms: rate, multiplexing

gain and diversity gain. The rate of a communication system is the number of transmitted

symbols per signaling interval. The multiplexing and diversity gains define how fast the

rate increases or how fast the error probability decreases, respectively, with increase in

signal-to-noise ratio (SNR) in the high SNR region. For any number of antennas, there is

a continuous tradeoff between the diversity and multiplexing gains [3]. The diversity gain

and code rate, however, can be simultaneously maximized [4][5].

A key idea in multiple antenna systems is space-time coding, in which the time dimen-

sion inherent in digital communications is complemented by the spatial dimension inherent

in the use of multiple antennas. A key benefit of space-time coding is the ability to turn

multipath propagation, an impairment in single antenna wireless communications, into a

benefit for multiple antenna systems by taking advantage of the random fading in increas-

ing the transmission rate of the communication link as well as increase its reliability. As

a result of the two different benefits of MIMO channels, early transmission schemes typ-

ically fell into two categories: diversity gain maximization schemes or rate maximization

schemes. However, recent work in space-time code design has shifted away from increasing

the diversity gain or transmission rate alone to increasing both simultaneously.

Achieving higher rates and improved reliability in multiple antenna systems comes with

a cost. Although there is no additional cost of bandwidth, there is a significant increase in

complexity compared to single antenna systems. Specifically, a maximum-likelihood decoder

for the transmitted signal can have a worst-case complexity that grows exponentially with

the number of transmitted symbols.

Recognizing the importance of decoding complexity in practical systems, this thesis

designs space-time block codes that not only harness both the rate and reliability benefits

4



of MIMO systems, but do so with low maximum-likelihood decoding complexity. A by-

product of the design of such space-time codes is a unified framework for determining the

worst-case ML decoding complexity of space-time block codes. We also address the high

decoding complexity on the receiver side by presenting novel maximum-likelihood decoders

with low average complexity for the practically important configuration of two transmit and

two receive antennas.

We mentioned that spatial diversity can be exploited using space-time coding. Time

diversity can be exploited using error-control coding and interleaving. Error-control coding

introduces redundancy in the transmitted data, and interleaving spreads the redundant data

symbols so that they experience independent fading. In situations where the channel varies

slowly with time, we might not be able to exploit time diversity because the interleaver

length might become too prohibitive for practical implementation. Specifically, a long

interleaver might introduce an unacceptable amount of latency into the system. A similar

situation occurs in the case of frequency diversity where the channel undergoes flat fading

such that the interleaved redundant data symbols across different frequency bands do not

experience independent fading. Because time and frequency diversity cannot always be

exploited by error-control coding, space-time coding can complement error-control coding.

Specifically, space-time coding complements error-control coding by encoding the redundant

and interleaved data symbols across time and space.

Digital communication systems are often partitioned into different modules or elements,

wherein error-control coding and space-time coding constitute different elements. The de-

sign and decoding of space-time block codes and error-control codes has followed this tradi-

tional partitioning such that space-time codes are designed independently of error-control

codes and vice versa. In this thesis, we will only focus on the design and decoding of space-

time block codes. We do so for the sole purpose of being able to compare the complexity

and error-rate performance of space-time codes fairly, irrespective of a particular choice

of an error-control code. We emphasize, however, that space-time coding complements

error-control coding in practical systems.

An important consideration in practical systems is the availability of channel state
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information (CSI) at the transmitter and receiver. Throughout this research, we will assume

that the receiver has perfect knowledge of the channel, but the transmitter does not have

any knowledge of it. Such system is known as open-loop system since there is no feedback

path from the receiver to the transmitter where CSI can be communicated. Systems where

CSI is also available at the transmitter are known as closed-loop systems. In both systems,

the channel can be estimated at the receiver using a preamble or pilot symbols, which are

known signals at both the transmitter and receiver. The receiver can use these known

signals to estimate the channel and refine or adapt the channel estimate. In a closed-loop

system, the CSI is then fed back to the transmitter.

In closed-loop systems, space-time processing known as eigenbeamforming is used rather

than space-time block coding. Eigenbeamforming converts the MIMO channel into a bank

of independent scalar channels. Furthermore, eigenbeamforming is optimal in the sense of

achieving the capacity of the MIMO channel and achieving full diversity gain [6].

One of the main challenges in eigenbeamforming is how to obtain channel knowledge at

the transmitter. Most current wireless standards allocate a feedback channel to transmit

CSI. Furthermore, the CSI is usually quantized to reduce the transmission load required to

feedback the CSI to the transmitter. An important issue that arises in closed-loop systems

is CSI mismatch. Specifically, CSI mismatch between the transmitter and receiver due to

either long feedback delay or due to a rapidly time-varying channel results in significant

performance loss in eigenbeamforming. Due to their inherently different costs, both open-

loop and closed-loop techniques are important in practical wireless systems. In fact, most

current and future wireless systems use both open-loop and closed-loop MIMO techniques.

For example, the next generation WiFi (802.11n) and WiMAX (802.16e) standards use

both open-loop techniques in the form of space-time coding and closed-loop techniques in

the form of eigenbeamforming.

In the remainder of this chapter, we highlight our contributions on both the transmitter

side and the receiver side. Finally, we outline the organization of the remainder of the

thesis.

6



1.1 Research Objective and Contributions

Mobile communication systems having two transmit antennas and two receive antennas are

of great practical importance for two main reasons: First, a transmitter with two antennas

can communicate at a higher data rate and more reliably than a transmitter with a single

antenna. Second, power and size constraints prevent many devices, especially in mobile

applications, from having more than two antennas. Several space-time block codes have

been proposed specifically for this practically important configuration. Arguably, the most

important of these codes is the golden code [7][8]. The golden code has many advantages:

it is full-rate, it is fully diverse and in terms of the SNR required to achieve a target error

probability, it performs better than previously reported codes. Furthermore, the coding

gain of the golden code is independent of the alphabet size, which ensures that the golden

code achieves the full diversity multiplexing frontier of Zheng and Tse [3][9], and which

makes it compatible with adaptive modulation. For these reasons, the golden code has

been incorporated into the 802.16e WiMAX standard [10].

The golden code applied to a system with two receive antennas leads to an effective

four-input four-output channel that maps each block of four q-ary information symbols to

a vector of four complex-valued received samples [11]. An exhaustive search maximum-

likelihood (ML) decoder would consider each of the q4 possible input vectors in turn and

choose as its decision the one that best represents the channel output in a minimum-distance

sense. Therefore, the complexity of such an exhaustive search ML decoder is proportional to

q4. Although significant reductions in average complexity are possible by adopting a tree-

based ML decoder, the worst-case complexity of a sphere decoder is generally no better

than that of an exhaustive search.

The perception that ML decoding of the golden code has high complexity has had two

effects: First, it has motivated a search for suboptimal decoders for the golden code with

reduced complexity and near-ML performance [12]-[15]. Second, it has motivated a search

for lower-complexity alternatives that perform almost as well as the golden code [16]-[18].

A drawback to the use of suboptimal decoders is the performance loss compared to

the maximum-likelihood decoder. Furthermore, the suboptimal decoders in [12][13] do not
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exploit the special properties of the effective channel matrix induced by the golden code

to potentially reduce the decoding complexity. Specifically, the decoders in [12][13] treat

the golden code decoding problem in the same manner as decoding of a spatial multiplex-

ing system with four transmit antennas, transmitting four complex information symbols

per signaling interval. On the other hand, the suboptimal detectors in [14][15] do exploit

the special structure of the effective channel matrix in reducing the worst-case decoding

complexity. However, their average decoding complexity is the same as the worst-case

complexity.

A drawback to the alternative constructions of the golden code in [16]-[18] is that they do

not offer any reduction in decoding complexity when the channel varies with time, a common

occurrence in wireless applications with high mobility. In particular, device mobility results

in channels that could vary quickly between quasistatic fading and rapid fading, depending

on the mobile speed or Doppler frequency.

We address both of these drawbacks in this research. First, we prove that the golden code

with q-ary quadrature amplitude modulation (QAM) alphabet is fast decodable, by which we

mean that ML decoding is possible with a worst-case complexity of only O(q2.5). The golden

code is fast decodable regardless of whether the channel varies with time. We also present

an efficient implementation of a fast decoder that has low average complexity. Second, we

propose the asymmetric golden code, in which one layer of the golden code is scaled with

respect to the other. Similar to the golden code, we prove that the asymmetric golden

code has a worst-case decoding complexity of O(q2.5), regardless of whether the channel is

time varying. For the special case of a slowly varying channel where the channel remains

constant for the duration of a codeword, we prove that its worst-case decoding complexity

is even smaller, namely O(q2). Furthermore, we present an efficient implementation of a

fast decoder for the asymmetric golden code.

Having discussed our contributions for the two-input two-output channel, we shift our

focus to the design of space-time block codes with low maximum likelihood decoding com-

plexity for any number of antennas. The design or choice of a space-time code depends

strongly on the size of the receiver antenna array relative to the size of the transmitter
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antenna array. At one extreme, when the number of receive antennas is equal or greater

than the number of transmit antennas, good candidates include the threaded algebraic

space-time (TAST) [4][5] codes and the perfect space-time codes [19][20], both of which

achieve maximum diversity order and full transmission rate. In fact, the golden code that

we mentioned earlier is an example of a perfect space-time code for the two-input two-

output channel. At the other extreme, when there is only a single receive antenna, good

candidates include the Alamouti code [21], the quasiorthogonal space-time block codes [22]

and the semi-orthogonal algebraic space-time (SAST) block codes [23].

There are two main approaches to the construction of high-rate codes, by which we

mean space-time block codes that have a transmission rate higher than one symbol per

signaling interval. The first approach is puncturing, in which a maximal-rate space-time

code is punctured to obtain the high-rate code. For example, TAST and perfect space-time

codes for four transmit antennas of rate R ∈ {1, 2, 3, 4} are easily obtained by puncturing

4−R threads of the rate-4 code. The second approach is multiplexing, in which lower rate

space-time codes are multiplexed or combined to form the high-rate code. For example, the

rate-two space-time code in [24] for the four-input two-output channel is constructed as a

combination of two quasiorthogonal codewords.

High-rate space-time block codes constructed by puncturing or multiplexing suffer from

high decoding complexity and/or worse bit-error-rate performance when compared to other

space-time codes that have been proposed for a particular rate and a particular number of

transmit and receive antennas. For example, the SAST [23] codes not only outperform the

rate-one TAST and perfect codes in terms of the SNR required to achieve a target error

rate, but they also have a lower decoding complexity. A general framework for the design

of high-rate space-time codes with low decoding complexity remains elusive.

This research examines the problem of designing high-rate space-time codes whose rate

is larger than one but less than full, appropriate in between the two extremes. In addressing

the design problem, we introduce the concept of embedding, in which complex orthogonal

designs [25][26] assume the role of complex symbols in the encoding process. Based on the
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embedding concept we propose a new family of codes called embedded-orthogonal space-

time (EOS) codes, defined for an arbitrary number of antennas and for any rate up to

half the number of antennas. When compared to previously reported space-time codes,

the proposed family of codes is lower in decoding complexity. Furthermore, simulation

results up to six transmit antennas show that the proposed embedded orthogonal space-

time codes outperform quasiorthogonal [22], diagonal algebraic [27][28], thread algebraic [4]

and perfect space-time block codes [19] for all rates higher than one symbol per channel

use, when performance is measured in terms of the SNR required to achieve a target error

probability.

1.2 Organization of the Thesis

Chapter 2 presents background information related to space-time coding. More specifi-

cally, we present the channel model, review the design criteria and survey the different

constructions of space-time block codes.

The novel contributions of this thesis are presented in the next four chapters.

• Chapter 3 presents a unified framework for determining the worst-case ML decoding

complexity. This framework is used to show that the worst-case ML decoding com-

plexity for certain families of space-time block codes is less than what is reported for

an exhaustive-search ML decoder. The framework is used in subsequent chapters to

determine the worst-case ML decoding complexity of the golden code, the proposed

asymmetric golden code, and the proposed embedded orthogonal space-time codes.

• Chapter 4 uses the unified framework in Chapter 3 to prove that the golden code is

fast-decodable and that it retains its fast decodability on quasistatic fading as well as

rapid time-varying fading. Chapter 4 also presents an efficient ML decoding algorithm

with low average decoding complexity [29][30].

• Chapter 5 presents the asymmetric golden code, which has a lower decoding complex-

ity than the golden code on quasistatic channels with QAM alphabet and the same

10



decoding complexity on rapid time-varying channels. Efficient ML decoding algo-

rithms with low average decoding complexity for quasistatic and time-varying fading

are also presented [31][32].

• Chapter 6 presents the embedded-orthogonal space-time (EOS) codes, a family of

codes for any number of antennas, and for any rate up to half the number of antennas.

For rate larger than one, simulation results show that embedded orthogonal space-

time codes are simultaneously lower in complexity and lower in error probability on

quasistatic Rayleigh channels than previous constructions of space-time codes [33][34].

Chapter 7 summarizes the conclusions from this research and discusses some areas for

future research.
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CHAPTER 2

SPACE-TIME BLOCK CODES

Space-time coding is a method used in multiple antenna systems to not only increase the

reliability of the communication link, but also increase its throughput. This is accomplished

by encoding multiple streams of data across the spatial domain (i.e., antennas) and across

the time domain.

The delay diversity scheme of Wittenben [35] inspired the first attempt to develop space-

time codes in [36]. The key development of the space-time coding concept is due to Tarokh

et al. in [37], in which they proposed space-time trellis codes. These space-time trellis codes

had a high decoding complexity and required a vector Viterbi algorithm at the receiver

for decoding. In addressing the high decoding complexity of space-time trellis codes, space-

time block codes (STBC) were discovered. The first space-time block code was a remarkable

scheme for two transmit antennas developed by Alamouti [21]. The Alamouti space-time

block code allowed the receiver to harness the spatial diversity of the transmit antennas

while maintaining simple maximum-likelihood (ML) decoding at the receiver.

The first family of space-time block codes proposed in the literature is orthogonal designs

[26], in which all the transmitted symbols are decoded independently. The maximum rate

of orthogonal designs, however, is less than one symbol per signaling interval for more than

two antennas. The diagonal algebraic [27] and quasiorthogonal space-time block codes [38]-

[43] achieved a transmission rate of one symbol per signaling interval, at the expense of

an increase in decoding complexity. The semi-orthogonal algebraic space-time block codes

[23] were proposed as an alternative to quasiorthogonal and diagonal algebraic space-time

codes because they achieve comparable bit-error rate performance, but they require a lower

decoding complexity.

Orthogonal, quasiorthogonal, diagonal algebraic and semi-orthogonal algebraic space-

time block codes achieve a maximum rate of one symbol per signaling interval. In addressing
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the need for higher rates, the threaded algebraic [4] and perfect space-time block codes

[19][20] were proposed. These high-rate space-time codes achieve the maximum rate of the

communication link.

In this chapter, we provide background information related to the problems being pur-

sued in this research. First, we describe the MIMO communication system model and the

channel model. Next, we briefly review some useful design criteria for space-time block

codes in quasistatic fading channels. Then, we discuss maximum-likelihood (ML) decod-

ing of space-time block codes and define a few terms related to ML decoding. Finally, we

provide a survey of many important constructions of space-time block codes including or-

thogonal, quasiorthogonal, semi-orthogonal algebraic, diagonal algebraic, thread algebraic,

and perfect space-time block codes.

2.1 System and Channel Model

We consider a MIMO system with M transmit antennas and N receive antennas. The

transmitted codeword of a space-time block code can be expressed as a T ×M matrix:

C =



c1[1] c2[1] · · · cM [1]

c1[2] c2[2] · · · cM [2]
...

...
. . .

...

c1[T ] c2[T ] · · · cM [T ]


, (2.1)

where cm[t] denotes the symbol transmitted from antenna m ∈ {1, · · · ,M} at time t ∈

{1, · · · , T}. The received signal yn[t] at receive antenna n ∈ {1, · · · , N} at time t is given

by:

yn[t] =
M∑
m=1

hm,n[t]cm[t] + wn[t], (2.2)

where

• wn[t] is the complex additive white Gaussian noise at receive antenna n at time interval

t with E(|wn[t]|2) = N0.

• hm,n[t] is the channel coefficient between the m-th transmit antenna and n-th receive

antenna at time t.
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Throughout the thesis, we will assume Rayleigh fading, wherein the channel coefficients

hm,n[t] are independent and identically distributed (i.i.d) complex Gaussian random vari-

ables with variance of one half. The Rayleigh fading model accurately describes a rich

scattering environment with many reflectors. It is also used in a typical cellular environ-

ment even with a relatively small number of reflectors [44].

We next define a few terms related to the channel model, delay spread, flat fading, and

quasistatic and time-varying fading.

Definition 2.1. Multipath delay spread is the difference in propagation time between the

longest and shortest paths, when we only count the paths with significant energy.

Definition 2.2. A channel is flat fading when the delay spread of the channel is much less

than the symbol period of the transmitted signal such that the frequency response of the

channel is flat over the allocated bandwidth of the system.

In this thesis, we will assume flat fading. Systems with large bandwidth where the fre-

quency response of the channel is not flat over the signal bandwidth are common in practice.

The assumption of flat fading, however, is not restrictive since systems with large bandwidth

can be combined with orthogonal frequency division multiplexing (OFDM) technique that

effectively transforms the large bandwidth signal into multiple parallel smaller bandwidth

signals such that the fading on each smaller bandwidth signal is flat.

Definition 2.3. Fading is quasistatic when the channel coefficient hm,n[t] is assumed con-

stant over a block of T symbol periods, but it is independent from block to block. The

channel fading coefficient is then independent of the time index t such that hm,n[t] = hm,n.

Definition 2.4. Fading is time-varying when the channel coefficient hm,n[t] is not constant

over T symbol periods.

In this thesis, we consider both quasistatic and time-varying fading. In fact, the ML

decoder for the golden code in Chapter 4 applies equally to quasistatic and time-varying

channels. Furthermore, the asymmetric golden code in Chapter 5 is designed for low de-

coding complexity on both quasistatic and time-varying channels.

We next define what it means to be a linear space-time block code.
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Definition 2.5. A linear space-time block code is a T×M matrix whose entries are complex

linear combinations of K complex information symbols xk = xRk + ixIk, k ∈ {1, · · · ,K}, and

their complex conjugates, where i =
√
−1 and the superscripts “R” and “I” denote the real

and imaginary components of the complex information symbol xk, respectively.

Example 2.1. The Alamouti space-time block code [21] is:

C =

 x1 x2

−x∗2 x∗1

 . (2.3)

The Alamouti code is clearly linear transmitting two complex information symbols in two

time intervals. Note that the Alamouti space-time code transmits both the complex infor-

mation symbol and its conjugate.

In this thesis, we restrict our attention to linear space-time block codes. This is not a

restrictive assumption since linear space-time block codes have been shown to be optimal

in terms of maximizing the mutual information between the transmit and receive signals

[45]. Furthermore, linear space-time block codes are also optimal in terms of the diversity-

multiplexing tradeoff of the MIMO channel [19][20]. In addition, linear space-time block

codes can be decoded efficiently using linear processing algorithms such as the sphere de-

coding algorithm [46][47], which was proposed for the ML decoding of lattice codes and

space-time block codes in [48] and [49].

The transmitted complex information symbols for a linear space-time block code are

drawn from an alphabet A, with cardinality q (i.e., q = |A|). In particular, the complex

information symbols are drawn from one of three alphabets:

• quadrature amplitude modulation (QAM) alphabet. A QAM alphabet is a subset

of Z[i] , {a + bi}, a, b ∈ Z, where i =
√
−1. Specifically, a q-ary QAM alphabet is

A = {±1,±3, · · · ,±(
√
q−1)}+i{±1,±3, · · · ,±(

√
q−1)}. The real or imaginary part

of the QAM alphabet defines a real alphabet known as pulse-amplitude modulation

(PAM) alphabet.

• hexagonal (HEX) alphabet. A HEX alphabet is constructed from the two-dimensional

hexagonal lattice Z[j] , {a+ bj}, a, b ∈ Z, where j = ei2π/3. The optimum hexagonal
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constellations, in terms of minimizing the error probability for a given SNR, were

studied in [50][51]. We illustrate the optimum hexagonal constellations for 4-HEX,

16-HEX, and 64-HEX in Appendix A.

• phase shift keying (PSK) alphabet. A PSK alphabet is given by A = {ei2πp/q : p ∈

{0, 1, · · · , q − 1}}.

We next present a more useful form of the system model in (2.2). We begin the discussion

with an example.

Example 2.2. Let us consider the Alamouti space-time block code in Example 2.1. As-

suming quasistatic fading and a single receive antenna, the received signal at the two time

instances is given by

y1[1] = h1,1x1 + h2,1x2 + w1[1],

y1[2] = −h1,1x
∗
2 + h2,1x

∗
1 + w1[2]. (2.4)

It is usually desired to express the system of equations in (2.4) in matrix form as a function

of only the information symbols, and not their conjugates. This can be done by conjugating

the second received sample as follows:y1[1]

y∗1[2]


︸ ︷︷ ︸

y

=

h1,1 h2,1

h∗2,1 −h∗1,1


︸ ︷︷ ︸

H

x1

x2


︸ ︷︷ ︸

x

+

w1[1]

w∗1[2]


︸ ︷︷ ︸

w

. (2.5)

Note that the vector y contains either the received sample or its conjugate. Similarly, the

vector w contains the noise sample or its conjugate. This is necessary in order to express

the system as a function of the vector x that contains only the information symbols, but

not their conjugates.

Having discussed the specific case of the Alamouti space-time block code in Example

2.2, we now consider the general system model in (2.2). In order to facilitate the use of

efficient decoding algorithms, the system model in (2.2) can be expressed in the form

y = Hx + w, (2.6)

where
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• y = [ỹ1[1], ỹ1[2], · · · , ỹ1[T − 1], ỹ1[T ], · · · , ỹN [1], ỹN [2], · · · , ỹN [T − 1], ỹN [T ]]> is the

TN × 1 complex vector of received samples or their conjugates at all time intervals,

from all receive antennas

• ỹn[t] is the received sample yn[t] or its conjugate y∗n[t]

• H is a TN ×K matrix, termed the complex-valued effective channel matrix

• x = [x1, x2, · · · , xK ]> is K × 1 vector of complex information symbols

• w = [w̃1[1], w̃1[2], · · · , w̃1[T − 1], w̃1[T ], · · · , w̃N [1], w̃N [2], · · · , w̃N [T − 1], w̃N [T ]]> is

the TN × 1 vector of noise samples or their conjugates at all time intervals, from all

receive antennas.

The system model in (2.2) is a linear system of equations in the complex information

symbols and their conjugates, and hence, it is not always possible to express (2.2) in matrix

form as a function of only the complex information symbols as in (2.6). We overcome this

problem by converting the complex-valued system in (2.6) to the equivalent real-valued

system as follows

y̌ = Ȟx̌ + w̌, (2.7)

where

• y̌ = [yR1 [1], yI1 [1], · · · , yR1 [T ], yI1 [T ], · · · , yRN [1], yIN [1], · · · , yRN [T ], yIN [T ]]> is the real vec-

tor of size 2TN × 1 of received samples at all time intervals, from all receive antennas

• Ȟ is a 2TN × 2K matrix, termed real-valued effective channel matrix

• x̌ = [xR1 , x
I
1, x

R
2 , x

I
2, · · · , xRK , xIK ]> is the 2K×1 vector of transmitted real information

symbols

• w̌=[wR1 [1], wI1[1], · · · , wR1 [T ], wI1[T ], · · · , wRN [1], wIN [1], · · · , wRN [T ], wIN [T ]]> is the 2TN×

1 real vector of noise samples at all time intervals, from all receive antennas.

The real-valued system model in (2.7) will be used whenever it is more convenient

or simply not possible to use the complex-valued model. In particular, the real-valued
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system model will be used when we discuss the decoding of orthogonal and the proposed

embedded-orthogonal space-time codes. For all other space-time block codes considered in

this research, it is more convenient to use the complex-valued system model in (2.6).

In Example 2.2, we discussed the complex-valued system model of the Alamouti space-

time block code. We next give an example of the real-valued system model of the Alamouti

code.

Example 2.3. From the definition of the Alamouti space-time block code in (2.3) in Ex-

ample 2.1 and using the real-valued system model in (2.7), the received signal is given

by

y̌ =



yR1 [1]

yI1 [1]

yR1 [2]

yI1 [2]


=



hR1,1 −hI1,1 hR2,1 −hI2,1

hI1,1 hR1,1 hI2,1 hR2,1

hR2,1 hI2,1 −hR1,1 −hI1,1

hI2,1 −hR2,1 −hI1,1 hR1,1





xR1

xI1

xR2

xI2


+



wR1 [1]

wI1[1]

wR1 [2]

wI1[2]


= Ȟx̌ + w̌. (2.8)

We next define the rate of a space-time block code. We also define other terms used in

describing the rate.

Definition 2.6. The rate of a T × M space-time block code transmitting K complex

information symbols over T symbol periods is R = K/T symbols per signaling interval.

Definition 2.7. A space-time block code with M transmit is full-rate if R = M .

Definition 2.8. A space-time block code with M transmit antennas is high-rate if R > 1.

2.2 Design Criteria of Space-Time Codes

In this section we discuss some useful design criteria for space-time block codes on quasistatic

channel fading; the rank and determinant criteria. The design criteria of space-time codes

are derived based on the union bound for the codeword error probability. Assume that a

codeword C is transmitted, wherein the columns of the codeword are normalized so that a

randomly chosen column has unit energy. Assuming quasistatic Rayleigh fading, and given
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perfect knowledge of the channel at the receiver, the pairwise error probability, which is the

probability that a maximum-likelihood receiver prefers another codeword C̃ to the actual

codeword C is bounded by [52]

P(C→C̃|H) ≤
(

Γρ
4M

)−rN
, (2.9)

where

• r is the rank of the M ×M matrix:

X = (C− C̃)∗(C− C̃), (2.10)

• Γ = (λ1λ2 · · ·λr)1/r is the geometric mean of the nonzero eigenvalues of the matrix

X,

• ρ is the signal-to-noise ratio (SNR) per receive antenna.

Assuming all codewords are equally likely, the union bound for the average error probability

is related to the pairwise error probability as follows:

Pe ≤
1
qK

∑
∀C

∑
∀C̃

C̃ 6=C

P(C→C̃|H)

≤
(
qK − 1

)
max
C 6=C̃

P(C→C̃|H). (2.11)

The second inequality in (2.11) results when each pairwise error probability is replaced the

worst-case value. The pairwise error probability in (2.9) along with the union bound for

the average error probability in (2.11) lead us to the design criteria of space-time codes,

namely the rank criterion and determinant criterion [37].

• Rank Criterion: To achieve maximum diversity order of MN , the matrix X in (2.10)

must have rank M for any pair of distinct codewords C and C̃.

The rank criterion follows from (2.9) and (2.11). Specifically, the exponent d = rN

in (2.9) is the diversity order or diversity gain of the pairwise error probability, and

it determines how fast the pairwise error probability decays, as a function of the

average SNR. From (2.11), we have that the error probability will be dominated by
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the worst-case pairwise error probability. Therefore, the maximum diversity order of

a space-time code is MN , which is achieved when the rank of the matrix X is equal

to M .

• Determinant Criterion: To further optimize performance, a space-time code that

achieves diversity order MN should be chosen to maximize the asymptotic coding

gain:

Γ = min det(X)1/M

= min
C−C̃

det(C− C̃)∗(C− C̃)1/M . (2.12)

The determinant criterion also follows from (2.9) and (2.11). The factor Γ in (2.9)

decreases the pairwise error probability since it amplifies the SNR. Consequently, Γ

can be viewed as a pairwise coding gain. From (2.11), the coding gain for a space-time

code is the worst-case pairwise coding gain. Therefore, we can decrease the error rate

by maximizing the coding gain in (2.12).

Both the diversity and coding gain improve system performance by decreasing the error

rate, but they do so in two different ways. We discuss the difference between the coding

and diversity gain by taking the logarithm of both sides of (2.11) to obtain

log(Pe) ≤ c− d log(ρ), (2.13)

where c is a constant that depends in part on the coding gain and number of transmit

antennas, and where d = rN is the diversity gain. From (2.13), we see that the diversity

gain improves system performance by increasing the magnitude of the slope of the error rate

curve, when the error rate curve is plotted on a logarithmic scale. The coding gain, on the

other hand, shifts the error rate curve to the left. Furthermore, the SNR advantage due to

diversity gain increases with an increase in SNR but remains constant with the coding gain

at high enough SNR. We now discuss an example that highlights the differences between

the diversity and coding gain in improving performance.

Example 2.4. Consider three space-time block codes for two transmit antennas, Ccirculant,
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CDAST and CAlamouti given by the following code matrices:

Ccirculant =

x1 x2

x2 x1

 , (2.14)

CDAST =

cx1 + sx2 0

0 −sx1 + cx1

 , (2.15)

CAlamouti =

 x1 x2

−x∗2 x∗1

 , (2.16)

where c = cos(θ), s = sin(θ), and θ = 1
2 tan−1(2). Assume that the information symbols are

drawn from 4-QAM. Let us discuss each matrix in terms of the diversity and coding gain.

The matrix Ccirculant is a 2 × 2 circulant matrix. One can easily verify that the max-

imum diversity gain is 1. This is because the matrix does not have rank 2 for all distinct

pairs of codeword matrices. For example, the rank of

1 + i 0

0 1 + i

 −
 0 1 + i

1 + i 0

 =

1 + i 1 + i

1 + i 1 + i

 is one. We will not consider the coding gain since it is meaningful when the

rank of the matrix is 2.

The matrix CDAST is the diagonal algebraic space-time (DAST) block code for two

transmit antennas. We will discuss this important family of space-time block codes later in

the chapter. For the sake of this example, however, it is sufficient to note that the diagonal

algebraic space-time block code achieves second-order diversity gain. Furthermore, the

coding gain is Γ = 3.2.

The matrix CAlamouti is the Alamouti space-time block code. We will also discuss the

Alamouti code later in the chapter. We simply note that the Alamouti space-time block

code also achieves second-order diversity gain, and its coding gain is Γ = 4.

Of course, for the case of 4-QAM, one can easily verify by exhaustive-search over all pairs

of distinct codeword matrices that CDAST and CAlamouti achieve second order diversity, with

coding gain of Γ = 3.2 and Γ = 4, respectively.

The bit-error rate performance of the three codes is given in Figure 2.1. The slope of

the three error rate curves can be calculated from Figure 2.1. Specifically, one can easily
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Figure 2.1: Bit-error rate performance for circulant (+), diagonal algebraic (3) and
Alamouti space-time (�) block codes.

verify that the slope of the error rate curve for the circulant, DAST and Alamouti codes is

-1.05, -1.92, and -2.17; respectively, where the slope is calculated in the 14 dB to 20 dB SNR

region. This is expected since the diversity gain for the circulant, DAST and Alamouti codes

is 1, 2, and 2; respectively. for As can be seen from Figure 2.1, the circulant code performs

worse than the diagonal algebraic and Alamouti space-time block codes, in terms of the

SNR required to achieve a target error probability. This is expected since the circulant

code has a diversity gain of 1. For the diagonal algebraic and Alamouti space-time block

code, we see that there is a change in the slope of the error-rate curve compared to the

circulant code due to the higher diversity gain. The difference in performance between the

diagonal algebraic and Alamouti space-time block code is due to the fact that the Alamouti

code has higher coding gain than the diagonal algebraic code, which is manifested as a shift

of the entire error-rate curve more to the left.

We next give two definitions related to the rank and determinant criteria.

Definition 2.9. A space-time block code is said to be fully diverse or has full diversity if

the matrix X in (2.10) has rank M for any pair of distinct codewords C and C̃.
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Let C be a space-time block code encoding information symbols from a QAM or HEX

alphabet without normalizing the alphabet for the average transmit energy. In other words,

the average energy of the alphabet is allowed to grow as the size of the alphabet grows. For

example, the average energy of 4-QAM, 16-QAM and 64-QAM is 2, 10 and 42, respectively.

Then, we have the following definition related to the coding gain of a fully diverse space-time

block code.

Definition 2.10. A space-time block code is said to have the nonvanishing determinant

property if, without normalizing the codeword for the average energy of the alphabet, the

coding gain for a fully diverse code is bounded away from zero as the alphabet size grows.

Designing space-time block codes that satisfy the nonvanishing determinant property is

desirable since it was shown in [53] that a sufficient condition for a space-time block code

to achieve the optimal diversity-multiplexing tradeoff is that it satisfies the nonvanishing

determinant property.

2.3 Decoding Complexity

Assuming perfect channel state information, the maximum-likelihood decoder at the receiver

chooses K complex information symbols xk, k ∈ {1, · · · ,K}, that minimize the metric:

P (x1, · · · , xK) =
T∑
t=1

N∑
n=1

∣∣∣∣∣yn[t]−
M∑
m=1

hm,ncm[t]

∣∣∣∣∣
2

. (2.17)

We next define three terms related to ML decoding.

Definition 2.11. The decoding complexity of an ML decoder is the number of metric

computations required to reach the ML decision. The decoding complexity cannot exceed qK

metric computations, which is the worst-case decoding complexity achieved by an exhaustive-

search ML decoder.

We next define what it means for a space-time block code to be η-group decodable. Let

us first group the 2K real information symbols of a space-time block code into η groups such

that each group has Kl real symbols, l ∈ {1, · · · , η}. We thus have that
∑η

l=1Kl = 2K.

Furthermore, let ζl denote the set of indices for the l-th group. Then, we have the following

definition of η-group decodable space-time block code.
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Definition 2.12. A linear space-time block code is said to η-group decodable if the ML

decoding metric in (2.17) can be decoupled into a linear sum of η independent metrics such

that each metric consists of the symbols from only one group. Specifically, the cost function

in (2.17) can be written as

P (x1, · · · , xK) = P (x̌1, · · · , x̌2K)

=
η∑
l=1

Pl(x̌ζl(1), x̌ζl(2), · · · , x̌ζl(Kl)). (2.18)

Definition 2.13. A linear space-time block code is said to be separable if it is η-group

decodable for any η > 1.

We next give an example to clarify these definitions.

Example 2.5. Consider three 4× 4 space-time block codes CX, CY and CZ transmitting

four complex information symbols drawn from an arbitrary q-ary alphabet. In other words,

we have T = 4, M = 4, and R = 1 for all three space-time block codes. Assume that the

metric function in (2.17) can be written in its simplest form as follows for the three codes:

CX : P (x1, x2, x3, x4) = P1(x1) + P2(x2) + P3(x3) + P4(x4)

CY : P (x1, x2, x3, x4) = P1(x1, x2) + P2(x3, x4)

CZ : P (x1, x2, x3, x4) = P (x1, x2, x3, x4)

According to Definition 2.7, all three codes are not full-rate since they transmit only

one symbol per signaling interval out of the maximum four symbols per signaling interval.

Furthermore, the space-time block code CX is separable or four-group decodable since we

can separate the decoding of the transmitted symbols into four groups, each containing one

complex symbol. Similarly, space-time block code CY is separable or two-group decodable

since we can separate the decoding of the transmitted symbols into two groups, each con-

taining two complex symbols. Finally, space-time block code CZ is not separable since all

the symbols have to be decoded jointly.

We remark that from a practical point of view, the complexity of an algorithm is truly

measured by the complexity of its hardware implementation. Hardware complexity itself
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is usually measured in terms of the number of logic gates or area required to implement

the algorithm, and in terms of the amount of power it dissipates. Although the worst-case

ML decoding complexity is not the same as hardware complexity, it provides an accurate

measure of the complexity of hardware implementation. Therefore, throughout the thesis,

we will use the worst-case complexity as one measure to compare space-time block codes in

terms of their decoding complexity. In Chapter 3, we will introduce another useful measure

of complexity, the average complexity. We will defer the discussion of average complexity

to Chapter 3.

2.4 Survey of Space-Time Block Codes

Having presented the channel model, and the design criteria of space-time block codes, we

next provide a survey of several different constructions of space-time block codes in the

literature. We review some of the most important constructions of space-time block codes,

including orthogonal space-time codes, diagonal algebraic space-time codes, quasiorthogo-

nal space-time codes, single-symbol decodable space-time codes, semi-orthogonal algebraic

space-time codes, threaded algebraic space-time block codes and perfect space-time codes.

We note that all these families of space-time codes are fully diverse. We will classify

these families of space-time block codes in terms of their group decodability. Although

group decodability affects the worst-case ML decoding complexity, it is not the only factor

in determining the worst-case decoding complexity. However, determining the group decod-

ability of a space-time block code is still useful. For example, consider a space-time block

code that is η-group decodable. If the worst-case decoding complexity of all the groups is

the same, then the worst-case decoding complexity of the code is equal to the worst-case

decoding complexity of any one group. We will defer the discussion of worst-case decoding

complexity to Chapter 3, where we will revisit these families of space-time block codes and

present a unified framework for comparing them in terms of their worst-case ML decoding

complexity.
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2.4.1 Orthogonal Space-Time Block Codes

An orthogonal space-time block code for M transmit antennas is a linear code that satisfies

the following orthogonality property:

C∗C = IM
K∑
k=1

|xk|2, (2.19)

where IM is the M ×M identity matrix. Orthogonal space-time block codes are an im-

portant family of linear space-time codes that achieve full diversity, while decoupling the

ML detection of the transmitted symbols such that each transmitted symbol is detected

separately from the other transmitted symbols. Specifically, orthogonal space-time codes

are 2K-group decodable for QAM alphabets, and K-group decodable for HEX or PSK

alphabets.

The first orthogonal space-time block code is a rate-one space-time block code for two

transmit antennas developed by Alamouti [21]. Tarokh et al. [25] constructed orthogonal

space-time block codes for real and complex alphabets for arbitrary number of antennas. In

particular, Tarokh et al. constructed real orthogonal space-time block codes with rate-one

for any number of transmit antennas and complex orthogonal space-time block codes with

rate 1 for two antennas, rate 3
4 for three and four antennas, and rate 1

2 for more than four

antennas. Orthogonal space-time codes for two [21], three, and four transmit antennas [54]

are given by:

C =

 x1 x2

−x∗2 x∗1

 , C =



x1 0 −x∗2

0 x1 −x3

x2 x∗3 x∗1

−x3 x∗2 0


, and C =



x1 0 −x∗2 x∗3

0 x1 −x3 −x2

x2 x∗3 x∗1 0

−x3 x∗2 0 x∗1


. (2.20)

The construction of maximal rate complex orthogonal space-time block codes was stud-

ied by Liang in [26]. Liang not only determined the maximal rate achieved by complex or-

thogonal designs for arbitrary number of antennas, but also gave a systematic construction

of maximal rate complex orthogonal space-time block codes. Furthermore, the constructed

codes were also shown to be delay optimal for six transmit antennas or less. A delay-optimal

orthogonal design refers to a design that achieves the maximal rate while minimizing the
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code length T . Delay optimality is a desirable property because it minimizes the decoding

delay at the receiver since the receiver has to receive the entire block before it starts decod-

ing it. The maximal rate of a complex orthogonal space-time block code with M transmit

antennas is given by [26]

R =
dM/2e+ 1

2dM/2e
(2.21)

The minimum delay for the maximum rate complex orthogonal designs for M antennas is

given by [26][55]

Dmin =
1

(1 + δ)R

 M

dM/2e

 , (2.22)

where δ = 1 when M is a multiple of 4, and δ = 0 otherwise. In Table 2.1, we use (2.21) and

(2.22) to tabulate the maximal rate and minimum delay for complex orthogonal space-time

block codes for two to 16 transmit antennas. As can be seen from Table 2.1, not only

does the code rate tend to 1
2 as the number of antennas increases, but the code length

becomes prohibitively large for practical implementations. These two drawbacks provided

the motivation to construct diagonal algebraic space-time block codes and quasiorthogonal

space-time block codes.

2.4.2 Diagonal Algebraic Space-Time Block Codes

Diagonal algebraic space-time (DAST) block codes are a family of linear space-time codes

constructed by the use of rotated constellations [27][28]. The word algebraic in the descrip-

tion of DAST codes comes from the fact that rotation matrices used in DAST codes were

constructed using algebraic number field theory [56][57]. The word diagonal refers to the

structure of the code matrix, wherein the rotated information symbols are spread over the

diagonal of the square code matrix. The DAST block codes not only achieve full diversity

order for arbitrary number of transmit antennas, but they also achieve a transmission rate

of one symbol per channel use. For M transmit antennas, the DAST block codes transmit
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Table 2.1: Maximum Rate and Minimum Decoding Delay of Complex Orthogonal Space-
Time Block Codes.

Number of Transmit Antennas Maximum Rate Minimum Delay

M R Dmin

2 1 2

3 3
4 4

4 3
4 4

5 2
3 15

6 2
3 30

7 5
8 56

8 5
8 56

9 3
5 210

10 3
5 420

11 7
12 792

12 7
12 792

13 4
7 3003

14 4
7 6006

15 9
16 11440

16 9
16 11440

M information symbols in M signal intervals as follows:

CDAST (x1, · · · , xM ) = diag(u)

=



u1 0 · · · 0

0 u2 · · · 0
...

. . . . . .
...

0 · · · 0 uM


, (2.23)

where

• diag(u) is the diagonal matrix with the vector u on the diagonal

• u = Gx = [u1, u2, · · · , uM ]>
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• x = [x1, x2, · · · , xM ]> is the vector of complex information symbols drawn from q-ary

QAM alphabet

• G is an M ×M unitary rotation or generator matrix chosen to ensure a fully diverse

DAST code.

The DAST block codes were developed for QAM alphabets and outperform complex

orthogonal designs in terms of the SNR required to achieve a target error probability when

the number of transmit antennas is greater than two (i.e, M > 2). The cost of improved

performance compared to complex orthogonal designs is increased decoding complexity.

In general, DAST block codes with QAM alphabet and complex rotation matrices are not

separable. Hence, the ML decoder requires detecting all complex symbols jointly. With real

rotation matrices, however, the DAST codes are 2-group decodable, wherein the real and

imaginary components of the QAM symbols can be decoded separately. Clearly, complex

rotation matrices result in higher decoding complexity than real rotations. However, they

have a better bit-error-rate performance. For example, for four transmit antennas, complex

rotation matrices offer 0.7 dB gain over real rotations [28].

2.4.3 Quasiorthogonal Space-Time Block Codes

Quasiorthogonal space-time codes relax the orthogonality constraint of (2.19) to enable

rate-one transmission, at the expense of an increase in decoding complexity. For example,

quasiorthogonal codes for four antennas were proposed independently by Jafarkhani [38],

Tirkkonen-Boariu-Hottinen [39] and Papadias-Foschini [40]; these codes, however, were not

fully diverse.

Full diversity quasiorthogonal space-time block codes were constructed using constella-

tion rotation. For example, rate-one and full-diversity quasiorthogonal codes with rotation

were proposed by Tirkkonen [41], Sharma-Papadias [42], and Su-Xia [43]. These qua-

siorthogonal codes outperformed orthogonal codes at all spectral efficiencies for four trans-

mit antennas in terms of the SNR required to achieve a target error probability. Rate-one

and full-diversity quasiorthogonal codes for an arbitrary number of antennas were proposed

by Sharma-Papadias [22]. The quasiorthogonal space-time code for M transmit antennas,
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where M is a power of two, is constructed from the quasiorthogonal space-time code for

M/2 antennas as follows [22]

CQuasi(x1, · · · , xM ) =

 CQuasi(y1, · · · , yM
2

) CQuasi(yM
2

+1, · · · , yM )

−CQuasi(y∗M
2

+1
, · · · , y∗M ) CQuasi(y∗1, · · · , y∗M

2

)

 , (2.24)

where

• ym = eiφmxm,m ∈ {1, · · · ,M}, are the rotated q-ary QAM information symbols

• CQuasi(yk, · · · , yk+ M
2
−1) is the quasiorthogonal space-time code for M

2 transmit an-

tennas in the rotated symbols yk through yk+ M
2
−1

By definition, CQuasi(x) = x, and the quasiorthogonal code for two transmit antennas is the

orthogonal Alamouti space-time block code [21]. The rotation angles φm,m ∈ {1, · · · ,M},

are chosen to ensure full diversity and maximize the coding gain.

ForM transmit antennas, whereM is not a power of two, the quasiorthogonal space-time

code can be obtained by deleting any M̄−M columns of the code matrix CQuasi(x1, · · · , xM̄ )

for M̄ antennas, where

M̄ = 2dlog2 Me. (2.25)

For example, the quasiorthogonal space-time block code for three antennas is obtained by

deleting any one column from the code matrix for four antennas. The space-time block

codes for three and four transmit antennas are then given by

CQuasi =



x1 x2 x3e
iφ

−x∗2 x∗1 −x∗4e−iφ

−x∗3e−iφ −x∗4e−iφ x∗1

x4e
iφ −x3e

iφ −x2


, (2.26)

and

CQuasi =



x1 x2 x3e
iφ x4e

iφ

−x∗2 x∗1 −x∗4e−iφ x∗3e
−iφ

−x∗3e−iφ −x∗4e−iφ x∗1 x∗2

x4e
iφ −x3e

iφ −x2 x1


, (2.27)
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where φ = π/4 is the angle that maximizes the coding gain and ensures full diversity. As can

be seen from (2.26), the code for three antennas was obtained by deleting the last column

of the code matrix (2.27) for four antennas.

Because quasiorthogonal space-time block codes achieve rate-one transmission and full

diversity, they outperform orthogonal designs at all spectral efficiencies for complex con-

stellations. Similar to DAST codes, the improved performance comes at the expense of

increased decoding complexity compared to orthogonal designs. In particular, quasiorthog-

onal space-time block codes are 2-group decodable for M antennas. For example, for four

transmit antennas, quasiorthogonal designs are 2-group decodable, and each group has two

complex symbols. The DAST block codes with real rotations are also 2-group decodable,

but each group has four real symbols. By comparison, orthogonal design for four transmit

antennas are 6-group decodable, and each group has one real symbol. Clearly, the orthogo-

nal code has the lowest decoding complexity. However, it is not immediately obvious which

has the lower complexity, DAST or quasiorthogonal codes. Such situation provides the mo-

tivation for presenting a unified framework for discussing worst-case decoding complexity.

We defer the discussion to Chapter 3.

2.4.4 Single-Symbol Decodable Space-Time Block Codes

Although orthogonal designs have low decoding complexity, their rate is 3
4 symbols per

signaling interval for three and four transmit antennas. For the particular configuration of

three or four transmit antennas, a family of nonorthogonal space-time codes that achieve

rate-one transmission and full diversity for three and four transmit antennas was developed.

Furthermore, these space-time codes are 4-group decodable, and each group has two real

symbols [58]-[61]. Since a pair of real symbols defines a single complex symbol, these

codes are said to be single-symbol decodable. Single-symbol decodable codes have higher

complexity than orthogonal designs, but offer higher rate. In comparison to quasiorthogonal

and DAST codes, they offer the same rate, but at a lower decoding complexity.

A framework for the construction of single-symbol decodable space-time codes was pre-

sented in [61]. The encoder decomposes into a concatenation of three steps, as shown in
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Figure 2.2: Encoding architecture of single-symbol decodable space-time block codes.

Figure 2.2. The encoder starts with a vector of information symbols x = [x1, x2, x3, x4]>

chosen from a conventional q-ary QAM alphabet. The first step is to distort the al-

phabet in some way; the codes of [58] and [59] rotate each alphabet by an angle of φ

such that ak = xke
iφ, k ∈ {1, · · · , 4} while the code of [61] stretches the alphabet by

a factor K such that ak =
√

2
1+K2 (KxRk + ixIk). The rotation angle and scaling fac-

tor are chosen to maximize the coding gain. The purpose of the rotation or scaling is

to ensure full diversity. The second step is to interleave the coordinates of a, yield-

ing s = Π(a). The interleavers act on the real and imaginary parts separately, so that
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I
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2 , s
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4] = [aR1 , a

I
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I
2, a

R
3 , a

I
3, a

R
4 , a

I
4]Π, where Π is an 8× 8 permuta-

tion matrix (so that its columns are a permutation of the columns of the identity matrix,

with the possibility of sign inversion), and where sRk and sIk denote the real and imaginary

parts, respectively, of sk. The interleaver is used to achieve full diversity while maintaining

single-symbol decodability for the codes of [58] and [59] and also to ensure that the peak-

to-average power ratio is the same as the underlying QAM alphabet for the code of [61].

The final step is to encode s using a conventional space-time block encoder G(·), yielding

C = G(s). We next give an example of the single-symbol decodable code of [59] for four

antennas.

In terms of Figure 2.2, the code of [59] is specified by φ = tan−1(2), Π = [e1, e6, e3,

e8, e5, e2, e7, e4], where ei is the i-th column of the 8× 8 identity matrix, and

G(s) =
√

2

A(s1, s2) 0

0 A(s3, s4)

 (2.28)

where A(s1, s2) =

 s1 s2

−s∗2 s∗1

 is the Alamouti space-time code [21]. The constant
√

2
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ensures that the average transmit power is identical to that of the underlying alphabet

A. Therefore, in terms of the rotated information symbols ak = eiφxk, the single-symbol

decodable space-time code of [59] is

CSSD =
√

2



aR1 + iaI3 aR2 + iaI4 0 0

−aR2 + iaI4 aR1 − iaI3 0 0

0 0 aR3 + iaI1 aR4 + iaI2

0 0 −aR4 + iaI2 aR3 − iaI1


. (2.29)

2.4.5 Semi-Orthogonal Space-Time Block Codes

We next discuss the semi-orthogonal algebraic space-time (SAST) block codes, a family of

linear space-time codes that achieve rate-one transmission and full diversity for any number

of transmit antennas [23]. The word algebraic in the description of SAST codes comes from

the fact that they use the same real rotation matrices of the DAST codes [56][57] (see also

[62]), which were constructed using algebraic number field theory. In fact, SAST codes are

constructed using the DAST codes, as we will discuss shortly. The word semi-orthogonal

refers to a property of the code matrix, where half the columns of the code matrix are

orthogonal to the other half.

An equivalent form of the semi-orthogonal algebraic space-time block code for M trans-

mit antennas, where M is even, is [23]

CSAST =

 CDAST (x1, · · · , xM
2

) CDAST (xM
2

+1, · · · , xM )

−CDAST (x∗M
2

+1
, · · · , x∗M ) CDAST (x∗1, · · · , x∗M

2

)

 . (2.30)

The SAST code for M − 1 antennas is obtained by deleting the last column of the SAST

code for M antennas. This version of SAST codes differs from the original in [23] only by

the fact that we used the DAST matrices instead of using circulant matrices. The circulant

matrix reduces the peak-to-average-power ratio but has no impact on the diversity, coding

gain, and decoding complexity. In fact, any circulant matrix can be diagonalized using

the Fourier transform matrix. We simply use DAST matrices in (2.30) to simplify the

presentation.
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The semi-orthogonal property of SAST codes allows for the separate decoding of symbols

x1 through xM
2

from symbols xM
2

+1 through xM . Furthermore, the use of real rotation

matrices allows for separate decoding of the real and imaginary parts of the QAM symbols.

As a result, the SAST block codes for M and M − 1 antennas require the joint decoding of

only M
2 real PAM symbols. For the case of two transmit antennas, the SAST code simplifies

to the Alamouti space-time block code. For the case of three and four transmit antennas,

the SAST codes require the joint decoding of only two real symbols, which is the same

decoding complexity as the single-symbol decodable codes. In fact, the SAST code for four

transmit antenna is equivalent to the single-symbol decodable code of [58] and has identical

diversity order, coding gain and bit-error-rate performance. The SAST codes have the

lowest decoding complexity of any rate-one space-time block code and achieve comparable

bit-error-rate performance to the best codes.

2.4.6 Threaded Algebraic Space-Time Block Codes

All of the space-time codes that we have discussed thus far achieve a maximum rate of one

symbol per signaling interval. We next discuss the first of two families of high-rate space-

time block codes: the threaded algebraic space-time (TAST) block codes. The threaded

algebraic space-time codes are a family of linear space-time codes that are fully diverse

and achieve arbitrary rate for arbitrary number of transmit antennas. The TAST block

codes layer or thread rate-one DAST block codes to achieve maximal rate of M symbols

per signaling interval for M transmit antennas. As a result, they can also achieve other

rates by simply puncturing or deleting layers. For example, for a four transmit and four

receive antenna system, the TAST block codes of rate R ∈ {1, 2, 3, 4} are easily obtained

by puncturing or deleting 4−R layers.

We next discuss the construction of TAST block codes. We begin by presenting the

notation that will be used in describing the TAST codes, the perfect space-time block codes

and the proposed embedded-orthogonal space-time block codes.

The TAST code encodes K = RM complex information symbols {x`,m}, drawn from a

q-ary QAM alphabet, that are organized into R threads, where x` = [x`,1, x`,2, · · · , x`,M ]>
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denotes the information symbols for the `-th thread, ` ∈ {1, · · · ,R}. The rate-R TAST

code can be written as [4]

CTAST =
R∑
`=1

diag(u`)J`−1, (2.31)

where

• diag(u`) is the diagonal matrix with the vector u` on the diagonal

• u` = Gx` = [u`,1, u`,2, · · · , u`,M ]>

• G is an M ×M unitary rotation or generator matrix

• J = [φeM , e1, · · · , eM−1]

• em is the m-th column of the M ×M identity matrix

• φ is a unit-magnitude complex number, the value of which depends on both the QAM

modulation alphabet size and number of transmit antennas M .

We make two important remarks regarding the construction of TAST codes. First, the

TAST code simplifies to the DAST code for R = 1. This result is expected since the TAST

code threads or layers the rate-one DAST code to obtain the higher transmission rates.

Second, the design of a TAST code is a two-step design process. The first step is to choose

an algebraic rotation matrix G. The second step is to choose φ to ensure full diversity. The

two-step design process simplifies the design problem, since the algebraic rotation matrices

G that maximize the coding gain of an encoded thread have been thoroughly investigated

in the literature in the context of DAST codes.

The decoding complexity of TAST codes depends on the transmission rate and whether

complex or real generator matrices are used. When complex rotation matrices are used,

the TAST code does not offer any reduction in decoding complexity. This result is not

surprising since TAST codes layer DAST codes, and DAST codes with complex rotation

matrices do not offer any reduction in decoding complexity relative to an exhaustive-search

ML decoder. With real generator matrices, however, a reduction in decoding complexity is

possible. We will defer the discussion of worst-case ML decoding complexity to Chapter 3.
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This is because for R > 1, the TAST codes are not separable and the worst-case decoding

complexity for an exhaustive-search ML decoder is qRM . In Chapter 3, however, we will

show that TAST codes with real generator matrices allow for a reduction in the worst-case

ML decoding complexity relative to the exhaustive-search ML decoder.

2.4.7 Perfect Space-Time Block Codes

The second family of high-rate space-time block codes is the perfect codes. Perfect space-

time block codes are a family of linear space-time codes that were proposed for two, three,

four, and six antennas in [19] and later generalized for any number of antennas in [20]. These

codes are termed perfect because they have full diversity, a nonvanishing determinant for

increasing spectral efficiency, uniform average transmitted energy per antenna and achieve

rate M symbols per signaling interval for M antennas. Similar to TAST codes, perfect

space-time codes layer or thread rate-one diagonal codes to achieve a maximal rate of M

symbols per signaling interval and can also achieve other rates by puncturing layers. We

next discuss encoding of the rate R perfect code.

The rate-R perfect code is also given by (2.31). We reproduce the results here for

completeness.

CPerfect =
R∑
`=1

diag(u`)J`−1, (2.32)

where

• diag(u`) is the diagonal matrix with the vector u` on the diagonal

• u` = Gx` = [u`,1, u`,2, · · · , u`,M ]>

• G is an M ×M unitary rotation or generator matrix

• J = [φeM , e1, · · · , eM−1]

• em is the m-th column of the M ×M identity matrix

• φ is a unit-magnitude complex number, the value of which depends on the modulation

alphabet and number of transmit antennas M .
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• The alphabet is HEX for the case of three and six transmit antennas. For other

configurations, the alphabet is QAM.

Unlike the TAST codes, the parameter φ for the perfect codes does not depend on the

modulation alphabet size. This is expected since the perfect codes satisfy the nonvanish-

ing determinant property. The TAST and perfect codes differ in the choice of the three

parameters; G, φ and the modulation alphabet, although some choices are the same.

The decoding complexity of perfect space-time codes not only depends on the trans-

mission rate, but also on the modulation alphabet. Similar to TAST codes, the perfect

codes are not separable for R > 1, and the worst-case ML decoding complexity for an

exhaustive-search decoder is qRM . In Chapter 3, we will also show that perfect codes allow

for a reduction in the worst-case ML decoding complexity for q-ary QAM alphabet.

2.5 Conclusions

In this chapter, we reviewed the design criteria of space-time codes, and we discussed the

construction of some important families of space-time block codes. In general, the design

of space-time block codes is a tradeoff between three conflicting goals: minimizing the

decoding complexity, maximizing the diversity gain to improve reliability and maximizing

the multiplexing gain to improve throughput. On one extreme, we have the orthogonal

designs, which minimize the decoding complexity and maximize the diversity gain at the

expense of the multiplexing gain. On the other extreme, we have the perfect space-time

block codes, which achieve the optimal diversity-multiplexing tradeoff at the expense of

decoding complexity, which is exponential in the number of information symbols for an

exhaustive-search ML decoder.
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CHAPTER 3

A UNIFIED FRAMEWORK FOR DETERMINING WORST-CASE

MAXIMUM-LIKELIHOOD DECODING COMPLEXITY

An important design goal for a space-time code is that its worst-case ML decoding complex-

ity is less than qK . The design of space-time block codes with reduced decoding complexity

and good error rate performance is one of the main contribution of this research. In this

chapter, we present a unified framework for discussing the worst-case ML decoding com-

plexity of space-time block codes.

The framework for discussing the worst-case ML decoding complexity is based on the

observation that the structure of the space-time block code induces certain properties in

the effective channel matrix. As a result, we will examine the worst-case ML decoding

complexity in terms of the properties of the effective channel matrix. Specifically, we will

examine the properties of the R matrix in the orthogonal-triangular (QR) decomposition

of the effective channel matrix. A reduction in the worst-case ML decoding complexity is

made possible by exploiting certain properties of the R matrix.

The remainder of the chapter is organized as follows. In Section 3.1, we review the

orthogonal-triangular (QR) decomposition of the effective channel matrix. In Section 3.2,

we review the sphere decoding algorithm, which is a tree search decoding algorithm. In

Section 3.3, we discuss the key properties for reduced complexity decoding. In Section 3.4,

we present the general form of the R matrix for the different families of space time block

codes including orthogonal, quasiorthogonal, diagonal algebraic, single-symbol decodable,

semi-orthogonal algebraic, threaded algebraic and perfect space-time block codes. In Section

3.5, we compare the different families of space-time block codes in terms of their worst-case

ML decoding complexity, as well as their code rate and minimum delay. In Section 3.6, we

conclude the chapter.
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3.1 The QR Decomposition of the Effective Channel Matrix

A QR decomposition of the matrix H can be obtained by applying the Gram-Schmidt

procedure to the columns of H = [h1, · · · ,hK ] to obtain H = QR, where the columns of

Q = [q1, · · · ,qK ] are an orthonormal basis for the subspace spanned by H, and R is upper

triangular with nonnegative real diagonal elements, so that the entry of R in row i and

column j is ri,j = q∗ihj . The classical Gram-Schmidt procedure is shown in figure 3.1.

Algorithm: Classical Gram-Schmidt
for k from 1 to K do1

vk = hk2

for l from 1 to k − 1 do3

rl,k = q∗l hk4

vk = vk − rl,kql5

end6

rk,k = ‖vk‖7

qk = vk/rk,k8

end9

Figure 3.1: Classical Gram-Schmidt.

The classical Gram-Schmidt procedure is conceptually simple, but it suffers from two

drawbacks. First, it is numerically unstable due to rounding errors using finite-precision

arithmetic [63]. The second drawback is that it does not explicitly deal with the case of

a rank deficient H matrix, which occurs when there is at least one column that can be

expressed as a linear combination of other columns. Linear dependency leads to a situation

where vk (in line 5) is the zero vector. Consequently, rk,k in line 7 is zero, and we have a

divide by zero operation on line 8.

Both of these drawbacks have been addressed extensively in the mathematical literature.

An excellent discussion of the different QR decomposition algorithms can be found in [64].

Algorithms based on modifying the classical Gram-Schmidt procedure solve the numerical

stability and rank deficiency constraint of the Gram-Schmidt algorithm. The interested

reader is referred to [64] for pseudocode and MATLAB R© source code for the different

QR decomposition algorithms including the modified Gram-Schmidt, the modified Gram-

Schmidt with reorthogonalization and Householder triangularization.
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Because Q satisfies Q∗Q = I, where I is the identity matrix, the ML decoder minimizes

the cost function

P (x) = ‖y −Hx‖2

= ‖y −QRx‖2

= ‖Q∗y −Rx‖2

= ‖z−Rx‖2, (3.1)

where

z = Q∗y. (3.2)

Because the ML cost function depends on R, the worst-case decoding complexity also

depends on the properties of the R matrix.

For the real-valued system model in (2.7), we also examine the properties of the R

matrix in the orthogonal-triangular decomposition of the matrix Ȟ = [ȟ1, · · · , ȟ2K ]. We

again have Ȟ = QR, where the columns of Q = [q1, · · · ,q2K ] are an orthonormal basis

for the subspace spanned by Ȟ, and R is upper triangular with nonnegative real diagonal

elements, so that the entry of R in row i and column j is ri,j = q>i ȟj . Finally, the ML

decoder minimizes the cost function

P (x̌) = ‖y̌ − Ȟx̂‖2

= ‖y̌ −QRx̌‖2

= ‖Q>y̌ −Rx̌‖2

= ‖ž−Rx̌‖2, (3.3)

where

ž = Q>y̌. (3.4)

3.2 The Sphere Decoder

In Chapter 2, we defined the worst-case ML decoding complexity of an exhaustive-search

decoder for space-time block codes. In this section, we will introduce another measure of
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decoding complexity, which is the average number of nodes visited in a tree-based decoding

algorithm. We next discuss a tree-based search algorithm, namely the sphere decoder.

Let us re-examine the cost function in (3.1), which we write as:

P (x) = ‖z−Rx‖2

=
K∑
k=1

∣∣∣∣∣zk −
K∑
l=k

rk,lxl

∣∣∣∣∣
2

=

∣∣∣∣∣z1 −
K∑
l=1

r1,lxl

∣∣∣∣∣
2

︸ ︷︷ ︸
P1

+

∣∣∣∣∣z2 −
K∑
l=2

r2,lxl

∣∣∣∣∣
2

︸ ︷︷ ︸
P2

+ · · ·+ |zK − rK,KxK |2︸ ︷︷ ︸
PK

. (3.5)

The cost function in (3.5) is the sum of K branch metrics, where the k-th branch metric,

k ∈ {1, · · · ,K}, is given by

Pk =

∣∣∣∣∣zk −
K∑
l=k

rk,lxl

∣∣∣∣∣
2

. (3.6)

With this interpretation, the cost function in (3.5) is then referred to as the path metric.

The goal of the ML decoder is to find x with the smallest path metric. Let us associate

the path metric with a search tree, where there are a total of qK paths to traverse the tree,

which correspond to the qK possible choices for x. We next discuss the search tree and

define important terms related to tree search. We begin the discussion with an example.

Example 3.1. Consider a space-time block code transmitting three complex information

symbols from 4-QAM alphabet. The cost function or path metric of the space-time block

code is given by:

P (x) = P (x1, x2, x3)

= |z1 − (r1,1x1 + r1,2x2 + r1,3x3)|2︸ ︷︷ ︸
P1

+ |z2 − (r2,2x2 + r2,3x3)|2︸ ︷︷ ︸
P2

+ |z3 − r3,3x3|2︸ ︷︷ ︸
P3

. (3.7)

Note the path metric was written as the sum of three branch metrics. This space-time

block code, however, is not separable since these branch metrics are not independent of

each other. For example, P1 depends on x1, but so does P2 and P3. The tree search is

shown in Figure 3.2. We first discuss a few terms related to the tree and then discuss how

tree search is performed.
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Figure 3.2: Three level tree search with q = 4.
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The base of the tree is known as the root. There are 41 + 42 + 43 = 84 branches in the

tree. The end point of each branch is known as a node. Therefore, there are also 84 nodes

in the tree. The tree is organized into three levels or layers. The number of levels in the

tree corresponds to the number of symbols detected in the tree search. The first, second

and third levels of the tree have 4, 16 and 64 branches, respectively. In general, for the l-th

level in the tree, there are ql branches. The nodes at the l-th layer in the tree stemming

from the node at the (l − 1)-th layer, termed parent node, are known as child nodes. For

example, there are 4 child nodes stemming from the root of the tree, and everyone of those

child nodes is a parent node, which has 4 child nodes of its own. The nodes at the last level

of the tree, which do not have any child nodes, are known as leaf nodes. Child nodes are

also sibling nodes to each other. We next discuss how the tree search is performed.

The tree search begins at the root of the tree. We ascend the tree by selecting the node

with the smallest branch metric, out of the four possible child nodes. We continue ascending

the tree until we reach a leaf node. The path from the root of the tree all the way to a

leaf node corresponds to the first candidate solution. Both the path metric along with the

candidate solution are stored as potentially the smallest path metric and ML solution.

The tree search continues by descending to the second level and considering the remain-

ing three sibling nodes, which are siblings to the leaf node and children of the node at the

second level in the tree. A natural question to ask is how to select one node out of the

remaining three sibling nodes. We will use Schnorr-Euchner enumeration, which chooses

the siblings in ascending order of their branch metric weight. We will discuss later in the

section how Schnorr-Euchner enumeration, also known as sorting, allows us to visit fewer

leaf nodes compared to a strategy based on picking the siblings based on their natural posi-

tion in the alphabet. For the sake of this example, we will simply treat sorting as a strategy

for picking among sibling nodes.

After selecting a sibling node, we determine the corresponding path metric, and compare

to the stored path metric. If the new path metric is smaller than the stored path metric,

then the new path metric and new solution replace the stored path metric and current

candidate ML solution. If the new path metric is greater than the stored path metric, it is
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simply discarded. We continue this process until we consider all sibling nodes. Then, we

descend one more level down the tree so that we are now at the first level. We ascend up

the tree by considering one of the three siblings at the first level. We continue ascending up

and descending down the tree until all leaf nodes have been considered. The ML solution

corresponds to the path from the root to a leaf node with the smallest path metric.

The complexity of the tree search decoder, as discussed in Example 3.1 is the same as

that of an exhaustive-search decoder. Specifically, in finding the ML solution, we computed

qK = 43 = 64 path metrics, which is the same as that of an exhaustive-search decoder. The

complexity of a tree search can be significantly reduced by incorporating tree pruning, a

strategy that allows us to discard branches in the tree. We next discuss an example that

shows how sorting, in conjunction with pruning can reduce the decoding complexity.

Example 3.2. Consider the tree search problem in Figure 3.3. The number on each branch

represents its branch metric. Starting at the root of the tree, we choose the branch metric

that has weight 1 at level 1. Then we choose the branch metric that has weight 5 at level 2.

Finally, we reach the leaf node by selecting the branch metric that has weight 4. We store

the leaf node [1, 5, 4] along with the path metric 1 + 5 + 4 = 10. Because of sorting, the

branch metric of each of the remaining three siblings is 4 + δ, for some δ > 0. Therefore,

we do not need to consider any siblings of the leaf node, since the cost of their leaf nodes

is 1 + 5 + 4 + δ > 10. We descend the tree to level 1 and consider the branch metric with

weight 6. However, the leaf node with smallest branch metric is 5, so the path metric is

1 + 6 + 5 = 11 > 10. Therefore, we can discard the leaf node along with its siblings. We

descend again to level 1. The cost of the next sibling is 17 > 10, so we can discard this

node, along with all its children. Similarly, we discard the last sibling, with branch metric

weight 18 > 10 along with all its children.

We next descend to the root of the tree and consider the next node with branch metric

2. We ascend the tree to level 1 and choose the node with branch metric 1. We ascend

the tree to level 2 and choose the leaf node with branch metric 2. The total path metric is

1 + 2 + 2 = 5 < 10. Therefore, we store the new leaf node [1, 2, 2] along with its path metric
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Figure 3.3: Example of three level tree search with q = 4 and computed branch metrics.

5. Sorting allows us to discard the siblings of this leaf node and descend to level 1. The

next sibling at level 1 is the node with branch metric 6 > 5. Hence, we can discard this

sibling along with all its children. Furthermore, we can discard the remaining siblings since

their cost is 6 + δ > 5. We descend one more level to the root of tree. The next child node

at the root of the tree is the node with branch metric 8 > 5. Therefore, we can discard this

node and the remaining sibling. Our ML solution is the one that corresponds to leaf node

[1,2,2] and its cost function or path metric is 5.

We discussed in Example 3.2 how sorting allows us to prune or discard branches in the

tree search since any path that goes through those discarded branches will have a weight

that is greater than the current smallest path metric. Therefore, none of those discarded

branches can lead to the ML solution.

Tree search decoding that incorporates pruning is referred to as sphere decoding. Specif-

ically, tree pruning in the sphere decoding algorithm limits the candidate symbols to those

that obey the following sphere constraint

‖y −Hx‖2 = ‖z−Rx‖2

< P̂ , (3.8)

where P̂ is known as the sphere radius. The sphere constraint in (3.8) limits the decoder to
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visiting only those points for which Hx lies within a radius P̂ of the received vector y. In our

examples, we implicitly assumed that the sphere radius is initialized to∞. Furthermore, we

updated the sphere radius with the smallest path metric value encountered so far to prune

the tree even more efficiently. If the sphere radius is initialized to a value that is too small,

then we might not reach any leaf node because we prune all the branches before reaching

a leaf node. Therefore, to guarantee that we reach the ML solution, the sphere radius is

initialized to∞. A pseudocode that implements the sphere decoding for the three level tree

in Examples 3.1 and 3.2 is shown in Figure 3.4. We next discuss the pseudocode in detail.

Algorithm: [P̂ , x̂] = Sphere Decoder(y,H)
[Q,R] = QR decomposition(H)1

z = Q∗y2

P̂ =∞3

[P3,Π3] = sorta∈A(|z3 − r3,3a|2)4

for n3 from 1 to q do5

if P3(n3) > P̂ then6

break7

end8

x3 = A(Π3(n3))9

[P2,Π2] = sorta∈A(|z2 − r2,3x3 − r2,2a|2)10

for n2 from 1 to q do11

if (P2(n2) + P3(n3)) > P̂ then12

break13

end14

x2 = A(Π2(n2))15

xR1 = Q(<(z1 − r1,2x2 − r1,3x3)/r1,1)16

xI1 = Q(=(z1 − r1,2x2 − r1,3x3)/r1,1)17

P1 = |z1 − r1,1x1 − r1,2x2 − r1,3x3|218

P = P1 + P2(n2) + P3(n3)19

if P < P̂ then20

P̂ = P21

x̂ = [x1, x2, x3]22

end23

end24

end25

Figure 3.4: Sphere decoder with K = 3 tree levels.

The first three lines represent initializations. Specifically, the first step is to perform a

QR decomposition on the matrix H to obtain H = QR (line 1). Then, we form the variable
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z in (3.2) in line 2 and initialize the sphere radius to ∞ in line 3. We next begin the tree

search.

We start with sorting at the root of the tree (line 4). The function sort(a) returns

the weights of the sorted list in ascending order of distance to the input argument a, along

with an index list Π such that aΠ(k) is the k-th element in the sorted list. For example,

sort([60, 50, 80, 70]) returns the ordered list [50, 60, 70, 80] and index list [2, 1, 4, 3]. Tree

pruning is implemented in line 7 and also line 13, where we prune the node and its children

if the sum of the branch metrics up to the node is greater than the sphere radius. We pick

the best child nodes of the root node in ascending order of their branch metrics in line 9.

For every such choice of the parent node at level 1, we perform another sort operation to

obtain an ordered list of its child nodes at level 2 of the tree. We choose the child nodes in

ascending order of their branch metrics in line 15. For a given choice of the parent node at

level 1, its child node at level 2, we determine the leaf node at level 3 with two PAM slicers

(lines 16 and 17). We will discuss the implementation of a PAM slicer later in the section.

The branch metric for the leaf node and its corresponding path metric are computed in line

18 and line 19, respectively. If the current path metric is less than the sphere radius (line

20), then sphere radius and best candidate symbol vector are updated in line 21 and line

22, respectively.

Having discussed tree search decoding in general and the sphere decoding algorithm in

particular, we now define another measure of decoding complexity commonly used in tree

search algorithms, the average node count or average complexity.

Definition 3.1. Average complexity in a tree search decoder refers to the average number

of nodes visited in the tree search to reach the ML decision.

In practical systems which are designed for the worst-case scenario, the worst-case ML

decoding complexity is a more relevant measure than average complexity. However, in

some situations, the system cannot be designed for the worst-case due to the fact that

the worst-case complexity is computationally prohibitive for practical implementation. In

this case, it is also desirable to not only consider worst-case complexity, but also average
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complexity. This is because under certain complexity constraints, an algorithm with lower

average complexity can be expected to outperform a competing algorithm with higher av-

erage complexity. For example, we can impose a run-time constraint on the complexity of

the sphere decoding algorithm by terminating the tree search when the number of nodes

visited reaches or exceeds a certain threshold. In this case, we can expect that an algo-

rithm that visits fewer nodes, on average, will outperform an algorithm that visits more

nodes under the same run-time constraint. Therefore, we will not only consider worst-case

decoding complexity, but we will also consider average complexity in our simulation results

in Chapters 4, 5 and 6.

We next discuss the properties of the R matrix in the QR decomposition of the effective

channel matrix H or Ȟ that lead to a reduction in the worst-case decoding complexity.

3.3 Key Properties for Reduced-Complexity Decoding

We discuss the key properties of reduced complexity decoding of space-time block codes in

terms of the resulting R matrix of the QR decomposition of the complex-valued effective

channel matrix H or the real-valued effective channel matrix Ȟ. We start the discussion

with an example.

Example 3.3. Consider the QR decomposition of the effective channel matrix for the

Alamouti space-time block code discussed in Example 2.2. The complex-valued effective

channel matrix is given by

H =

h1,1 h2,1

h∗2,1 −h∗1,1

 . (3.9)

The Alamouti space-time block code induces orthogonality in its effective channel matrix

such that the first column is orthogonal to the second column. Specifically, h∗1h2 = h∗1,1h2,1−

h2,1h
∗
1,1 = 0. It then follows that the QR decomposition of H yields

H =
1√

|h1,1|2 + |h2,1|2

h1,1 h2,1

h∗2,1 −h∗1,1


︸ ︷︷ ︸

Q

√|h1,1|2 + |h2,1|2 0

0
√
|h1,1|2 + |h2,1|2


︸ ︷︷ ︸

R

. (3.10)
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Notice that each column in Q is a normalized version of the columns of H. This is expected

since the columns of H are orthogonal.

The decoding complexity of the Alamouti space-time block code is easily seen from the

R matrix. Because the element r1,2 is zero, there is no interference between the symbols

x1 and x2, and hence, we can decode them separately. Furthermore, because r1,1 and r2,2

are real, the real and imaginary components of x1 and x2 are also separately decodable,

assuming a QAM alphabet. More formally, the ML decision minimizes

P (x) = ‖z−Rx‖2

= |z1 − r1,1x1|2 + |z2 − r2,2x2|2

= |zR1 − r1,1x
R
1 |2 + |zI1 − r1,1x

I
1|2 + |zR2 − r2,2x

R
2 |2 + |zI2 − r2,2x

I
2|2, (3.11)

where the second equality follows from the fact that r1,2 is zero, and the third equality

follows from the fact that r1,1 and r2,2 are real. Hence, all the transmitted symbols are

decoded separately.

As discussed in Example 3.3, the decoding complexity of the Alamouti space-time block

code is the same as the decoding complexity of a PAM symbol. We next discuss the decoding

complexity of a single transmitted symbol from a
√
q-ary PAM or q-ary QAM alphabet.

The decoding complexity of a QAM or PAM symbol does not grow as the size of the

alphabet grows, and hence, the decoding complexity is O(1). This is because we can decode

a QAM symbol using a pair of PAM slicers, and the complexity of each slicer is independent

of the size of the alphabet q. Specifically a PAM slicer Q(x), where x is a real symbol drawn

from the
√
q-ary PAM alphabet {±1,±3, · · · ,±(

√
q − 1)} is given by:

Q(x) = min
{

max
{

2× round

(
x− 1

2

)
+ 1,
√
q + 1

}
,
√
q − 1

}
, (3.12)

where round is the rounding operation to the nearest integer.

As discussed in Example 3.3, the reduction in decoding complexity of the Alamouti

space-time block code follows directly from the presence of zero and real elements in the R

matrix. More formally, the number and the location of the zero and the real elements in
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the R matrix can potentially lead to a reduction in decoding complexity by exploiting one

or more of the following three properties

1. Some groups of symbols can be decoded separately from other groups.

2. The real and the imaginary parts of a group can be decoded separately.

3. After canceling the interference from some group of symbols, some of the remaining

symbols are separately decodable from other symbols.

We note that the early designs of space-time block codes focused on exploiting the first

and the second properties. In other words, early designs focused on separable space-time

block codes such that the decoding can be done on independent groups of symbols. The

third property has only been recently utilized in decoding and designing space-time block

codes [7][8]. In fact, one contribution of this thesis is to exploit the third property to show

that the golden code has a decoding complexity of O(q2.5). We next discuss an example

highlighting some different forms of the R matrix, and show how the three properties can

be used to reduce the worst-case decoding complexity.

Example 3.4. Consider the R matrix in the QR decomposition of seven different 4 × 4

effective channel matrices as shown in Table 3.1. The matrix R takes the form

R =

A B

0 D

 , (3.13)

where

• A =

r1,1 r1,2

0 r2,2

, B =

r1,3 r1,4

r2,3 r2,4

 and D =

r3,3 r3,4

0 r4,4


• The matrices A and D are triangular by construction with real diagonal entries.

Specifically, rk,k ∈ R for k ∈ {1, 2, 3, 4}.

Assume that the transmitted symbols are drawn from q-ary QAM alphabet. We will discuss

the worst-case decoding complexity for the different forms of the R matrix. First, however,

we define the following variables
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• z12 = [z1, z2]> and z34 = [z3, z4]>

• x12 = [x1, x2]> and x34 = [x3, x4]>

Table 3.1: The R Matrix and its Relationship to Worst-Case Decoding Complexity.

R A B D Worst-Case Complexity

(1) r1,2 = 0 r1,3 = 0 r3,4 = 0 O(1)
r1,4 = 0
r2,3 = 0
r2,4 = 0

(2) r1,2 ∈ R r1,3 = 0 r3,4 ∈ R O(
√
q)

r1,4 = 0
r2,3 = 0
r2,4 = 0

(3) r1,2 ∈ C r1,3 = 0 r3,4 ∈ C O(q)
r1,4 = 0
r2,3 = 0
r2,4 = 0

(4) r1,2 ∈ R r1,3 ∈ R r3,4 ∈ R O(q1.5)
r1,4 ∈ R
r2,3 ∈ R
r2,4 ∈ R

(5) r1,2 = 0 r1,3 ∈ C r3,4 = 0 O(q2)
r1,4 ∈ C
r2,3 ∈ C
r2,4 ∈ C

(6) r1,2 ∈ R r1,3 ∈ C r3,4 ∈ R O(q2.5)
r1,4 ∈ C
r2,3 ∈ C
r2,4 ∈ C

(7) r1,2 ∈ C r1,3 ∈ C r3,4 ∈ C O(q3)
r1,4 ∈ C
r2,3 ∈ C
r2,4 ∈ C
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1. The cost function for the first row of Table 3.1 is given by

P (x) = ‖z−Rx‖2

= |z1 − r1,1x1|2 + |z2 − r2,2x2|2 + |z3 − r3,3x3|2 + |z4 − r4,4x4|2

= |zR1 − r1,1x
R
1 |2 + |zI1 − r1,1x

I
1|2 + |zR2 − r2,2x

R
2 |2 + |zI2 − r2,2x

I
2|2 +

|zR3 − r3,3x
R
3 |2 + |zI3 − r3,3x

I
3|2 + |zR4 − r4,4x

R
4 |2 + |zI4 − r4,4x

I
4|2. (3.14)

Because the only nonzero elements are the diagonal elements, the symbols x1 through

x4 are separately decodable. Furthermore, since the diagonal elements are real, the

real and the imaginary parts of the symbols are also separable. Consequently, the

decoding can be done over eight independent groups, each containing 1 PAM symbol.

Therefore, the worst-case decoding complexity is O(1).

2. The cost function for the second row of Table 3.1 is given by

P (x) = ‖z−Rx‖2

= ‖z12 −Ax12‖2 + ‖z34 −Dx34‖2

= ‖zR12 −AxR12‖2 + ‖zI12 −AxI12‖2 + ‖zR34 −DxR34‖2 + ‖zI34 −DxI34‖2. (3.15)

The B sub-matrix is zero. As a result, the symbols {x1, x2} are separable from the

symbols {x3, x4}. Furthermore, the elements r1,2 and r3,4 are real and hence, the real

and the imaginary components of the symbols {x1, x2} and {x3, x4} are separable. The

decoding can be done over four independent groups: {xR1 , xR2 }, {xI1, xI2}, {xR3 , xR4 } and

{xI3, xI4}. To determine the worst-case decoding complexity, consider the decoding of

one of those groups, say {xR1 , xR2 }. For every candidate symbol xR2 , the decoder finds

the corresponding candidate xR1 with a slicer. Since there are
√
q ways to pick the

PAM symbol xR2 , and the decoding complexity of the xR1 slicer is O(1), the worst-case

decoding complexity is O(
√
q).

3. The cost function for the third row of Table 3.1 is given by

P (x) = ‖z−Rx‖2

= ‖z12 −Ax12‖2 + ‖z34 −Dx34‖2. (3.16)
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The B sub-matrix is zero, and hence, the symbols {x1, x2} are also separable from the

symbols {x3, x4}. However, the elements r1,2 and r3,4 are complex, and hence, there is

no further reduction in complexity. The decoding can be done over two independent

groups: {x1, x2} and {x3, x4}. To determine the worst-case decoding complexity,

consider the decoding of {x1, x2}. For every candidate symbol x2, the decoder finds

the corresponding symbol x1 with a pair of PAM slicers. Since there are q ways to

pick the candidate symbol x2, and the decoding complexity of the xR1 and xI1 slicers

is O(1), the worst-case decoding complexity is O(q).

4. The cost function for the fourth row of Table 3.1 is given by

P (x) = ‖z−Rx‖2

= ‖zR −RxR‖2 + ‖zI −RxI‖2. (3.17)

All the elements of the R matrix are real, and hence, the real part of the transmitted

symbols is separable from the imaginary part. Therefore, the decoding can be done

over two independent groups: {xR1 , xR2 , xR3 , xR4 } and {xI1, xI2, xI3, xI4}. To determine the

worst-case decoding complexity, consider the decoding of the group {xR1 , xR2 , xR3 , xR4 }.

For every candidate group of symbols {xR2 , xR3 , xR4 }, the decoder finds the correspond-

ing symbol xR1 with a PAM slicer. Since, there are
√
q × √q × √q ways to pick the

three PAM symbols {xR2 , xR3 , xR4 }, and the decoding complexity of the xR1 slicer is

O(1), the worst-case decoding complexity is O(q1.5).

For matrices (1) through (4), the decoding of the transmitted symbols was done over

two or more groups. Specifically, the decoding was done over 8, 4, 2, and 2 groups

of symbols for matrices (1), (2), (3), and (4), respectively. For matrices (5) through

(7) the decoding cannot be done over independent groups of symbols. A reduction in

decoding complexity, however, might still be possible. We next discuss the worst-case

decoding complexity for matrices (5), (6), and (7).
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5. Let us define the following variables:

x̄12 =



x1

x2

0

0


, x̄34 =



0

0

x3

x4


, R12 =

A 0

0 0

 , and R34 =

0 B

0 D

 . (3.18)

Then, the cost function for the fifth row in Table 3.1 is given by

P (x) = ‖z−Rx‖2

= ‖z−R12x̄12 −R34x̄34‖2. (3.19)

We now explain how the receiver can exploit the fact that R12 is real to reduce the

worst-case decoding complexity. Conceptually, the ML decoder can proceed as follows.

For each candidate pair x34 = [x3, x4]> the total cost of (3.19) can be written as

P (x) = ‖v −R12x̄12‖2

= ‖vR −R12x̄R12‖2 + ‖vI −R12x̄I12‖2

= |vR1 − r1,1x
R
1 |2 + |vI1 − r1,1x

I
1|2 + |vR2 − r2,2x

R
2 |2 + |vI2 − r2,2x

I
2|2. (3.20)

where we have introduced

v = z−R34x̄34. (3.21)

In going from (3.19) to (3.20) we exploited the fact that A is real and diagonal. This

is the key step. Therefore, for every such candidate pair x34 = [x3, x4]>, the receiver

finds the corresponding symbols xR1 , xI1, xR2 , and xI2 separately.

Intuitively, since the element r1,2 is zero, we can decode x1 and x2 independently after

canceling the interference from the symbols x3 and x4. In fact, after canceling the

interference from x3 and x4, the decoding complexity of x1 and x2 is O(1), since the

decoding can be done with a slicer over four independent groups: xR1 , xI1, xR2 , and xI2.

Therefore, the worst-case decoding complexity is O(q2), where the factor q2 comes

from the number of ways to pick the pair x34 = [x3, x4]>.
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6. Using the definition of x̄12, x̄34, R12 and R34 from (3.18), the cost function for the

sixth row in Table 3.1 is

P (x) = ‖z−R12x̄12 −R34x̄34‖2. (3.22)

For each candidate pair x34 = [x3, x4]>, the total cost of (3.22) can be written as

P (x) = ‖v −R12x̄12‖2

= ‖vR −R12x̄R12‖2 + ‖vI −R12x̄I12‖2, (3.23)

where v is given by (3.21). Because the element r1,2 is real, we can decode xR12 =

[xR1 , x
R
2 ] separately from xI12 = [xI1, x

I
2] after canceling the interference from the sym-

bols x3 and x4. After canceling the interference from x3 and x4, the decoding com-

plexity of {x1, x2} is O(
√
q). This is because the decoding can be done over two

independent groups: {xR1 , xR2 } and {xI1, xI2}, and the decoding complexity of each

group is O(
√
q). Therefore, the worst-case decoding complexity is O(q2× q0.5), where

the factor q2 comes from the number of ways to pick the pair {x3, x4} and the factor

q0.5 comes from the decoding complexity of {x1, x2}, after canceling the interference

from x3 and x4.

7. Finally, for matrix (7), all the matrix elements are complex, except for the diagonal

elements. As a result, there is no reduction in decoding complexity beyond the reduc-

tion offered by a practical implementation of a slicer. Specifically, for every candidate

group of symbols {x2, x3, x4}, the decoder finds the symbol x1 with a slicer. As a

result, the worst-case decoding complexity is O(q3), where the factor q3 comes from

the number of ways to choose {x2, x3, x4}.

3.4 The R Matrix in the QR Decomposition of the Effective Channel
Matrix for Space-Time Block Codes

We next discuss the general form of the R matrix for the different families of space-time

block codes discussed in Section 2.4. We will then use the general form of the R matrix

to determine the worst-case ML decoding complexity of the different families of space-time

block codes. Specifically, we will examine the worst-case ML decoding complexity in relation
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to the properties of the R matrix in the QR decomposition of the effective channel matrix.

Using this framework, we will show that the worst-case decoding complexity for the TAST

and perfect space-time block codes is less than what is currently reported in the literature.

In the discussion that follows, we will assume that the number of receive antennas is

given by N = dRe to allow for efficient decoding at the receiver. This is because we need

to have as many equations as unknowns at the decoder, and there are NT equations and

RT unknowns. Furthermore, we will also assume quasistatic fading. We will address the

worst-case ML decoding complexity for time-varying fading channel later in this section.

3.4.1 Orthogonal Space-Time Block Codes

As mentioned in Section 2.4.1, orthogonal designs decouple the ML detection problem such

that each transmitted symbol is detected separately. Orthogonal designs induce orthogo-

nality in the effective channel matrix. For the real-valued effective channel matrix, all the

columns are orthogonal to each other and have the same norm. Therefore, the resulting R

matrix in the QR decomposition of the real-valued effective channel matrix for the rate-R

orthogonal design of size T ×M is diagonal and has the general form

R = β · I2RT , (3.24)

where β =
√∑M

m=1 |hm,1|2. The ML cost function can then be written as

P (x̌) = ‖y̌ − Ȟx̌‖2

= ‖z−Rx̌‖2

=
2RT∑
k=1

|zk − βx̌k|2, (3.25)

where z = Q>x̌. From (3.25), we see that the decoding of orthogonal space-time block

codes simplifies into the separate decoding of 2RT real symbols. Since each symbol x̌k in

(3.25) can be decoded with a slicer, the worst-case decoding complexity is O(1).

Although orthogonal space-time block codes are trivially decodable without resorting

to a QR decomposition, we will see later in Chapter 6 that the proposed high-rate embed-

ded orthogonal designs are not separable, and hence, a significant reduction in decoding
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complexity is possible by exploiting the special properties of the R matrix in the QR de-

composition of the effective channel matrix.

3.4.2 Diagonal Algebraic Space-Time Block Codes

For the diagonal algebraic space-time block codes, the complex-valued effective channel

matrix takes the general form

H = diag([h1,1, . . . , hM,1])G

= diag([ei∠h1,1 , . . . , ei∠hM,1 ])︸ ︷︷ ︸
HΦ

diag([|h1,1|, . . . , |hM,1|])︸ ︷︷ ︸
HA

G. (3.26)

Because HΦ is unitary, the ML decoder cost function in (3.1) can be written as

P (x) = ‖y −Hx‖2

= ‖H∗Φy −HAG︸ ︷︷ ︸
QR

x‖2

= ‖Q∗H∗Φy −Rx‖2

= ‖zΦ −Rx‖2, (3.27)

where HAG = QR and zΦ = Q∗H∗Φy. Any reduction in worst-case ML decoding complex-

ity depends on the properties of the R matrix in the QR decomposition of HAG.

If the rotation matrix G is complex, then the product HAG is complex, with no or-

thogonality between the columns, in general. The worst-case ML decoding complexity is

O
(
qM−1

)
. This is because there are qM−1 ways to choose the first M − 1 symbols, and for

each choice, the last symbol can be decoded with a slicer.

If the rotation matrix G is real, then the product HAG is also real. Therefore, the

resulting R matrix is

R =



r1,1 r1,2 · · · r1,M

r2,2 · · · r2,M

. . .
...

rM,M


, (3.28)
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where all the elements are real. The ML cost function in (3.27) can then be written as

P (x) = ‖zΦ −Rx‖2

= ‖zRΦ −RxR‖2 + ‖zIΦ −RxI‖2. (3.29)

As can be seen from (3.29), the real and imaginary components of the transmitted informa-

tion symbols can be decoded separately. Since the decoding can be done over two groups,

each containing M real PAM symbols, the worst-case decoding complexity is O
(√
qM−1

)
=

O
(
q

M−1
2

)
.

3.4.3 Quasiorthogonal Space-Time Block Codes

For quasiorthogonal space-time codes with M transmit antennas, the effective channel ma-

trix is constructed recursively from the effective channel matrix for M̄
2 antennas, where M̄

is given by in (2.25). This recursive construction is similar to the recursive construction of

the quasiorthogonal space-time code itself in (2.24). The complex-valued effective channel

matrix is then given by

HQuasi(h1,1, · · · , hM̄,1) =

 HQuasi(h1,1, · · · , h M̄
2
,1

) HQuasi(h M̄
2

+1,1
, · · · , hM̄,1)

HQuasi(h∗M̄
2

+1
, · · · , h∗

M̄,1
) −HQuasi(h∗1,1, · · · , h∗M̄

2
,1

)

Φ,

(3.30)

where

• Φ =



eφ1 0 · · · 0

0 eφ2 · · · 0
...

...
. . .

...

0 0 · · · eφM̄


• HQuasi(ha,1, · · · , ha+ M̄

2
−1,1

) is the effective channel matrix for M̄
2 transmit antennas

in the fading coefficients ha,1 through h
a+ M̄

2
−1,1

.

By definition, HQuasi(h) = h, and the effective channel matrix for two transmit antennas is

the effective channel matrix for the Alamouti space-time block code discussed in Example

2.2.
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The quasiorthogonal space-time code induces orthogonality in the effective channel ma-

trix. Specifically, the subspace spanned by the columns {1, 4, 6, 7, · · · } is orthogonal to the

subspace spanned by the columns {2, 3, 5, 8, · · · } in the effective channel matrix H. This

quasiorthogonal property is easily verified from (3.30).

Let us introduce the permutation matrix Π = [e1, e4, · · · , e2, e3, · · · ], then the ML de-

coder cost function in (3.1) can be written as

P (x) = ‖y −Hx‖2

= ‖y −HΠΠ>x‖2

= ‖y − H̄x̄‖2, (3.31)

where

• H̄ = HΠ = [h̄1, h̄2, · · · , h̄M̄ ] is the permuted effective channel matrix

• x̄ = Π>x = [x̄1, x̄2, · · · , x̄M̄ ] is the permuted transmitted information symbols.

The R matrix in the QR decomposition of H̄ is then given by

R =

A 0

0 A

 =



r1,1 · · · r
1, M̄

2

0 · · · 0
. . .

... 0
. . . 0

r M̄
2
, M̄

2

0 · · · 0

r1,1 · · · r
1, M̄

2

. . .
...

r M̄
2
, M̄

2


, (3.32)

where all the elements are complex in general except for the diagonal elements. By exam-

ining the R matrix in (3.32), it is evident that quasiorthogonal space-time codes can be

decoded over two groups, each having M̄
2 = 2dlog2Me−1 complex information symbols for M̄

antennas. Specifically, the ML cost function in (3.31) can then be written as the sum of

two independent cost functions as follows

P (x) = ‖z−Rx̄‖2

= ‖z
1, M̄

2

−Ax̄
1, M̄

2

‖2 + ‖z M̄
2

+1,M̄
−Ax̄ M̄

2
+1,M̄

‖2, (3.33)
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where z
1, M̄

2

=
[
z1, · · · , z M̄

2

]
, z M̄

2
+1,M̄

=
[
z M̄

2
+1
, · · · , zM̄

]
, x̄

1, M̄
2

=
[
x̄1, · · · , x̄ M̄

2

]
, and

x̄ M̄
2

+1,M̄
=
[
x̄ M̄

2
+1
, · · · , x̄M̄

]
. Since the decoding can be done over two groups, each con-

taining 2dlog2Me−1 complex information symbols, the worst-case ML decoding complexity

is O
(
q2dlog2 Me−1−1

)
.

3.4.4 Single-Symbol Decodable Space-Time Block Codes

The general form of the R matrix in the QR decomposition of the effective channel matrix

for the different single-symbol decodable codes, after an appropriate permutation, is given

by

R =



r1,1 r1,2 0 0

r2,2 0 0

r3,3 r3,4

r4,4


, (3.34)

where all the elements are real. For example, the permutation matrix for [61] and [58] is

Π = [e1, e3, e2, e4]. The R matrix is identical in form to matrix (2) in Example 3.4. There-

fore, single-symbol decodable codes require the joint detection of two
√
q-PAM symbols.

Consequently, the worst-case ML decoding complexity is O(
√
q) as discussed in Example

3.4.
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3.4.5 Semi-Orthogonal Algebraic Space-Time Block Codes

The complex-valued effective channel matrix for the semi-orthogonal algebraic space-time

block codes with M transmit antennas takes the general form

H =

 diag
[
h1,1, h2,1 · · · , hM

2
,1

]
diag

[
hM

2
+1,1, hM

2
+2,1 · · · , hM,1

]
diag

[
h∗M

2
+1,1

, h∗M
2

+2,1
· · · , h∗M,1

]
−diag

[
h∗1,1, h

∗
2,1 · · · , h∗M

2
,1

]

G 0

0 G



=



h1,1 0 · · · 0 hM
2

+1,1 0 · · · 0

0 h2,1 · · · 0 0 hM
2

+2,1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · hM
2
,1 0 0 · · · hM,1

h∗M
2

+1,1
0 · · · 0 −h∗1,1 0 · · · 0

0 h∗M
2

+2,1
· · · 0 0 −h∗2,1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · h∗M,1 0 0 · · · −h∗M
2
,1


︸ ︷︷ ︸

H̄

G 0

0 G


︸ ︷︷ ︸

Ḡ

. (3.35)

In order to determine the general form of the matrix R, we first perform a QR decom-

position on the matrix H̄, such that H̄ = Q̄R̄. Because the matrix H̄ is orthogonal, we

have

H̄ = Q̄



r1,1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · rM
2
,M

2
0 · · · 0

0 · · · 0 r1,1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · rM
2
,M

2


= Q̄

D 0

0 D


︸ ︷︷ ︸

R̄

, (3.36)
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where D = diag
([
r1,1, · · · , rM

2
,M

2

])
. Substituting H̄ = Q̄R̄ into (3.35) yields

H = Q̄R̄Ḡ

= Q̄

D 0

0 D


G 0

0 G


= Q̄

DG 0

0 DG

 . (3.37)

We perform one more QR decomposition on the matrix product DG such that DG = ¯̄Q ¯̄R,

and we obtain the desired QR decomposition of H = QR where

Q = Q̄

 ¯̄Q 0

0 ¯̄Q

 (3.38)

and

R =

 ¯̄R 0

0 ¯̄R

 =



r1,1 · · · r1,M
2

0 · · · 0
. . .

... 0
. . . 0

rM
2
,M

2
0 · · · 0

r1,1 · · · r1,M
2

. . .
...

rM
2
,M

2


, (3.39)

where all the elements are real since both D and G are real. The R matrix in (3.39) has

the same form as the R matrix for quasiorthogonal space-time block codes in (3.32). The

difference, however, is that all the elements in (3.39) are real. The ML decoder cost function

in (3.1) can be written as

P (x) = ‖y −Hx‖2

= ‖z−Rx‖2

= ‖z1,M
2
− ¯̄Rx1,M

2
‖2 + ‖zM

2
+1,M −

¯̄RxM
2

+1,M‖
2

= ‖zR
1,M

2

− ¯̄RxR
1,M

2

‖2 + ‖zI
1,M

2

− ¯̄RxI
1,M

2

‖2 +

‖zRM
2

+1,M
− ¯̄RxRM

2
+1,M

‖2 + ‖zIM
2

+1,M
− ¯̄RxIM

2
+1,M

‖2, (3.40)

where za,b = [za, · · · , zb]> and xa,b = [xa, · · · , xb]>.
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As can be seen from (3.40), SAST codes can be decoded over four groups of symbols, each

has M
2 real symbols drawn from

√
q-PAM alphabet. Hence, the worst-case ML decoding

complexity is O
(√

q
M
2
−1
)

= O
(
q

M/2−1
2

)
.

3.4.6 Threaded Algebraic Space-Time Block Codes

For the TAST code matrix in (2.31) and the complex-valued system model in (2.6), the

effective channel matrix of the rate-R TAST code with M transmit and N receive antennas

is

H =



diag
(
J0h1

)
diag

(
J1h1

)
· · · diag

(
JR−1h1

)
diag

(
J0h2

)
diag

(
J1h2

)
· · · diag

(
JR−1h2

)
...

...
. . .

...

diag
(
J0hN

)
diag

(
J1hN

)
· · · diag

(
JR−1hN

)


(IR ⊗G)

=



diag
(
J0h1

)
G diag

(
J1h1

)
G · · · diag

(
JR−1h1

)
G

diag
(
J0h2

)
G diag

(
J1h2

)
G · · · diag

(
JR−1h2

)
G

...
...

. . .
...

diag
(
J0hN

)
G diag

(
J1hN

)
G · · · diag

(
JR−1hN

)
G


, (3.41)

where

• J = [φeM , e1, · · · , eM−1]

• hn = [h1,n, h2,n, · · · , hM,n]>, n ∈ {1, · · · , N}

• diag(a) is the diagonal matrix with the vector a on the diagonal

• G is the M ×M generator matrix.

For R > 1, the TAST code is not separable [4]. However, a reduction in worst-case ML

decoding complexity is possible with real generator matrices, as we discuss in the following

theorem.

Theorem 3.1. The worst-case ML decoding complexity of a rate-R TAST code for M

transmit antennas and with real generator matrices is O(q(R− 1
2

)M− 1
2 ).
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Proof. The worst-case decoding complexity of the rate-R TAST code is the worst-case

decoding complexity of the first R− 1 threads, multiplied by the worst-case decoding com-

plexity of the last thread. Consider the worst-case decoding complexity of a rate-one TAST

code (i.e., last thread), which is obtained by setting R = 1 in (2.31), for q-ary QAM al-

phabet. As discussed earlier, the rate-one TAST code is simply the DAST code in (2.23).

Therefore, the worst-case decoding complexity of the rate-one TAST code is the same as the

DAST code, namely O
(
q

M−1
2

)
. Therefore, the worst-case decoding of the rate-R TAST

code is O
(
q(R−1)M

)
×O

(
q

M−1
2

)
, where the first term is the worst-case decoding complexity

of the first R− 1 threads, and the last term is the decoding complexity of the last thread.

Consequently, the worst-case decoding complexity is O
(
q(R− 1

2
)M− 1

2

)
.

The reduction in worst-case ML decoding complexity can be derived by considering

the properties of the R matrix in the QR decomposition of the effective channel matrix in

(3.41), which has the general form

R =

A B

0 D

 , (3.42)

where

• A is an M ×M real-valued upper triangular matrix

• B is an (R− 1)M × (R− 1)M complex-valued matrix.

• D is an M ×M upper triangular matrix.

The fact that A is real follows directly from the fact that it represents the R matrix in the

QR decomposition of the first M columns of the effective channel matrix in (3.41). The first

M columns of the TAST effective channel matrix represent the effective channel matrix of

a DAST code with M transmit antennas and N receive antennas. As discussed in Section

3.4.2, the R matrix is real-valued when the generator matrix is real, and hence, the matrix

A is real.
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Let us define Ra and Rb as follows

Ra =

A 0

0 0

 , and Rb =

0 B

0 D

 . (3.43)

Then, the ML cost function in (3.1) can be written as

P (x) = ‖z−Raxa −Rbxb‖2, (3.44)

where xa = [x1, · · · , xM , 0, · · · , 0]> and xb = [0, · · · , 0, xM+1, · · · , xRM ]>. The ML decoder

proceeds as follows. For each candidate group of symbols {xM+1, · · · , xRM}, the total cost

of (3.44) can be written as

P (x) = ‖v −Raxa‖2

= ‖vR −RaxRa ‖2 + ‖vI −RaxIa‖2, (3.45)

where v = z−Rbxb.

Because the matrix Ra is real, we can decode {xR1 , · · · , xRM} separately from {xI1, · · · , xIM}

in the absence of interference from the symbols xM+1 through xRM . The decoding complex-

ity of {x1, · · · , xM} is O
(√
qM−1

)
= O

(
q

M−1
2

)
. Therefore, the worst-case ML decoding

complexity for the rate-R TAST code is O
(
q(R−1)M

)
×O

(
q

M−1
2

)
, where the first term is

the worst-case ML decoding complexity of the symbols xM+1 through xRM and the second

term is the worst-case ML decoding complexity of the symbols x1 through xM .

3.4.7 Perfect Space-Time Block Codes

The effective channel matrix of the perfect code is identical in form to the effective channel

matrix of the TAST code in (3.41). Therefore, The worst-case decoding complexity of the

perfect space-time codes with real generator matrices for QAM alphabet is the same as

that of the TAST code; namely O(q(R− 1
2

)M− 1
2 ). The proof follows identically to Theorem

3.1. For HEX alphabet, wherein the real and imaginary parts of the alphabet itself are not

separable, there is no reduction in decoding complexity beyond that offered by an efficient

implementation of a slicer. Hence, the worst-case decoding complexity is O(qRM−1).
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3.5 Summary of Previous Space-Time Block Codes

In Table 3.2, we compare orthogonal, quasiorthogonal, diagonal algebraic, semi-orthogonal

algebraic, single-symbol decodable, threaded algebraic, and perfect space-time block codes

in terms of their code rate R, delay T , number of real symbols in each group that are jointly

detected, and worst-case ML decoding complexity. The following assumptions were made

in comparing these space-time block codes:

• The comparison assumes quasistatic fading channel. This is because, on time-varying

channels, the different families of space-time block codes lose their reduced complexity

decoding, if any, with the exception of the diagonal algebraic space-time block codes

with real rotation matrices. For orthogonal, quasiorthogonal, semi-orthogonal and

single-symbol decodable codes, the reduction in decoding complexity in quasistatic

fading is due to the orthogonality of some columns in the effective channel matrix.

The orthogonality property, however, is lost in time-varying fading. For the diagonal

algebraic space-time block codes with real rotation matrices, a reduction in decoding

complexity is possible because the complex-valued channel matrix can be transformed

into a real-valued channel matrix as discussed in Section 3.4.2. This property holds

in both quasistatic and time-varying fading.

• The complex information symbols are assumed to be drawn from a q-ary QAM al-

phabet.

• The comparison is for an arbitrary number of antennasM , except for the single-symbol

decodable codes, where M ∈ {3, 4}, and except for perfect codes, where M 6= 3 and

M 6= 6 since the modulation alphabet is HEX, wherein the real and imaginary parts

are not separable;

• We assumed real rotation matrices for the diagonal algebraic, threaded algebraic, and

perfect space-time block codes.
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Table 3.2: Comparison of Different Space-Time Block Codes in Terms of Rate, Delay,
Number of Real Symbols Detected Per Group, and Decoding Complexity.

Space-Time Rate (R) Delay (Dmin) Number Decoding

Code of Real Complexity

Symbols

Per

Group

Orthogonal dM/2e+1
2dM/2e



1
2R

 M

dM/2e

 M = 4k

1
R

 M

dM/2e

 M 6= 4k

1 O(1)

Quasi- 1 2dlog2 Me 2dlog2Me O
(
q2dlog2 Me−1−1

)
orthogonal

DAST 1 M M O
(
q

M−1
2

)
SSD 1 2dM2 e 2 O

(√
q
)

SAST 1 M dM2 e O
(
q
dM/2e−1

2

)
TAST {1, · · · ,M} M 2RM O

(
q(R− 1

2
)M− 1

2

)
Perfect {1, · · · ,M} M 2RM O

(
q(R− 1

2
)M− 1

2

)

3.6 Conclusions

We presented a unified framework for determining the worst-case ML decoding complexity

of space-time block codes. The framework is based on the observation that the space-

time block code induces structure in its effective channel matrix. Reduced complexity
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decoding is then possible by exploiting the properties of the upper-triangular matrix in the

QR decomposition of the effective channel matrix. Using the framework, we determined

the worst-case ML decoding complexity for orthogonal, quasiorthogonal, diagonal algebraic,

single-symbol decodable, semi-orthogonal algebraic, thread algebraic and perfect space-time

block codes.

Using the framework presented in this chapter, we will show in Chapter 4 that the

worst-case decoding complexity of the golden code is significantly less than that of an

exhaustive-search ML decoder. Furthermore, the framework will be used to determine

the decoding complexity of the proposed asymmetric golden code in Chapter 5, and the

proposed embedded orthogonal space-time block codes in Chapter 6.
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CHAPTER 4

A FAST DECODING ALGORITHM FOR THE GOLDEN CODE

Of particular interest in mobile applications are MIMO systems with two transmit and two

receive antennas; this configuration is able to provide both diversity and multiplexing gains

while keeping costs at a minimum. The golden code is a space-time code for two transmit

and two receive antennas that was proposed independently in [7] and [8]. The golden code

has a nonvanishing determinant and hence, achieves the full diversity-multiplexing frontier

of Zheng and Tse [3]. Furthermore, it performs better than previously reported full-rate

codes with two transmit antennas in terms of the SNR required to achieve a target error

probability.

The golden code comes in three variations: the Belfiore-Rekaya-Viterbo golden code [7],

the Dayal-Varanasi golden code [8], and the WiMAX golden code [10]. These variations are

isomorphic, in the sense that one can be transformed into another by multiplying on the left

and right by unitary matrices [8]. Since the determinant is invariant to such transformations,

all three variations have identical rate, diversity, and coding gain. Furthermore, we will show

that they all have the same decoding complexity. For the sake of concreteness, we present

our results in the context of the Dayal-Varanasi golden code [8], and then show that they

are in fact applicable to all three variations [7][8][10].

Because each golden code codeword conveys four information symbols from a q-ary

QAM alphabet, the complexity of an exhaustive-search decoder is proportional to q4. For

example, the authors in [18] noted that the worst-case ML decoding complexity of the

golden code grows with the fourth-power of the signal constellation size. In this chapter

we prove that the golden code with q-ary QAM is fast decodable, by which we mean that

ML decoding is possible with a worst-case decoding complexity of only O(q2.5). The golden

code is fast decodable regardless of whether the channel varies with time. We also present

an efficient implementation of a fast decoder that has low average complexity.

69



The remainder of the chapter is organized as follows. In Section 4.1, we review the

construction of the golden code and prove that it is fast decodable. In Section 4.2 we

introduce a new fast ML decoder for the golden code that has low average complexity. In

Section 4.3, we show that the fast ML decoder applies to other variations of the golden

code. In Section 4.4, we compare the average complexity of the proposed detector to a

conventional golden code detector. We conclude the chapter in Section 4.5.

4.1 The Golden Code is Fast Decodable

In this section, we first review the construction of the golden code. Then, we study the

properties of the R matrix in the QR decomposition of the effective channel matrix that

lead to a reduction in the worst-case ML decoding complexity. Finally, we show that the

golden is fast decodable, a property that we define as follows:

Definition 4.1. A rate-two space-time block for the two-input two-output channel is said

to be fast decodable if the worst-case ML decoding complexity is O(q2.5).

4.1.1 The Golden Code Induces Structure in Effective Channel

The golden code transmits four complex information symbols over two symbol periods, so

that the rate is two symbols per signaling interval. In particular, the Dayal-Varanasi golden

code encodes one pair of information symbols a = [x1, x2]> onto the main diagonal of the

code matrix, and it encodes a second pair of symbols b = [x3, x4]> onto the off-diagonal,

yielding [8]:

C =

ã1 0

0 ã2

+ φ

 0 b̃1

b̃2 0

 (4.1)

where:

ã = Ga, b̃ = Gb, G =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ,

θ =
1
2

tan−1(2), φ = ejπ/4. (4.2)

Substituting the definition of the golden code from (4.1) and (4.2) into (2.2), the vector

of samples y = [y1[1], y1[2], y2[1], y2[2]]> received at a receiver with two antennas at the two
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time instances can be written as the output of an effective four-input four-output channel:

y = Hx + n, (4.3)

where x = [x1, . . . , x4]> is the vector of information symbols, n = [n1[1], . . . , n2[2]]> is the

noise, and where H = H̄Ψ is the effective channel matrix :

H =



h1,1[1] 0 φh2,1[1] 0

0 h2,1[2] 0 φh1,1[2]

h1,2[1] 0 φh2,2[1] 0

0 h2,2[2] 0 φh1,2[2]


︸ ︷︷ ︸

H̄



c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


︸ ︷︷ ︸

Ψ

, (4.4)

where c = cos(θ), s = sin(θ), φ = ejπ/4, and θ = 1
2tan−1(2).

The structure of the golden code induces special properties in this effective matrix that

we exploit to reduce decoding complexity. The following lemma examines these special

properties of the R matrix in the orthogonal-triangular (QR) decomposition of the effective

channel matrix H in (4.4).

Lemma 4.1. (The Key Property): The R matrix in a QR decomposition H = QR of the

effective channel (4.4) has the form

R =

A B

0 D

 , (4.5)

where both of the upper triangular matrices A and D are entirely real.

Proof. See Appendix B.

A few remarks:

• Both A =

r1,1 r1,2

0 r2,2

 and D =

r3,3 r3,4

0 r4,4

 are triangular by construction with real

diagonal entries, so the key property is essentially the fact that both r1,2 and r3,4 are

real.
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• To demonstrate that r1,2 = h∗1h2/‖h1‖ is real, it is sufficient to show that the inner

product between the first two columns is real, a fact which is easily verified by direct

computation:

h∗1h2 = cos(θ) sin(θ)(|h1,1[1]|2 − |h2,1[2]|2 + |h1,2[1]|2 − |h2,2[2]|2)

=
1√
5

(|h1,1[1]|2 − |h2,1[2]|2 + |h1,2[1]|2 − |h2,2[2]|2). (4.6)

• The lemma applies regardless of whether the channel is quasistatic or time-varying.

• The submatrix B is not mentioned because all four of its entries are generally complex.

• The fact that r1,2 is real enables the decoder in the next section to reduce both the

worst-case decoding complexity and the average decoding complexity. In contrast, the

fact that r3,4 is real enables only a reduction in average complexity. It has no impact

on the worst-case complexity.

• The R matrix in (4.5) has the same form as matrix (6) in Example 3.4. Therefore,

we expect a reduction in decoding complexity such that the worst-case ML decoding

complexity is O(q2.5). We next discuss how a receiver decides on the vector x such that

the worst-case complexity is O(q2.5), and we introduce some intermediate variables

that will be used later when discussing a fast ML decoder with low average complexity.

4.1.2 The Golden Code is Fast Decodable

We now show how the key property of Lemma 4.1 enables fast decoding. If we define

z12 = [z1, z2]> and z34 = [z3, z4]>, where z = Q∗y, then the ML decision minimizes the

cost function

P (x) = ‖y −Hx‖2 = ‖z−Rx‖2

= ‖z12 −Aa−Bb‖2 + ‖z34 −Db‖2. (4.7)

The last equality follows from (4.5). Therefore, the ML decisions â and b̂ can be found

recursively using:

b̂ = arg min
b∈A2

{‖z12 −Aa∗(b)−Bb‖2 + ‖z34 −Db‖2}, (4.8)

â = a∗(b̂), (4.9)
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where

a∗(b) = arg min
a∈A2
{‖z12 −Aa−Bb‖2}. (4.10)

The function a∗(b) in (4.10) can be viewed as producing the best a for a given b. With this

interpretation, the optimization in (4.8) can be viewed as that of finding the best b when

a is optimized.

The optimization (4.10) is equivalent to ML detection for a channel A with an input of

a and an output:

v = z12 −Bb. (4.11)

It can be solved by a sphere detector applied to a two-level tree. With two QAM inputs and

without any constraints on A, the worst-case complexity would be O(q). This is because

for every candidate symbol x2, the decoder decides on the corresponding symbol x1 with a

slicer. But the golden code induces the special property that A is real, which enables us to

determine the real components of a independently from its imaginary components in (4.10).

Specifically, we may rewrite (4.10) as:

a∗(b) = arg min
a∈A2
{‖vR −AaR‖2 + ‖vI −AaI‖2} (4.12)

= arg min
aR∈(AR)2

{‖vR −AaR‖2}+ j· arg min
aI∈(AI)2

{‖vI −AaI‖2}. (4.13)

Thus, the optimization in (4.10) decomposes into the pair of independent optimizations of

(4.13). Since each optimization in (4.13) is equivalent to ML detection for a real channel

with two
√
q-PAM inputs, each has a worst-case complexity of O(

√
q). Thus, the overall

complexity of (4.13) is O(
√
q). We thus arrive at our main theorem.

Theorem 4.1. (Golden Code is Fast Decodable): A maximum-likelihood decoder for the

golden code with a q-ary QAM alphabet can be implemented with a worst-case complexity of

O(q2.5).

Proof. As described in (4.8), the ML decision can be found by stepping through each of the

q2 candidate values for b, and for each implement the O(
√
q) optimization of (4.13).
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4.2 A Fast ML Decoder With Low Average Complexity

The decoding strategy used to prove the fast-decodable theorem has a low worst-case com-

plexity but a high average complexity. In this section we present an efficient implementation

of an ML decoder for the golden code that has both low average complexity and a worst-case

complexity of O(q2.5).

A conventional sphere decoder for the golden code is based on a four-level tree, with a

different xi associated with each level. In contrast, as illustrated in Figure 4.1, we propose

a four-level tree that associates bR = (xR3 , x
R
4 ) with the first level, bI = (xI3, x

I
4) with the

second level, aR = (xR1 , x
R
2 ) with the third level, and aI = (xI1, x

I
2) with the fourth level.

This new tree is a direct result of the fact that A and D are real (Lemma 4.1), which allows

us to rewrite the ML cost function from (4.7) as

P (x) = ‖vI −AaI‖2︸ ︷︷ ︸
P1

+ ‖vR −AaR‖2︸ ︷︷ ︸
P2

+ ‖zI34 −DbI‖2︸ ︷︷ ︸
P3

+ ‖zR34 −DbR‖2︸ ︷︷ ︸
P4

. (4.14)

Thus, as illustrated in Figure 4.1, (4.14) shows that the total cost of a leaf node x decomposes

into the sum
∑

i Pi of four branch metrics, where Pi denotes the branch metric for a branch

at the (4− i)-th stage of the tree.

Besides inducing a new tree structure, the fact that D is real also leads to a significant

reduction in the complexity of the Schnorr-Euchner sorting for the first two stages of the

tree. Specifically, the fact that D is real leads to a second-stage branch metric P3 that

is independent of the starting node (bR). Therefore, we can perform a single sort for the

symbol pair (bR) emanating from the root, and simultaneously a single sort for the symbol

pair (bI) emanating from its children.

The pseudocode of an efficient implementation of the proposed ML golden code detector

is shown in Figure 4.2. The first five lines represent initializations. In particular, the

first two lines are a QR decomposition of the effective channel matrix in (4.4) and the

computation of z in (4.7). The squared sphere radius P̂ , which represents the smallest

cost (4.14) encountered so far, is initialized to infinity to ensure ML decoding (line 3).

Sorting or Schnorr-Euchner enumeration is used for faster convergence. Only two sorting

operations (line 4 and line 5) are required. In the pseudocode, the complex QAM alphabet
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Figure 4.1: The structure of the proposed detection tree and its branch metrics. The cost
function for the leaf node is the sum of the branch metrics, P (x) = P1 + P2 + P3 + P4.
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[Q,R] = QR decomposition(H)1

z = Q∗y2

P̂ =∞3

[P4,Π4] = sorta∈A((zR3 − r3,3a
R − r3,4a

I)2 + (zR4 − r4,4a
I)2)4

[P3,Π3] = sorta∈A((zI3 − r3,3a
R − r3,4a

I)2 + (zI4 − r4,4a
I)2)5

for k from 1 to q do6

if (P4(k) + P3(1)) > P̂ then7

break8

end9

for l from 1 to q do10

if (P3(l) + P4(k)) > P̂ then11

break12

end13

[xR3 , x
I
3, x

R
4 , x

I
4] = [A(Π4(k))R,A(Π3(l))R,A(Π4(k))I ,A(Π3(l))I ]14

v1 = z1 − r1,3x3 − r1,4x415

v2 = z2 − r2,3x3 − r2,4x416

P̂1 = P̂2 = P̂17

X = list(vR2 /r2,2)18

for m from 1 to
√
q do19

P2 = (vR2 − r2,2X (m))220

if P2 > P̂2 then, break, end21

uR1 = vR1 − r1,2X (m), w = Q(uR1 /r1,1), P2 = (uR1 − r1,1w)2 + P222

if P2 < P̂2 then23

xR1 = w, xR2 = X (m), P̂2 = P224

end25

end26

X = list(vI2/r2,2)27

for n from 1 to
√
q do28

P1 = (vI2 − r2,2X (n))229

if P1 > P̂1 then, break, end30

uI1 = vI1 − r1,2X (n), w = Q(uI1/r1,1), P1 = (uI1 − r1,1w)2 + P131

if P1 < P̂1 then32

xI1 = w, xI2 = X (n), P̂1 = P133

end34

end35

P = P̂1 + P̂2 + P3(l) + P4(k)36

if P < P̂ then37

x̂ = [x1, x2, x3, x4], P̂ = P38

end39

end40

end41

Figure 4.2: Pseudocode of a fast ML decoder for the golden code.
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A is represented by an ordered list, so that A(k) indexes the k-th symbol in the list.

The remainder of algorithm can be interpreted as a two-level complex sphere decoder

to choose the symbol pair b = (x3, x4)>, followed by an independent pair of two-level real

sphere decoders that separately decode aR = (xR1 , x
R
2 )> and aI = (xI1, x

I
2)>.

The two-level complex sphere decoder incorporates two common optimizations: radius

update (line 38) and pruning (line 7, line 11). While these optimizations do not affect

the worst-case decoding complexity, they affect the average complexity significantly. The

first level of the complex sphere decoder considers candidate pairs bR in ascending order of

their branch metric P4 (line 6). The second level of the complex sphere decoder considers

candidate pairs bI in ascending order of their branch metric P3 (line 10). After forming

b = [x3, x4]> (line 14), the decoder removes the interference caused by b and forms the

two intermediate variables v1 and v2 of (4.11), which are functions of the symbols x1 and

x2 only (line 15 and line 16). Following the two-level complex sphere decoder and interfer-

ence cancelation, the decoder decides on the symbol pairs aR and aI separately using an

independent pair of two-level real sphere decoders.

The function list is used to implement sorting for the final two stages of the tree;

it returns a list of candidate symbols drawn from the
√
q-ary PAM alphabet AR, sorted

in ascending order of distance to the input argument. As described in [65], it can be

implemented efficiently using a table lookup.

After initializing the sphere radius for decoding aR = (xR1 , x
R
2 )> (line 17) and forming the

sorted list of best candidate symbols (line 18), the real sphere decoder chooses the symbol

xR2 that has the lowest branch metric P2 (line 20). The interference from the symbol xR2

is then subtracted, and a decision is made on the symbol xR1 using the PAM slicer Q( · )

(line 22); the slicer function Q(x) returns the symbol from the PAM alphabet AR that is

closest to x and is given in (3.12). The branch-metric P2 for the current candidate symbol

pair aR is also computed in line 22, and radius update occurs if it is less than the previous

smallest value P̂2 (line 24). The real sphere decoder includes pruning and radius update

(line 21 and line 24, respectively).

Decoding the symbol pair aI follows identically to the decoding of the symbol pair aR
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and is shown in line 27 through line 35. Importantly, aR and aI are decoded independently.

Therefore, although the pseudocode shows a serial implementation that decodes first aR and

second aI , a hardware implementation could decode them simultaneously (in parallel), thus

decreasing decoding latency. The overall cost P for the current candidate symbol vector is

updated in line 44. Radius update and best candidate vector update occurs if the current

cost P is less than the previous smallest cost P̂ (line 38).

The algorithm could be embellished to further reduce average complexity. For example,

the columns of H could be permuted using a BLAST ordering. (In this case the only per-

mutations for which the key property of Lemma 4.1 will still hold are {1, 2, 3, 4}, {1, 2, 4, 3},

{2, 1, 3, 4}, {2, 1, 4, 3}, {3, 4, 1, 2}, {3, 4, 2, 1}, {4, 3, 1, 2} and {4, 3, 2, 1}.) For the sake of

clarity of exposition, however, we have chosen not to include such refinements in Figure 4.2.

Such refinements, which have no effect on the worst-case complexity, are well-known in the

literature and their application to the pseudocode is straightforward.

We remark that a quasistatic channel does not offer any additional reduction in decoding

complexity, as compared to a time-varying channel. This is a direct result of the fact that the

entries of B in (4.5) are generally complex, regardless of whether the channel is quasistatic

or time-varying.

4.3 Golden Code Variations

In this section we show that the proposed fast ML decoder, although presented in the

context of the Dayal-Varanasi version of the golden code [8], is equally applicable to the

Belfiore-Rekaya-Viterbo [7] and WiMAX [10] versions of the golden code.

Substituting the definition of the Belfiore-Rekaya-Viterbo golden code from [[7], eqn.

(9)] into (2.2), the vector of samples received at a receiver with two antennas will again be
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given by (4.3), but with a new effective channel matrix of the form:

H=



h1,1[1] 0 h2,1[1] 0

0 h2,1[2] 0 ih1,1[2]

h1,2[1] 0 h2,2[1] 0

0 h2,2[2] 0 ih1,2[2]





c− si 0 0 0

0 s+ ci 0 0

0 0 c− si 0

0 0 0 s+ ci





c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


,

(4.15)

where c = cos(θ), s = sin(θ), φ = ejπ/4, and θ = 1
2tan−1(2). The information symbols

[b, a, d, c] in [7] have been relabeled as [x1, x2, x3, x4] in (4.3). Since c − si and s + ci have

unity magnitude, we can transform this effective matrix into the one in (4.4) simply by

rotating the channel coefficients hi,j [k]. These rotations have no impact on complexity.

In particular, the real coefficients in the R matrix will remain real, even after rotation.

Therefore, the proposed fast ML decoder is applicable.

Similarly, substituting the definition of the WiMAX golden code from [[10], Section

8.4.8.3.3] (matrix C) into (2.2) will again yield (4.3), but with a new effective channel

matrix of the form:

H =



h1,1[1] 0 h2,1[1] 0

0 −ih2,1[2] 0 −h1,1[2]

h1,2[1] 0 h2,2[1] 0

0 −ih2,2[2] 0 −h1,2[2]





c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


. (4.16)

The information symbol vector [Sk, iSk+3, Sk+1,−Sk+2] in [10] has been relabeled to [x1,

x2, x3, x4] in (4.3). Just as before, this effective matrix differs from that in (4.4) only by the

rotated channel coefficients. Therefore, the proposed fast ML decoder is again applicable

to this version of the golden code.

4.4 Numerical Results

In Figure 4.3 we compare the average complexity of the proposed fast ML decoder to a

conventional ML decoder. Unlike our previous discussion where complexity is quantified

by the number of leaf nodes visited, complexity here is quantified by the average number

of nodes visited while searching the tree. The channel was modeled using (2.2) with qua-

sistatic i.i.d. Rayleigh fading, with constant coefficients within each codeword block, but
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Figure 4.3: Average decoding complexity versus SNR for golden code with 64-QAM.

independent fading from block to block. The alphabet was 64-QAM. The fast ML decoder

was implemented following the pseudocode of Figure 4.2. The conventional ML decoder was

implemented using an efficient four-level complex sphere decoder with Schnorr-Euchner enu-

meration. Results are shown for two cases of channel matrix column ordering: no ordering

and BLAST reordering.

As can be seen from Figure 4.3, with no column ordering, the proposed fast ML decoder

is about 45% less complex than a conventional ML decoder. With BLAST ordering, the

proposed ML decoder is about 30% less complex than a conventional decoder. Beyond the

advantages shown in Figure 4.3, the proposed algorithm has three additional advantages

that are not reflected in Figure 4.3, namely:

• the proposed algorithm reduces the number of Schnorr-Euchner sort operations for the

first two stages to only two, compared with a conventional decoder that can require
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as many as q + 1.

• the proposed algorithm can avoid BLAST ordering without a high complexity penalty.

• decoding of the symbol pairs aR and aI can be done in parallel, reducing decoding

latency.

We remark that for 64-QAM, the worst-case ML decoding complexity of the proposed

decoder is O(642.5) = 32768, and the worst-case ML decoding complexity of a conventional

decoder is O(q3) = 262144. The reduction in worst-case ML decoding complexity of the

proposed decoder is 98% compared to a conventional decoder. The reduction in average

complexity, however, is about 30% with ordering. This result is not surprising given the

fact that the proposed decoder visits fewer nodes in the upper part of the tree search, rather

than the lower part of the tree. Furthermore, for the conventional decoder, pruning of the

child nodes occurs if the sum of the branch metrics up to the parent node exceeds the sphere

radius value. Since the sum of the branch metrics increases as we ascend the tree, we are

more likely to prune branches in the higher layers in the tree. Therefore, we can expect that

the average complexity gap between the conventional decoder and proposed decoder to be

less than the worst-case complexity for the two reasons mentioned above, namely that the

conventional decoder is more likely to prune branches in the upper levels and because the

proposed decoder visits fewer nodes in the upper two levels of the tree, but not the lower

two levels.

4.5 Conclusions

The golden code induces special structure in the effective channel matrix. By recognizing

and exploiting this structure we have proven that the worst-case complexity of an ML de-

coder for the golden code with q-ary QAM is O(q2.5), regardless of whether the channel

varies with time. By further exploiting this structure we have proposed a fast ML decod-

ing algorithm based on a unique tree construction that outperforms a conventional ML

detector on four fronts simultaneously: worst-case complexity, average complexity, sorting

complexity, and decoding latency.
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CHAPTER 5

THE ASYMMETRIC GOLDEN CODE

The desire for high spectral efficiency for the practically important system having two

transmit and two receive antennas motivated the construction of high-rate space-time block

codes. Due to the perceived high complexity of the golden code, a class of fast-decodable

space-time codes for the two-input two-output channel was recently proposed as alternatives

to the golden code [16][17][18]. We call the codes of [16][17][18] overlaid Alamouti codes

because they are based on a layering of two Alamouti space-time block codes. See [24] for

a survey of the overlaid Alamouti codes. We have shown in Chapter 4 that for the case

of QAM alphabets, the golden code itself is fast-decodable on both quasistatic and time-

varying channels with worst-case decoding complexity of O(q2.5). The overlaid Alamouti

codes have a worst-case decoding complexity that is even smaller, namely O(q2).

The overlaid Alamouti codes lose their fast-decodable property when the channel varies

with time, a common occurrence in wireless applications with high mobility. In this chapter

we propose a full-rate space-time code with a nonvanishing determinant that is fast de-

codable in both quasistatic and rapidly time-varying channels. In particular, we propose

the asymmetric golden code, which is constructed over QAM alphabets, and in which one

layer of the golden code is scaled with respect to the other. We prove that its worst-case

decoding complexity is O(q2.5), regardless of whether the channel is time varying. For the

special case of quasistatic fading, we prove that it has a decoding complexity of O(q2), the

same as the overlaid Alamouti codes. Furthermore, we present an efficient implementation

of a fast ML decoder for quasistatic channels. The asymmetric golden code has the lowest

decoding complexity among all previously proposed codes and maintains its low decoding

complexity on both quasistatic and time-varying channels.

The remainder of the chapter is organized as follows. In Section 5.1, we present a unified

framework for the encoding of high-rate space-time block codes for the two-input two-output

82



channel. In Section 5.2 we present the proposed asymmetric golden code and prove its fast

decoding properties in quasistatic and time-varying channels. In Section 5.3, we introduce

a fast ML decoder with low average complexity for quasistatic fading. In Section 5.4 we

present numerical results, and in Section 5.5 we draw conclusions.

5.1 A Unified Framework for the Encoding of High-Rate Space-Time
Codes for the Two-Input Two-Output Channel

We present a common framework for comparing the golden code and the overlaid Alamouti

codes in a unified way. In Section 5.2 we will use this framework to describe the asymmetric

golden code. All of these codes transmit four complex information symbols {x1, x2, x3, x4}

from two transmit antennas in two signaling intervals, and they may all be viewed as the

sum of a pair of rate-one codes. In particular, all may be described by the following 2× 2

space-time code:

C(x) = C1(a) + ΦLC1(b̂)ΦR, (5.1)

where:

• x = [x1, x2, x3, x4]>, a = [x1, x2]>, b = [x3, x4]>, b̂ = ΦPb;

• ΦP is a unitary precoding matrix;

• C1(·) is a rate-one encoder for symbol pairs a or b̂;

• ΦL and ΦR are 2× 2 matrices that multiply C1(b̂) on the left and right, respectively.

The four parameters C1(·), ΦL, ΦR, and ΦP are chosen to ensure full diversity, maximize

the coding gain and reduce decoding complexity.

One possibility for C1(·) is the diagonal algebraic space-time code of [27], defined by:

CDAST (a1, a2) =

u1 0

0 u2

 , (5.2)

where u1

u2

 = G

a1

a2

 , G =

 c s

−s c

 , (5.3)
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and

c = cos(θ), s = sin(θ), and θ =
1
2

tan−1(2). (5.4)

Another possibility is the Alamouti code:

CAlamouti(a1, a2) =
1√
2

 a1 a2

−a∗2 a∗1

 , (5.5)

where the constant 1/
√

2 ensures that the total transmit energy is identical to the energy

of the underlying alphabet.

The golden code is a special case of (5.1) with:

C1 = CDAST ,ΦP = I2,ΦL = eiπ/4I2,ΦR =

0 1

1 0

 . (5.6)

The overlaid Alamouti codes of [16][17] are a special case of (5.1) with:

C1 = CAlamouti,ΦP =

 φ1 φ2

−φ∗2 φ∗1

 ,ΦL =

1 0

0 −1

 ,ΦR = I2, (5.7)

where

φ1 =
1√
7

(1 + i) and φ2 =
1√
7

(1 + 2i). (5.8)

Finally, the overlaid Alamouti code of [18] is also a special case of (5.1), with:

C1 = CAlamouti,ΦP = I2,ΦL =
α

|α|

1 0

0 −i

 ,ΦR = I2, (5.9)

where

α = (1−
√

7) + i(1 +
√

7). (5.10)

We proved in Chapter 4 that the worst-case decoding complexity of the golden code

is O(q2.5) in both quasistatic and time-varying fading for QAM alphabets. The overlaid

Alamouti codes with QAM are fast-decodable with worst-case decoding complexity of O(q2)

in quasistatic fading channels [24], but lose their fast decoding property and have a worst-

case complexity of O(q3) on time-varying channels. We next present the asymmetric golden

code, which has a worst-case decoding complexity of O(q2) in quasistatic channels and

O(q2.5) in time-varying channels, which is the lowest decoding complexity compared to

previously reported rate-two space-time block codes for the two-input two-output channel.
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5.2 The Asymmetric Golden Code

We propose a novel full-rate full-diversity space-time block code for the two-input two-

output channel: the asymmetric golden code. We first describe encoding, and then prove

the fast decoding properties of the asymmetric golden code.

5.2.1 The Asymmetric Golden Code Encoder

We propose the asymmetric golden code, a special case of (5.1) with

C1 = CK,ΦP = I2,ΦL = KI2,ΦR =

0 1

1 0

 , (5.11)

where K ∈ (0, 1) is an asymmetry coefficient, to be specified later. The factor K in ΦL

ensures that the second layer will be scaled by K before being added to the first layer. The

rate-one encoder CK in (5.11) is a modified version of the diagonal algebraic encoder in

(5.2), defined by:

CK(a1, a2) =

√
2

1 +K2

u1 0

0 u∗2

 , (5.12)

where [u1, u2]> is given by (5.3).

Comparing (5.12) to CDAST of (5.2), we see two differences: the constant
√

2
1+K2 , which

ensures that the average transmit energy is equal to that of the underlying alphabet, and

the conjugation of u2. The latter makes CK different from CDAST even when K = 1. Let

a = [x1, x2]> and b = [x3, x4]>. Then, in terms of the original information symbols, the

asymmetric golden code is given by

C =

√
2

1 +K2


ã1 0

0 ã∗2

+K

 0 b̃1

b̃∗2 0


 (5.13)

=

√
2

1 +K2

 cx1 + sx2 K(cx3 + sx4)

K(−sx∗3 + cx∗4) −sx∗1 + cx∗2

 , (5.14)

where:

ã = Ga, b̃ = Gb, and G =

 c s

−s c

 , (5.15)

and c and s are given by (5.4).
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Theorem 5.1. The asymmetry coefficient K ∈ (0, 1) that maximizes the coding gain (2.12)

for the space-time block code in (5.13) with QAM alphabet is K = 1/
√

3. The resulting

coding gain is 1/
√

20.

Proof. See Appendix C.

5.2.2 The Effective Channel Matrix and its Key Properties

We next describe the effective channel matrix induced by the asymmetric golden code. We

then establish the key properties of this matrix, and describe a maximum-likelihood decoder

that exploits the key properties to reduce complexity in rapid time-varying fading as well

as quasistatic fading.

Substituting the definition of the asymmetric golden code from (5.13) into (2.2), the

vector of samples after conjugating the second and fourth samples received at a receiver

with two antennas at the two time instances can be written as the output of an effective

four-input four-output channel:

y = Hx + n, (5.16)

where y = [y1[1], y∗1[2], y2[1], y∗2[2]]> is the vector of received samples after conjugation,

x = [x1, x2, x3, x4]> is the vector of information symbols, n = [n1[1], n∗1[2], n2[1], n∗2[2]]> is

the noise, and where H = H̄Ψ is the effective channel matrix :

H =

√
3
2



h1,1[1] 0 Kh2,1[1] 0

0 h∗2,1[2] 0 Kh∗1,1[2]

h1,2[1] 0 Kh2,2[1] 0

0 h∗2,2[2] 0 Kh∗1,2[2]


︸ ︷︷ ︸

H̄



c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


︸ ︷︷ ︸

Ψ

. (5.17)

Similar to the golden code, the asymmetric golden code induces special properties in its

effective channel matrix that we exploit to reduce decoding complexity. The following two

lemmas examine the special properties of the R matrix in the orthogonal-triangular (QR)

decomposition of the effective channel matrix H in (5.17).
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Lemma 5.1. (The Key Property in Time-Varying Fading): The R matrix in a QR decom-

position H = QR of the effective channel (5.17) has the form

R =

A B

0 D

 , (5.18)

where both of the upper triangular matrices A and D are entirely real.

Proof. The proof follows immediately from the proof of the key property for fast decoding

of the golden code (see Appendix B), where H̄ and Ψ are given in (5.17).

A few remarks:

• Both A =

r1,1 r1,2

0 r2,2

 and D =

r3,3 r3,4

0 r4,4

 are triangular by construction with real

diagonal entries, so the key property is the fact that both r1,2 and r3,4 are real.

• To demonstrate that r1,2 = h∗1h2/‖h1‖ is real, it is sufficient to show that the inner

product between the first two columns is real, a fact which is easily verified by direct

computation:

h∗1h2 =
3
2

cos(θ) sin(θ)(|h1,1[1]|2 − |h2,1[2]|2 + |h1,2[1]|2 − |h2,2[2]|2)

=
3

2
√

5
(|h1,1[1]|2 − |h2,1[2]|2 + |h1,2[1]|2 − |h2,2[2]|2). (5.19)

• The lemma applies regardless of whether the channel is quasistatic or time-varying.

For the case of quasistatic fading, however, permuting the channel matrix prior to QR

decomposition leads to an R matrix with r1,2 = r3,4 = 0. We next discuss the key

property of this permuted effective channel matrix in quasistatic fading.

Let us introduce the permutation matrix Π = [e1, e4, e2, e3], where ei is the i-th column of

the 4× 4 identity matrix, so that (5.16) can be written as:

y = HΠΠ>x + n

= HΠxΠ + n, (5.20)
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where xΠ = Π>x = [x1, x4, x2, x3]> and HΠ = HΠ = H̄ΨΠ is the permuted effective

channel matrix given by

HΠ =

√
3
2



h1,1[1] 0 Kh2,1[1] 0

0 h∗2,1[2] 0 Kh∗1,1[2]

h1,2[1] 0 Kh2,2[1] 0

0 h∗2,2[2] 0 Kh∗1,2[2]


︸ ︷︷ ︸

H̄



c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


︸ ︷︷ ︸

Ψ



1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


︸ ︷︷ ︸

Π

. (5.21)

The following lemma presents the key property in quasistatic fading.

Lemma 5.2. (The Key Property in Quasistatic Fading): The R matrix in a QR decompo-

sition HΠ = QR of the permuted effective channel (5.21) has the form

R =

A B

0 D

 , (5.22)

where both A and D are real and diagonal.

Proof. See Appendix D.

We also remark that by construction, both A =

r1,1 r1,2

0 r2,2

 and D =

r3,3 r3,4

0 r4,4


are upper triangular with real diagonal entries, so the key property in quasistatic fading is

essentially the fact that r1,2 = r3,4 = 0.

5.2.3 The Asymmetric Golden Code is Fast-Decodable

We start with the case of time-varying fading. We show how the key property of Lemma

5.2 enables fast decoding. If we define z12 = [z1, z2]> and z34 = [z3, z4]>, where z = Q∗y,

then the ML decision minimizes the cost function

P (x) = ‖y −Hx‖2

= ‖z−Rx‖2

= ‖z12 −Aa−Bb‖2 + ‖z34 −Db‖2. (5.23)

The last equality follows from (5.22). The ML minimization in (5.23) for the asymmetric

golden code is identical to the ML minimization in (4.7) for the golden code. Therefore,
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the ML decisions â and b̂ can be found recursively using (4.8) and (4.9), respectively. As

discussed in Theorem 4.1, the worst-case ML decoding complexity for finding the decisions

â and b̂ is O(q2.5). This leads us to the fast-decodable theorem for the asymmetric golden

code in time-varying fading.

Theorem 5.2. (Asymmetric Golden Code is Fast-Decodable on Time-Varying Fading): A

maximum-likelihood decoder for the asymmetric golden code with a q-ary QAM alphabet can

be implemented with a worst-case complexity of O(q2.5) on time-varying fading channel.

Proof. The proof follows immediately from Theorem 4.1. Specifically, the ML decision can

be found by stepping through each of the q2 candidate values for b as described in (4.8),

and for each implement the O(
√
q) optimization of (4.13).

We next discuss the case of quasistatic fading and show how the key property in Lemma

2 can also be used to reduce the worst-case ML decoding complexity. We start by defining

the intermediate variables c = [x1, x4]>, d = [x2, x3]>, z12 = [z1, z2]> and z34 = [z3, z4]>,

where z = Q∗y. The ML decision minimizes the cost function

P (x) = ‖y −Hx‖2

= ‖z−Rx‖2

= ‖z12 −Ac−Bd‖2 + ‖z34 −Dd‖2. (5.24)

The last equality follows from Lemma 5.2. Therefore, the ML decisions ĉ and d̂ can

also be found recursively using:

d̂ = arg min
d∈A2

{‖z12 −Ac∗(d)−Bd‖2 + ‖z34 −Dd‖2}, (5.25)

ĉ = c∗(d̂), (5.26)

where

c∗(d) = arg min
c∈A2
{‖z12 −Ac−Bd‖2}. (5.27)

Similar to a∗(b) in (4.10), the function c∗(d) in (5.27) can be viewed as producing the best

c for a given d. With this interpretation, the optimization in (5.25) can be viewed as that

of finding the best d when c is optimized.
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The optimization (5.27) is equivalent to ML detection for a channel A with an input of

c and an output:

v = z12 −Bd. (5.28)

Because the asymmetric golden code induces the special property that A is diagonal and

real, we can determine the four components of c independently from each other. Specifically,

we may rewrite (5.27) as:

c∗(d) = arg min
c∈A2
{‖v −Ac‖2}

= arg min
xR

4 ∈(AR)
{|vR2 − r2,2x

R
4 |2}+ i · arg min

xI
4∈(AI)

{|vI2 − r2,2x
I
4|2}+

arg min
xR

1 ∈(AR)
{|vR1 − r1,1x

R
1 |2}+ i · arg min

xI
1∈(AI)

{|vI1 − r1,1x
I
1|2}. (5.29)

Thus, the optimization in (5.27) decomposes into four independent optimizations of (5.29).

Each optimization in (5.29) can be implemented with a slicer. Hence, the overall complexity

of (5.29) is O(1). We thus arrive at the fast decodability theorem on quasistatic channels.

Theorem 5.3. (The Asymmetric Golden Code is Fast-Decodable on Quasistatic Fading):

A maximum-likelihood decoder for the asymmetric golden code with q-ary QAM alphabet

can be implemented with a worst-case complexity of O(q2).

Proof. As described in (5.25), the ML decision can be found by stepping through each of

the q2 candidate values for d, and for each implement the O(1) optimization of (5.29).

5.3 Fast ML Decoding with Low Average Decoding Complexity

The decoding strategy used to prove the fast-decodable theorems has a low worst-case com-

plexity but a high average complexity. In this section we present an efficient implementation

of an ML decoder for the asymmetric golden code in quasistatic fading. The proposed ML

decoder has a low average complexity and a worst-case complexity of O(q2). An efficient

ML decoder of the golden code for time-varying channel was proposed in Chapter 4, with

a worst-case complexity of O(q2.5). Importantly, the algorithm in Figure 4.2 can be used

to decode the asymmetric golden code in time-varying fading without any modification to

the algorithm. The inputs to the decoding algorithm, which are the received vector and
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the effective channel matrix are given by (5.16) and (5.17), respectively. Therefore, we will

only consider efficient ML decoding in quasistatic fading.

A conventional sphere decoder applied to the asymmetric golden code results in a four-

level tree, with a different xi, i ∈ {1, 2, 3, 4}, associated with each level. We propose a three-

level tree that associates x3 with the first level, x2 with the second level and c = [x1, x4]>

with the third level, as illustrated in Figure 5.1. This new tree is a direct result of the fact

that A and D are real and diagonal (Lemma 5.2), which allows us to rewrite the ML cost

function from (5.24) as

P (x) =

P1,2︷ ︸︸ ︷
‖vR1 − r1,1x

R
1 ‖2︸ ︷︷ ︸

PR
1

+ ‖vI1 − r1,1x
I
1‖2︸ ︷︷ ︸

P I
1

+ ‖vR2 − r2,2x
R
4 ‖2︸ ︷︷ ︸

PR
2

+ ‖vI2 − r2,2x
I
4‖2︸ ︷︷ ︸

P I
2

+

‖z3 − r3,3x2‖2︸ ︷︷ ︸
P3

+ ‖z4 − r4,4x3‖2︸ ︷︷ ︸
P4

. (5.30)

Thus, as illustrated in Figure 5.1, (5.30) shows that the total cost of a leaf node x decomposes

into the sum of three branch metrics, where P4, P3 and P1,2 denotes the branch metrics for

a branch at the first, second and third stage of the tree, respectively.

The fact that r3,4 = 0 leads to a significant reduction in the complexity of the Schnorr-

Euchner sorting for the first two stages of the tree. Specifically, the fact that D is diag-

onal implies that there is no interference or dependence between the symbols x2 and x3.

Therefore, we can perform a single sort for the symbol x3 emanating from the root, and

simultaneously a single sort for the symbol x2 emanating from its children.

The pseudocode of an efficient implementation of the proposed asymmetric golden code

ML detector is shown in Figure 5.2. The first five lines represent initializations. In particu-

lar, the first two lines are a QR decomposition of the permuted effective channel matrix in

(5.21) and the computation of z. The squared sphere radius P̂ , which represents the small-

est cost (5.24) encountered so far, is initialized to infinity to ensure ML decoding (line 3).

Sorting or Schnorr-Euchner enumeration is used for faster convergence. Only two sorting

operations (line 4 and line 5) are required. In the pseudocode, the complex QAM alphabet

A is represented by an ordered list, so that A(k) indexes the k-th symbol in the list. We

next describe the remainder of algorithm, which can be interpreted as a two-level complex
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Figure 5.1: The structure of the proposed detection tree and its branch metrics for the
asymmetric golden code. The cost function for the leaf node is the sum of the branch
metrics, P (x) = PR1 + P I1 + PR2 + P I2 + P3 + P4.
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sphere decoder to choose the symbol pair d = [x2, x3]>, followed by four independent slicers

that separately decode xR1 , xR4 , xI1 and xI4.

[Q,R] = QR decomposition(HΠ)1

z = Q∗y2

P̂ =∞3

[P4,Π4] = sorta∈A(|z4 − r4,4a|2)4

[P3,Π3] = sorta∈A(|z3 − r3,3a|2)5

for k from 1 to q do6

if (P4(k) + P3(1)) > P̂ then7

break8

end9

for l from 1 to q do10

if (P3(l) + P4(k)) > P̂ then11

break12

end13

x3 = A(Π4(k))14

x2 = A(Π3(l))15

v1 = z1 − r1,3x2 − r1,4x316

v2 = z2 − r2,3x2 − r2,4x217

xR1 = Q(vR1 /r1,1)18

xI1 = Q(vI1/r1,1)19

xR4 = Q(vR2 /r2,2)20

xI4 = Q(vI2/r2,2)21

PR1 = |vR1 − r1,1x
R
1 |222

P I1 = |vI1 − r1,1x
I
1|223

PR2 = |vR2 − r2,2x
R
4 |224

P I2 = |vI2 − r2,2x
I
4|225

P = PR1 + P I1 + PR2 + P I2 + P3(l) + P4(k)26

if P < P̂ then27

P̂ = P28

x̂ = [x1, x2, x3, x4]29

end30

end31

end32

Figure 5.2: Pseudocode of a fast ML decoder for the asymmetric golden code in
quasistatic fading.

The two-level complex sphere decoder incorporates two common optimizations: radius

update (line 28) and pruning (line 7, line 11). While these optimizations do not affect the

worst-case complexity, they affect the average complexity significantly. The first level of the

complex sphere decoder considers candidate symbols x3 in ascending order of their branch
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metric P4 (line 6). The second level of the complex sphere decoder considers candidate

symbols x2 in ascending order of their branch metric P3 (line 10). The decoder then

removes the interference caused by d = [x2, x3]> and forms the two intermediate variables

v1 and v2 of (5.28), which are functions of the symbols x1 and x4 only (line 16 and line 17).

Following the two-level complex sphere decoder and interference cancelation, the decoder

decides on the remaining four PAM symbols xR1 , xR4 , xI1 and xI4 separately using independent

slicers (line 18 through line 21). The associated branch metrics are calculated in line 22

through line 25. The overall cost P for the current candidate symbol vector is updated in

line 26. Radius update (line 28) and best candidate vector update (line 29) occur if the

current cost P is less than the previous smallest cost P̂ (line 27).

5.4 Numerical Results

In this section, we compare the bit-error rate (BER) performance of the asymmetric golden

code with the golden code and overlaid Alamouti codes of [16][17]. To avoid clutter we do

not include the overlaid Alamouti code of [18] in our comparison; we simply note that it

performs slightly worse (by about 0.1 dB) than the overlaid Alamouti codes of [16][17].

In Figure 5.3, we show simulation results for quasistatic fading with ML detection im-

plemented using the sphere decoder algorithm, assuming 4-QAM. The asymmetric golden

code, which has the lowest decoding complexity under any channel condition, suffers a per-

formance loss of 1.0 dB compared to the golden code. This is due to a reduction in the

coding gain. The coding gain of the golden code is 1/
√

5, while the coding gain of the

asymmetric golden code is 1/(2
√

5). The overlaid Alamouti codes of [16][17] also suffer a

slight performance loss of 0.3 dB, which may also be attributed to a reduced coding gain

given by 1/
√

7.

In Figure 5.4, we illustrate the impact of a time-varying channel on the performance

and complexity of the overlaid Alamouti and asymmetric golden code, assuming 64-QAM.

The time-selectivity is quantified by fDT , the maximum Doppler frequency normalized

by the symbol period. The number adjacent to each point in the figure represents the

corresponding value of fDT . The case of quasistatic fading corresponds to fDT = 0. For
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Figure 5.3: Performance comparison for the two-input two-output channel.

each space-time code, we plot a trajectory of “performance” versus “complexity” as the

Doppler increases, where performance is quantified by the average SNR required to achieve

BER = 10−3, and where complexity is quantified by the average number of nodes visited

by a complex sphere decoder that uses Schnorr-Euchner enumeration, sphere radius update

and depth-first tree search. There are three trajectories:

• The left-most trajectory (labeled “overlaid + ignore”) shows how the performance of

the overlaid Alamouti codes of [16][17] degrades as the Doppler increases, when the

receiver ignores the time variation and pretends that the channel is quasistatic. Such

a strategy is ML for the special case of zero Doppler, and it is effective for slowly

varying channels, but it quickly degrades as the Doppler frequency grows.

• The right-most trajectory (labeled “overlaid + ML”) shows the performance and com-

plexity of the overlaid Alamouti codes of [16][17] with an ML detector that accounts

for the time variations of the channel; the performance is good for all Doppler values

but the complexity is high.
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Figure 5.4: Complexity and performance as a function of normalized Doppler fDT .

• The remaining trajectory (labeled “asymmetric”) shows the performance and com-

plexity of the asymmetric golden code with ML decoding. This trajectory is the only

one of the three that starts in the desirable lower-left corner of the performance-

complexity plane, and stays there for all values of the normalized Doppler frequency.

5.5 Conclusions

We introduced the asymmetric golden code, which asymmetrically scales the two layers of

the golden code before adding. Furthermore, we proposed a fast ML decoding algorithm for

the asymmetric golden code based on a unique tree construction that exploits the special

structure of the effective channel matrix. The asymmetric golden code not only achieves

the diversity-multiplexing tradeoff, but it maintains a low decoding complexity in both

quasistatic fading and rapid time-varying fading channels.
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CHAPTER 6

THE EMBEDDED ORTHOGONAL SPACE-TIME BLOCK CODES

In Chapters 4 and 5, we were concerned with the design and ML decoding of high-rate space-

time block codes for the two-input two-output channel. An interesting question to consider

is the choice of a space-time block code for a given rate and a given number of transmit and

receive antennas. Although space-time codes that achieve arbitrary rates ranging from one

to maximal rate have been proposed in the literature, these codes suffer from high decoding

complexity and worse bit-error-rate performance compared to other space-time codes that

have been proposed for a particular rate and a particular number of transmit and receive

antennas.

In this chapter, we address the problem of designing high-rate space-time block codes

for any number of transmit antennas. Specifically, we introduce the concept of embedding ;

a new concept for the construction of space-time block codes whereby information symbols

of a traditional space-time block code are replaced by complex orthogonal codewords. In

other words, the role of complex information symbols in the encoding process is subsumed

by complex orthogonal designs.

Based on the embedding concept, we propose a family of high-rate space-time block

codes called embedded orthogonal space-time (EOS) block codes. This family is parameter-

ized by the number of transmit antennas, which can be any positive integer, and by the

rate, which can be as high as half the number of transmit antennas. One consequence of

embedding orthogonal designs is the induced orthogonality in the effective channel matrix,

which leads to reduced-complexity decoding. The embedded orthogonal space-time codes

have lower decoding complexity than previously reported space-time codes for any number

of transmit antennas, and for any rate. Furthermore, for rates larger than one, simulation

results for up to six transmit antennas show that the embedded-orthogonal space-time codes

outperform all previous constructions, when performance is measured by error probability
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in quasistatic Rayleigh fading.

The remainder of this chapter is organized as follows. In Section 6.1, we present the

proposed family of embedded orthogonal space-time codes. In Section 6.2, we discuss a

low-complexity ML decoder for the proposed codes. In Section 6.3, we present numerical

results. In Section 6.4, we conclude the chapter.

6.1 The Embedded Orthogonal Space-Time Block Codes

In this section we describe the proposed embedded orthogonal space-time codes and compare

to the threaded algebraic space-time codes discussed in Section 2.4.6. The design of the

proposed embedded orthogonal space-time block codes is a three-step process, based on the

choice of three parameters:

• a complex orthogonal design G called the embedded code. The embedded code of size

T1 ×M1, is characterized by its rate R1 and number of antennas M1;

• an algebraic rotation matrix G;

• a complex number φ.

Before we discuss the construction of the embedded orthogonal codes, we discuss the

choice of these parameters. First, we choose orthogonal designs for embedding because

they induce orthogonality between the columns of the effective channel matrix, resulting in

reduced complexity decoding. Second, we choose real algebraic rotation matrices because

they maximize the coding gain of an encoded thread. Furthermore, real generator matrices

induce orthogonality between the real and imaginary components of the columns of the

effective channel matrix, resulting in further reduction in decoding complexity. Finally,

we choose φ to ensure a nonvanishing determinant, ensure full diversity or ensure a good

bit-error rate performance.

We will present the embedded orthogonal space-time codes by drawing similarities to

the perfect space-time code or threaded algebraic space-time code construction of (2.31).
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Instead of defining x` as the vector of M information symbols for the `-th thread, we define:

X` =



G`,1

G`,2

...

G`,M2−1

G`,M2


(6.1)

as the T1M2 × M1 matrix of M2 embedded codewords for the `-th thread, where G`,m,

m ∈ {1, 2, · · · ,M2}, is the m-th embedded orthogonal codeword of the `-th thread. By

comparing x` and X`, we see that the information symbols x`,m have been replaced by

orthogonal codewords G`,m.

The proposed rate-R embedded orthogonal space-time code of size T ×M , where T =

T1M2 and M = M1M2, is:

CEOS =
R2∑
`=1

blkdiag (U`)
(
J`−1 ⊗ IM1

)
, (6.2)

where

• R2 = dR/R1e

• ⊗ is the Kronecker product

• blkdiag(U`) is the T1M2 ×M1M2 block diagonal matrix with the T1 ×M1 subblocks

of U` on the diagonal

• U` = (G⊗ IT1) X` =



U `,1

U `,2

...

U `,M2−1

U `,M2


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• G is an M2 ×M2 unitary real rotation or generator matrix given by

G =



g1,1 g1,2 · · · g1,M2

g2,1 g2,2 · · · g2,M2

...
...

. . .
...

gM2,1 gM2,2 · · · gM2,M2


. (6.3)

• J = [φeM2 , e1, · · · , eM2−1]

• φ is a unit-magnitude complex number, the value of which depends on the number of

transmit antennas M .

The embedded orthogonal space-time block code for a prime number of antennas, where

M cannot be factored as M = M1M2 is obtained by deleting the last column of the embed-

ded orthogonal code for M+1 antennas. For example, the embedded orthogonal space-time

code for three, five and seven antennas can be obtained by deleting the last column of the

embedded orthogonal space-time block code for four, six and eight transmit antennas, re-

spectively.

The orthogonality embedding concept is evident by comparing (2.31) to (6.2). In par-

ticular, the transmitted symbols x`,m in (2.31) are replaced with orthogonal block codes

G`,m in (6.2). Alternatively, the orthogonal codewords are embedded into the code in (2.31)

to yield the embedded orthogonal codeword of (6.2).

Having discussed the concept of embedding and why we embed orthogonal designs, we

next discuss the choice of the three parameters in the design of embedded orthogonal space-

time block codes, namely the embedded code G, the rotation matrix G and the complex

number φ. We start with the specific choice of the embedded complex orthogonal design.

The maximal rate of complex orthogonal designs for arbitrary number of antennas and

a systematic construction of these maximal rate codes is given in [26]. Of particular impor-

tance to us are the rate-1 Alamouti code for two antennas and rate-3/4 codes for three and

four antennas given by (2.20) in Section 2.4.1. Although the embedded orthogonal space-

time encoder in (6.2) allows for arbitrary orthogonal codes for any number of antennas, we

will only consider the embedding of orthogonal designs for M1 ∈ {2, 3, 4}. This is because,
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as discussed in Section 2.4.1 and shown in Table 2.1, the orthogonal code rate tends to 1
2 as

the number of antennas increases, and the code length becomes prohibitively large for prac-

tical implementations. As a result, the rate of the embedded orthogonal space-time code

decreases, while the decoding latency and complexity increase when we embed orthogonal

designs for more than four antennas.

Regarding the choice of G, we will use the algebraic rotation matrices in [56][57]. These

algebraic rotations matrices are the best known rotations in terms of maximizing the coding

gain of a single encoded layer diag(Gx). Consequently, DAST, TAST and perfect codes

use them to encode the different threads in (2.23), (2.31) and (2.32), respectively. We will

also use the rotation matrices in [56][57] to construct the embedded orthogonal space-time

block code.

Regarding the choice of φ, we used partial search over a random subset of all possible

codewords to find the value of φ that maximizes the coding gain in 2.12. We used partial

search because we could not optimizing the value of φ analytically, and even numerical

exhaustive-search was computationally infeasible for large number of antennas and/or large

alphabet sizes. We observed that we could borrow the unit-magnitude complex number φ

from the full-rate TAST code, except for M ∈ {4, 8}, where we will use φ = eiπ/2, and obtain

an embedded orthogonal code with high coding gain. We note that our choice of φ does not

guarantee full diversity. Simulations results for up to six transmit antennas, however, show

that the embedded orthogonal code outperforms the perfect and TAST codes in terms of

the SNR required to achieve a target error probability.

An interesting question to consider is the maximum rate of the embedded orthogonal

design. We answer this question in the following lemma.

Lemma 6.1. The maximum achievable rate of the embedded orthogonal space-time code in

(6.2) for M = M1M2 antennas is Rmax = R1
M1
×M = M

2 .

Proof. In general, the maximum achievable rate for a space-time code with M antennas is

simply M since we can transmit one symbol, from each antenna, in each signaling interval.

For the embedded orthogonal code, however, we can effectively only transmit R1
M1

symbols,
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per signaling interval, per antenna. Therefore, the maximum achievable rate for M antennas

is

Rmax =
R1

M1
×M . (6.4)

For orthogonal designs, however, we have R1 ≤ 1 and M1 ≥ 2. Therefore, R1
M1
≤ 1

2 .

Substituting for the upper bound on R1
M1

in (6.4), we arrive at the desired result that

Rmax = M
2 .

Corollary 6.1. When the embedded code is the Alamouti code, the rate-3
4 orthogonal code

for three antennas or the rate-3
4 orthogonal code for four antennas, then the maximum

achievable rate of the embedded orthogonal space-time block code in (6.2) for M = M1M2

antennas is Rmax = 1
2M , Rmax = 1

4M , and Rmax = 3
16M , respectively.

We make several important remarks regarding the construction of the embedded orthog-

onal space-time block codes.

• If the ratio R/R1 is not an integer, then the rate of the embedded orthogonal space-

time code in (6.2) is higher than R. A rate-R embedded orthogonal code can then be

obtained by puncturing the embedded codewords in the R2-th thread. We will see an

example of a punctured fractional rate embedded orthogonal code later in the section.

• When the parameter M2 = 1, then we have

U` = X` = G`,1, G = [ 1 ], and J = [ 1 ]. (6.5)

Therefore, there is no embedding, and the embedded orthogonal space-time code

reduces to the orthogonal design.

• When the parameterR2 = 1, and the embedded code is the Alamouti space-time code,

then the embedded orthogonal space-time code simplifies to the semi-orthogonal alge-

braic space-time (SAST) code given in (2.30). Specifically, the embedded orthogonal

space-time code in (6.2) simplifies to the SAST code in (2.30) to within a unitary

transformation as follows

CEOS = ΠLCSASTΠR, (6.6)
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where ΠR = [e1, e1+ M
2
, e2, e2+ M

2
, . . . , eM

2
, eM ] and ΠL = Π>R. When R2 = 1 and the

embedded code is the Alamouti code with R1 = 1, we have that R ≤ 1. Therefore, the

proposed embedded orthogonal space-time code has the same diversity, coding gain,

rate, and decoding complexity as the SAST code when R = 1 and the embedded code

is the Alamouti code, albeit with a larger peak-to-average power ratio. Therefore, the

embedded orthogonal space-time code subsumes the SAST code as a special case.

• The embedded orthogonal space-time block is equivalent to the single-symbol decod-

able code of [58] for M = 4, R = 1 and the Alamouti embedded code. This follows

immediately from the fact that the single-symbol decodable code of [58] is equivalent

to SAST code for four transmit antennas.

• Orthogonality embedding offers another advantage in addition to inducing orthog-

onality in the effective channel matrix. Specifically, when compared to the perfect

space-time and TAST codes, the embedded orthogonal codes have a few number of

zeros in the space-time code matrix because we encode the element and its conjugate.

Hence, we have a lower peak-to-average power ratio. Furthermore, for the same num-

ber of antennas M , the unitary generator matrix G of the embedded orthogonal code

has size M2 ×M2. For the perfect and TAST codes, the generator matrix G has size

M ×M . Since M1 ≥ 2 and M = M1M2, we have that M2 < M . Therefore, the

embedded orthogonal code linearly combines a fewer number of symbols compared to

the perfect or TAST codes, resulting in even a further reduction in peak-to-average

power ratio.

For clarity of exposition, we next discuss three examples for the construction of embed-

ded orthogonal space-time codes. Specifically, we discuss the encoding of rate-2, rate-3, and

rate-3
2 embedded orthogonal codes for four, five and eight transmit antennas, respectively.

Example 6.1. We construct the rate-2 embedded orthogonal space-time code for four

transmit antennas. Since M = M1M2 = 4, there is only one choice for the orthogonal code,

which is the Alamouti code with M1 = 2. This is because M1 cannot be 3 since M2 has to
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be an integer; furthermore, M1 cannot be 4 because it implies that M2 = 1 such that there

is no embedding, and we simply obtain the rate-3/4 orthogonal design.

With M1 = 2 and R1 = 1, we have that M2 = 2 and R2 = 2, and hence, G is the 2× 2

real generator matrix:

G =

 α1 α2

−α2 α1

 =

 0.851 0.526

−0.526 0.851

 , (6.7)

where α1 = cos(θ), α2 = sin(θ) and θ = 1
2 tan−1(2). The generator matrix in (6.7) max-

imizes the coding gain compared to all real unitary generator matrices. The generator

matrix in (6.7) is the same as the generator matrix G for the golden code, asymmetric

golden code and the diagonal algebraic space-time code (see (4.2) and (5.3)). The rate-2

embedded orthogonal space-time code for four transmit antennas is then given by

C =

 U1,1 U2,1

φU2,2 U1,2

 =

 α1G1,1 + α2G1,2 α1G2,1 + α2G2,2

φ (−α2G2,1 + α1G2,2) −α2G1,1 + α1G1,2

 , (6.8)

where φ = eiπ/2 and G`,m is the m-th Alamouti space-time block codeword, m ∈ {1, 2}, for

the `-th layer, ` ∈ {1, 2}. By comparison, the rate-2 TAST or perfect code for two transmit

antennas is

C =

 u1,1 u2,1

φu2,2 u1,2

 =

 α1x1,1 + α2x1,2 α1x2,1 + α2x2,2

φ (−α2x2,1 + α1x2,2) −α2x1,1 + α1x1,2

 , (6.9)

where φ = eiπ/2 for the perfect space-time code and φ = eiπ/6 for the TAST code. By

comparing (6.8) and (6.9), we see that the information symbols x`,m of the perfect code in

(6.9) have been replaced with Alamouti blocks G`,m in (6.8). Each G`,m is a 2 × 2 matrix

containing two complex information symbols, so the matrix of (6.8) is 4× 4 and encodes a

total of 8 symbols.

We next discuss the encoding of the rate-3 embedded orthogonal space-time code for

five transmit antennas. The example illustrates the construction of embedded orthogonal

codes when the number of antennas M is prime.
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Example 6.2. We construct the rate-3 embedded orthogonal space-time code for five trans-

mit antennas. We first construct the embedded orthogonal code for 5+1 = 6 antennas. The

embedded orthogonal code for five antennas is then obtained by deleting the last column of

the embedded orthogonal code for M = 6 antennas.

Since M = M1M2 = 6, there is only one choice for the orthogonal code; the Alamouti

code with M1 = 2. Although M1 = 3 is a potential choice, it implies that the maximum

rate is R = 1
4 × 6 = 1.5, which is less than the desired rate R = 3 (see Corollary 6.1).

With M1 = 2 and R1 = 1, we have that M2 = 3 and R2 = 3, and hence, G is the 3× 3

real generator matrix:

G =


−0.328 −0.591 −0.737

−0.737 −0.328 0.591

−0.591 0.737 −0.328

 . (6.10)

The generator matrix in (6.10) is the same as the generator matrix G for the threaded

algebraic and diagonal algebraic space-time codes. The rate-3 embedded orthogonal space-

time code for six transmit antennas is then given by

C =


U1,1 U2,1 U3,1

φU3,2 U1,2 U2,2

φU2,3 φU3,3 U1,3

 . (6.11)

The embedded orthogonal space-time block code for five antennas is obtained by deleting

the last column of the code matrix in (6.11).

We next discuss an example of a rate-3
2 embedded orthogonal code for eight transmit

antennas, wherein we can embed either the Alamouti code or the rate-3
4 orthogonal code

for four transmit antennas. We also illustrate how the Alamouti embedded code can be

punctured to achieve the rate-3
2 embedded orthogonal space-time code.

Example 6.3. We construct the rate-3
2 embedded orthogonal space-time code for eight

transmit antennas. For M = M1M2 = 8, there are two choices for the embedded orthogonal

code; the rate-1 Alamouti code with M1 = 2, or the rate-3
4 orthogonal code with M1 = 4.

We next consider these two choices for the embedded code.
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Case 1: We first consider the rate-3
4 orthogonal code as the embedded code. This implies

that M2 = 2 and R2 = 2, as was the case in Example 6.1. Therefore, the rate-3
2 embedded

orthogonal space-time code for eight transmit antennas is

C =

 U1,1 U2,1

φU2,2 U1,2

 =

 α1G1,1 + α2G1,2 α1G2,1 + α2G2,2

φ (−α2G2,1 + α1G2,2) −α2G1,1 + α1G1,2

 , (6.12)

where α1, α2, and φ are as in Example 6.1, and G`,m is them-th rate-3
4 orthogonal space-time

block codeword for four antennas given in (2.20), m ∈ {1, 2}, for the `-th layer, ` ∈ {1, 2}.

Orthogonality embedding is again evident by comparing (6.9) and (6.12). In particular,

the information symbols of the perfect or TAST code in (6.9) have been replaced with the

rate-3
4 orthogonal codewords in (6.9).

We note that the rate-2 golden code for two transmit antennas in (6.9), the rate-2

embedded orthogonal code for four transmit antennas in (6.8), and the rate-3
2 embedded

orthogonal code for eight transmit antennas in (6.12) have the same matrix form. They only

differ in the choice of the embedded code. Specifically, the golden code encodes complex

information symbols x`,m, the rate-2 embedded orthogonal code for four transmit antennas

embeds the rate-1 Alamouti space-time code, and the rate-3
2 embedded orthogonal code for

eight transmit antennas embeds the rate-3
4 orthogonal code for four transmit antennas.

Case 2: We consider the rate-1 Alamouti code as the embedded code. We have M2 = 4

and R2 = 2, and hence, G is the 4× 4 real generator matrix given by

G =



0.405 0.542 −0.656 −0.335

0.273 0.498 0.169 0.806

0.335 −0.656 −0.542 0.405

0.806 −0.169 0.498 −0.273


. (6.13)

The rate-2 embedded orthogonal space-time code for eight transmit antennas is then given

by

C =



U1,1 U2,1 0 0

0 U1,2 U2,2 0

0 0 U1,3 U2,3

φU2,4 0 0 U1,4


, (6.14)
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where φ = eiπ/2. In order to obtain the rate-3
2 embedded orthogonal code, we puncture the

second embedded thread U2 to obtain

C =



U1,1 Ū2,1 0 0

0 U1,2 Ū2,2 0

0 0 U1,3 Ū2,3

φŪ2,4 0 0 U1,4


, (6.15)

where

• Ū` = (G⊗ IT1) X̄` =


Ū `,1

...

Ū `,M2



• X̄` =


Ḡ`,1

...

Ḡ`,M2


• Ḡ`,m is the rate-1

2 punctured Alamouti block codeword defined by

Ḡ`,m =

x`,m 0

0 x∗`,m

 . (6.16)

We summarize the three design parameters for the construction of the embedded orthog-

onal space-time block codes for up to eight transmit antennas in Table 6.1. In describing

the embedded code, we use the notation G(M1,R1) to denote the rate-R1 orthogonal code

designed for M1 antennas, and we use Ḡ(2, 1
2) to denote the rate-1

2 punctured Alamouti

code in (6.16).

6.2 Fast ML Decoding of the Embedded Orthogonal Space-Time Codes

In this section, we will discuss maximum-likelihood decoding of the embedded orthogonal

space-time block code. We will assume that N = dRe to ensure reliable detection at the

receiver. The received vector at the n-th receive antenna during time slots t ∈ {1, · · · , T}
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Table 6.1: Design Parameters for Embedded Orthogonal Space-Time Block Codes.

M R Embedded Code G φ

2 1 G(2, 1) [1] 1

4 0.75 G(4, 3
4) [1] 1

1 G(2, 1) (6.7) 1

1.5 G(2, 1),Ḡ(2, 1
2) (6.7) eiπ/2

2 G(2, 1) (6.7) eiπ/2

6 0.75 G(3, 3
4) (6.7) 1

1 G(2, 1) (6.10) 1

1.5 G(3, 3
4) (6.7) eiπ/12

G(2, 1), Ḡ(2, 1
2) (6.10) eiπ/12

2 G(2, 1) (6.10) eiπ/12

3 G(2, 1) (6.10) eiπ/12

8 0.75 G(4, 3
4) (6.7) 1

1 G(2, 1) (6.13) 1

1.5 G(4, 3
4) (6.7) eiπ/2

G(2, 1), Ḡ(2, 1
2) (6.13) eiπ/2

2 G(2, 1) (6.13) eiπ/2

3 G(2, 1) (6.13) eiπ/2

4 G(2, 1) (6.13) eiπ/2

can be written as

yn = CEOShn + wn, (6.17)

where hn = [h1,n, h2,n, · · · , hM,n]>, and yn = [yn[1], yn[2], · · · , yn[T ]]> and wn = [wn[1],

wn[2], · · · , wn[T ]]> are the vectors of received signals and noise at the n-th receive antenna,

respectively. The received signal from all antennas at all time intervals is then given by:
y1

...

yN

 = (IN ⊗CEOS)


h1

...

hN

+


w1

...

wN

 . (6.18)
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As mentioned in Section 2.1, the system in (6.18) should be expressed in the complex-

valued form in (2.6) or the real-valued form in (2.7) in order to facilitate the use of efficient

decoding algorithms. Since the representation in (6.18) is a linear system of equations in

the complex information symbols and their conjugates, it is not always possible to express

(6.18) as a function of only the complex information symbols as in (2.6). Therefore, we will

use the real-valued system model in (2.7). Specifically, we have

y̌ = Ȟx̌ + w̌, (6.19)

where

• y̌ = [yR1 [1], yI1 [1], · · · , yR1 [T ], yI1 [T ], · · · , yRN [1], yIN [1], · · · , yRN [T ], yIN [T ]]> is the real vec-

tor of size 2NT ×1 of received samples at all time intervals, from all receive antennas,

where T = T1M2

• Ȟ is the 2NT × 2RT real effective channel matrix

• x̌ = [xR1 , x
I
1, x

R
2 , x

I
2, · · · , xRRT , xIRT ]> is the 2RT × 1 vector of transmitted real infor-

mation symbols

• w̌ = [wR1 [1], wI1[1], · · · , wR1 [T ], wI1[T ], · · · , wRN [1], wIN [1], · · · , wRN [T ], wIN [T ]]> is the real

vector of size 2NT × 1 of noise samples at all time intervals, from all receive antennas

We next discuss the general form of the effective channel matrix in (6.19) of the embedded

orthogonal space-time block code.

6.2.1 The Effective Channel Matrix of the Embedded Orthogonal Space-Time
Block Code

In determining the general form of the effective channel matrix of the embedded orthogonal

codes, we will first introduce the notational convention. Next, we will determine the form

of the effective channel matrices for the orthogonal space-time block codes used in the

embedding or construction of the embedded orthogonal codes. Finally, we will determine

the general form of the effective channel matrix of the embedded orthogonal space-time

block code by drawing similarities to effective channel matrix of the TAST code.
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We begin by introducing the notation that will be used throughout the discussion. In

Section 6.1, we introduced the notation G`,m to designate the m-th embedded orthogonal

codeword of the `-th thread. Similarly, for the Alamouti code, the rate-3
4 orthogonal code

for three antennas and the rate-3
4 orthogonal code for four antennas, we will use the notation

Hn,m to designate the m-th real-valued effective channel matrix of size 2T1 × 2T1R1 for

the n-th receive antenna that is a function of the fading coefficients hM1(m−1)+1,n through

hmM1,n. We will also introduce FR(·) as the function that converts a complex-valued matrix

into the real-valued equivalent. Specifically, for a complex matrix C of size T ×M , the

function FR(C) is defined as

FR(C) =



cR1,1 −cI1,1 cR1,2 −cI1,2 · · · cR1,M −cI1,M

cI1,1 cR1,1 cI1,2 cR1,2 · · · cI1,M cR1,M

cR2,1 −cI2,1 cR2,2 −cI2,2 · · · cR2,M −cI2,M

cI2,1 cR2,1 cI2,2 cR2,2 · · · cI2,M cR2,M
...

...
...

...
. . .

...

cRT,1 −cIT,1 cRT,2 −cIT,2 · · · cRT,M −cIT,M

cIT,1 cRT,1 cIT,2 cRT,2 · · · cIT,M cRT,M



, (6.20)

where ck,l is the complex element in the k-th row and l-th column. We can see that every

2× 2 subblock in (6.20) is the real-valued matrix representation of a complex number.

Next, we will determine the form of the real-valued effective channel matrices for the

Alamouti code, the rate-3
4 orthogonal code for three antennas and rate-3

4 orthogonal code

for four antennas. We will use these effective channel matrices to construct the general form

of the real-valued effective channel of the embedded orthogonal space-time block code.

Given the code matrix for the Alamouti code in (2.20) and the system model in (6.19),

the real-valued effective channel matrix is

Hn,m =



hR2m−1,n −hI2m−1,n hR2m,n −hI2m,n

hI2m−1,n hR2m−1,n hI2m,n hR2m,n

hR2m,n hI2m,n −hR2m−1,n −hI2m−1,n

hI2m,n −hR2m,n −hI2m−1,n hR2m−1,n


. (6.21)
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The real-valued effective channel matrix for the rate-3
4 orthogonal code for three antennas

is

Hn,m =



hR3m−2,n −hI3m−2,n −hR3m,n −hI3m,n 0 0

hI3m−2,n hR3m−2,n −hI3m,n hR3m,n 0 0

hR3m−1,n −hI3m−1,n 0 0 −hR3m,n hI3m,n

hI3m−1,n hR3m−1,n 0 0 −hI3m,n −hR3m,n

hR3m,n hI3m,n hR3m−2,n −hI3m−2,n hR3m−1,n hI3m−1,n

hI3m,n −hR3m,n hI3m−2,n hR3m−2,n hI3m−1,n −hR3m−1,n

0 0 hR3m−1,n hI3m−1,n −hR3m−2,n hI3m−2,n

0 0 hI3m−1,n −hR3m−1,n −hI3m−2,n −hR3m−2,n



. (6.22)

Lastly, the real-valued effective channel matrix for the rate-3
4 orthogonal code for four

antennas is

Hn,m =



hR4m−3,n −hI4m−3,n −hR4m−1,n −hI4m−1,n hR4m,n hI4m,n

hI4m−3,n hR4m−3,n −hI4m−1,n hR4m−1,n hI4m,n −hR4m,n

hR4m−2,n −hI4m−2,n −hR4m,n hI4m,n −hR4m−1,n hI4m−1,n

hI4m−2,n hR4m−2,n −hI4m,n −hR4m,n −hI4m−1,n −hR4m−1,n

hR4m−1,n hI4m−1,n hR4m−3,n −hI4m−3,n hR4m−2,n hI4m−2,n

hI4m−1,n −hR4m−1,n hI4m−3,n hR4m−3,n hI4m−2,n −hR4m−2,n

hR4m,n hI4m,n hR4m−2,n hI4m−2,n −hR4m−3,n hI4m−3,n

hI4m,n −hR4m,n hI4m−2,n −hR4m−2,n −hI4m−3,n −hR4m−3,n



. (6.23)

As mentioned at the onset of the discussion, we will discuss the general form of the

effective channel matrix of the embedded orthogonal space-time block code by drawing

similarities to the effective channel matrix of the TAST code in (3.41). The real-valued

effective channel matrix of the embedded orthogonal space-time block code of size 2T1M2N×
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2T1M2R1R2 is

Ȟ=



blkdiag
(
J 0H̄1

)
blkdiag

(
J 1H̄1

)
· · · blkdiag

(
JR2−1H̄1

)
blkdiag

(
J 0H̄2

)
blkdiag

(
J 1H̄2

)
· · · blkdiag

(
JR2−1H̄2

)
...

...
. . .

...

blkdiag
(
J 0H̄N

)
blkdiag

(
J 1H̄N

)
· · · blkdiag

(
JR2−1H̄N

)


(
IR2 ⊗ Ḡ

)

=



blkdiag
(
J 0H̄1

)
Ḡ blkdiag

(
J 1H̄1

)
Ḡ · · · blkdiag

(
JR2−1H̄1

)
Ḡ

blkdiag
(
J 0H̄2

)
Ḡ blkdiag

(
J 1H̄2

)
Ḡ · · · blkdiag

(
JR2−1H̄2

)
Ḡ

...
...

. . .
...

blkdiag
(
J 0H̄N

)
Ḡ blkdiag

(
J 1H̄N

)
Ḡ · · · blkdiag

(
JR2−1H̄N

)
Ḡ


,(6.24)

where

• J ` = FR
(
J` ⊗ IT1

)
, ` ∈ {0, 1, · · · ,R2 − 1} and J = [φeM2 , e1, · · · , eM2−1]

• H̄n =



Hn,1

Hn,2

...

Hn,M2−1

Hn,M2


• blkdiag(H̄n) is the 2T1M2 × 2T1R1M2 block diagonal matrix with the 2T1 × 2T1R1

subblocks Hn,m of H̄n on the diagonal

• Ḡ is the 2M2R1T1 × 2M2R1T1 real-valued effective generator matrix that is related

to the M2 ×M2 generator matrix G in (6.3) as follows

Ḡ = FR (G)⊗ IR1T1 . (6.25)

Because G is real, FR (G) = G⊗ I2 and Ḡ can be written as

Ḡ = (G⊗ I2)⊗ IR1T1 = G⊗ I2R1T1 . (6.26)

The orthogonality embedding concept is not only seen in the construction of the embedded

orthogonal space-time code, but it is also seen in the general form of the effective channel
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matrix. The orthogonality embedding concept is evident by comparing (3.41) and (6.24).

Specifically, we see that the fading coefficients hm,n in (3.41) have been replaced by the

orthogonal effective channel matrices Hn,m in (6.24).

In the construction of the embedded orthogonal space-time code, we remarked that if

the ratio R/R1 is not an integer, then the rate of the embedded orthogonal space-time

code is higher than R. Consequently, a rate-R embedded orthogonal code is obtained by

puncturing the embedded codewords in the R2-th thread. When the ratio R/R1 is not

an integer, then the number of columns in the effective channel matrix is more than the

number of transmitted symbols. To obtain the effective channel matrix with the appropriate

number of columns, we simply delete the columns corresponding to the punctured symbols.

For clarity of exposition, we present the general form of the effective channel matrix of

the rate-2 embedded orthogonal space-time code for four transmit and two receive antennas

in the following example.

Example 6.4. Consider the transmission of the rate-2 embedded orthogonal space-time

block code for four transmit antennas discussed in Example 6.1. The real-valued system

model is given by (6.19) where the real-valued effective channel matrix in (6.24) is given by

Ȟ =

blkdiag (J 0H̄1

)
blkdiag

(
J 1H̄1

)
blkdiag

(
J 0H̄2

)
blkdiag

(
J 1H̄2

)
 (I2 ⊗ Ḡ

)

=

blkdiag (J 0H̄1

)
Ḡ blkdiag

(
J 1H̄1

)
Ḡ

blkdiag
(
J 0H̄2

)
Ḡ blkdiag

(
J 1H̄2

)
Ḡ

 (6.27)

where
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• J 0 = I8 and J 1 =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

φR −φI 0 0 0 0 0 0

φI φR 0 0 0 0 0 0

0 0 φR −φI 0 0 0 0

0 0 φI φR 0 0 0 0



• H̄1 =

H1,1

H1,2

, H̄2 =

H2,1

H2,2

, and Hn,m is given by (6.21)

• Ḡ = (G⊗ I4) and G is the 2× 2 generator matrix given by (6.7)

Given the definitions of J ` for ` ∈ {1, 2}, H̄n for n ∈ {1, 2} and G, the real-valued effective

channel matrix can be expressed in terms of the fading coefficients hm,n, m ∈ {1, · · · , 4},

n ∈ {1, 2}, as follows

blkdiag
(
J 0H̄1

)
=



hR1,1 −hI1,1 hR2,1 −hI2,1 0 0 0 0

hI1,1 hR1,1 hI2,1 hR2,1 0 0 0 0

hR2,1 hI2,1 −hR1,1 −hI1,1 0 0 0 0

hI2,1 −hR2,1 −hI1,1 hR1,1 0 0 0 0

0 0 0 0 hR3,1 −hI3,1 hR4,1 −hI4,1

0 0 0 0 hI3,1 hR3,1 hI4,1 hR4,1

0 0 0 0 hR4,1 hI4,1 −hR3,1 −hI3,1

0 0 0 0 hI4,1 −hR4,1 −hI3,1 hR3,1



, (6.28)
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blkdiag
(
J 0H̄2

)
=



hR1,2 −hI1,2 hR2,2 −hI2,2 0 0 0 0

hI1,2 hR1,2 hI2,2 hR2,2 0 0 0 0

hR2,2 hI2,2 −hR1,2 −hI1,2 0 0 0 0

hI2,2 −hR2,2 −hI1,2 hR1,2 0 0 0 0

0 0 0 0 hR3,2 −hI3,2 hR4,2 −hI4,2

0 0 0 0 hI3,2 hR3,2 hI4,2 hR4,2

0 0 0 0 hR4,2 hI4,2 −hR3,2 −hI3,2

0 0 0 0 hI4,2 −hR4,2 −hI3,2 hR3,2



, (6.29)

blkdiag
(
J 1H̄1

)
=



hR
3,1 −hI

3,1 hR
4,1 −hI

4,1 0 0 0 0

hI
3,1 hR

3,1 hI
4,1 hR

4,1 0 0 0 0

hR
4,1 hI

4,1 −hR
3,1 −hI

3,1 0 0 0 0

hI
4,1 −hR

4,1 −hI
3,1 hR

3,1 0 0 0 0

0 0 0 0 φRhR
1,1 − φIhI

1,1 −φRhI
1,1 − φIhR

1,1 φRhR
2,1 − φIhI

2,1 −φRhI
2,1 − φIhR

2,1

0 0 0 0 φIhR
1,1 + φRhI

1,1 φRhR
1,1 − φIhI

1,1 φRhI
2,1 + φIhR

2,1 φRhR
2,1 − φIhI

2,1

0 0 0 0 φRhR
2,1 − φIhI

2,1 φRhI
2,1 + φIhR

2,1 −φRhR
1,1 + φIhI

1,1 −φRhI
1,1 − φIhR

1,1

0 0 0 0 φRhI
2,1 + φIhR

2,1 −φRhR
2,1 + φIhI

2,1 −φRhI
1,1 − φIhR

1,1 φRhR
1,1 − φIhI

1,1



,

(6.30)

blkdiag
(
J 1H̄2

)
=



hR
3,2 −hI

3,2 hR
4,2 −hI

4,2 0 0 0 0

hI
3,2 hR

3,2 hI
4,2 hR

4,2 0 0 0 0

hR
4,2 hI

4,2 −hR
3,2 −hI

3,2 0 0 0 0

hI
4,2 −hR

4,2 −hI
3,2 hR

3,2 0 0 0 0

0 0 0 0 φRhR
1,2 − φIhI

1,2 −φRhI
1,2 − φIhR

1,2 φRhR
2,2 − φIhI

2,2 −φRhI
2,2 − φIhR

2,2

0 0 0 0 φIhR
1,2 + φRhI

1,2 φRhR
1,2 − φIhI

1,2 φRhI
2,2 + φIhR

2,2 φRhR
2,2 − φIhI

2,2

0 0 0 0 φRhR
2,2 − φIhI

2,2 φRhI
2,2 + φIhR

2,2 −φRhR
1,2 + φIhI

1,2 −φRhI
1,2 − φIhR

1,2

0 0 0 0 φRhI
2,2 + φIhR

2,2 −φRhR
2,2 + φIhI

2,2 −φRhI
1,2 − φIhR

1,2 φRhR
1,2 − φIhI

1,2



,

(6.31)
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and

Ḡ =



α1 0 0 0 α2 0 0 0

0 α1 0 0 0 α2 0 0

0 0 α1 0 0 0 α2 0

0 0 0 α1 0 0 0 α2

−α2 0 0 0 α1 0 0 0

0 −α2 0 0 0 α1 0 0

0 0 −α2 0 0 0 α1 0

0 0 0 −α2 0 0 0 α1



. (6.32)

We next discuss the properties of the effective channel matrix of the embedded or-

thogonal space-time block codes that lead to a reduction in the worst-case ML decoding

complexity.

6.2.2 Properties of The Effective Channel Matrix of the Embedded Orthogonal
Space-Time Block Code

The decoding complexity of the embedded orthogonal space-time block code depends on the

number of transmit antennas, rate R, and the choice of the embedded orthogonal design.

We will first discuss the case when R = R1 and show that the embedded orthogonal space-

time block code is separable. We discuss the separability of the embedded orthogonal design

in terms of the properties of the R matrix in the QR decomposition of the effective channel

matrix in the following lemma.

Lemma 6.2. The embedded orthogonal space-time block code for M = M1M2 transmit

antennas embedding G(M1,R1) is η-group decodable when R = R1, where η = 2R1T1.

Furthermore, the worst-case ML decoding complexity is O
(
q

M/M1−1
2

)
= O

(
q

M2−1
2

)
.

Proof. See Appendix E.

We summarize the separability results and worst-case ML decoding complexity of the

embedded orthogonal space-time block code when we embed the Alamouti code and the rate-

3
4 orthogonal designs for three and four transmit antennas in the following three corollaries.

116



Corollary 6.2. When the embedded code is the Alamouti space-time block code G(2, 1), then

the rate R = 1 embedded orthogonal space-time block code for M = M1M2 = 2M2 transmit

antennas is 4-group decodable, with a worst-case ML decoding complexity of O
(
q

M/2−1
2

)
.

Corollary 6.3. When the embedded code is the rate-3
4 orthogonal space-time code G(3, 3

4)

in (2.20) for three transmit antennas, then the rate R = 3
4 embedded orthogonal space-time

block code for M = M1M2 = 3M2 transmit antennas is 6-group decodable, with a worst-case

ML decoding complexity of O
(
q

M/3−1
2

)
.

Corollary 6.4. When the embedded code is the rate-3
4 orthogonal space-time code G(4, 3

4)

in (2.20) for four transmit antennas, then the rate R = 3
4 embedded orthogonal space-time

block code for M = M1M2 = 4M2 transmit antennas is 6-group decodable, with a worst-case

ML decoding complexity of O
(
q

M/4−1
2

)
.

Having discussed the separability of the embedded orthogonal code for R = R1, we next

discuss the case of R > R1. Specifically, we prove that the embedded orthogonal space-time

block code is not separable for R > R1 in the following lemma.

Lemma 6.3. The embedded orthogonal space-time block code is not separable for R > R1.

Proof. See Appendix F.

Corollary 6.5. When the embedded code is the Alamouti space-time block code, then the

rate R > 1 embedded orthogonal space-time block code is not separable.

Corollary 6.6. When the embedded code is the rate-3
4 orthogonal design for three or four

transmit antennas, then the rate R > 3
4 embedded orthogonal space-time block code is not

separable.

Using lemma 6.2 and lemma 6.3, we arrive at the main theorem regarding the worst-case

ML decoding complexity of the embedded orthogonal space-time block codes.

Theorem 6.1. The worst-case maximum-likelihood decoding complexity of a rate-R embed-

ded orthogonal space-time block code with G(M1,R1) for M = M1M2 transmit antennas is

O
(
q(R−R1)T1M2+

M2−1
2

)
.
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Proof. We will use a similar technique to theorem 3.1. The worst-case ML decoding com-

plexity of the rate-R embedded orthogonal space-time block code is the worst-case decoding

complexity of the first R−R1 layers, multiplied by the worst-case ML decoding complexity

of the last R = R1 layer. Therefore, the worst-case decoding of the rate-R embedded or-

thogonal code is O
(
q(R−R1)T

)
×O

(
q

M2−1
2

)
. The first term is the worst-case ML decoding

complexity of the first R−R1 layers, and the last term is the decoding complexity of the

last layer when R = R1, as proven in lemma 6.2. Consequently, the worst-case ML decod-

ing complexity is O
(
q(R−R1)T1M2+

M2−1
2

)
, where we simply substituted for the definition of

T = T1M2.

The worst-case ML decoding complexity for the perfect, threaded algebraic, quasiorthog-

onal, semi-orthogonal algebraic and proposed embedded orthogonal space-time block codes

is summarized in Table 6.2 for up to eight transmit antennas. As can be seen from the Table

6.2, the embedded orthogonal space-time block code has the lowest decoding complexity

compared to these families of space-time block codes.

6.2.3 Efficient ML Decoding of the Embedded Orthogonal Space-Time Codes

In Theorem 6.1, we proved that the embedded orthogonal space-time block code allows

for a reduction in decoding complexity compared to an exhaustive-search decoder. In this

section, we discuss an efficient ML decoder with low average complexity and a worst-case

complexity of O
(
q(R−R1)T1M2+

M2−1
2

)
. We begin our discussion with the case of R = R1.

The efficient ML decoder for R > R1 utilizes the decoder for R = R1.

In Lemma 6.2, we proved that the embedded orthogonal code for R = R1 is η-group

decodable, with a worst-case decoding complexity of O
(
q

M2−1
2

)
= O

(√
qM2−1

)
, where

η = 2R1T1. Therefore, the embedded orthogonal code can be decoded with η real-valued

sphere decoders, each with M2 levels. The pseudocode of a K-level real-valued sphere

decoder is shown in Figure 6.1. The sphere decoder in Figure 6.1 is a generalization of the

sphere decoder in Figure 3.4. Apart from the fact that the sphere decoder in Figure 6.1 has

K levels compared to only three levels in Figure 3.4, the only other difference between the

two decoders is the use of a real PAM alphabet AR with cardinality
√
q in Figure 6.1. In
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Table 6.2: Worst-Case ML Decoding Complexity for Several Space-Time Block Codes.

M R Perfect TAST Quasiorthogonal SAST Proposed EOS

2 1 O
(
q0.5
)
O
(
q0.5
)

- O (1) O (1)

4 0.75 - - - - O (1)a

1 O
(
q1.5
)
O
(
q1.5
)

O (q) O
(
q0.5
)

O
(
q0.5
)

1.5 O
(
q3.5
)
O
(
q3.5
)

- - O
(
q2.5
)

2 O
(
q5.5
)
O
(
q5.5
)

- - O
(
q4.5
)

6 0.75 - - - - O
(
q0.5
)
b

1 O
(
q5
)

O
(
q2.5
)

O
(
q3
)

O (q) O (q)

1.5 O
(
q8
)

O
(
q5.5
)

- - O
(
q4
)

O
(
q6.5
)c

2 O
(
q11
)

O
(
q8.5
)

- - O
(
q7
)

3 O
(
q17
)
O
(
q14.5

)
- - O

(
q13
)

8 0.75 - - - - O
(
q0.5
)d

1 O
(
q3.5
)
O
(
q3.5
)

O
(
q3
)

O
(
q1.5
)

O
(
q1.5
)

1.5 O
(
q7.5
)
O
(
q7.5
)

- - O
(
q5.5
)

O
(
q6.5
)e

2 O
(
q11.5

)
O
(
q11.5

)
- - O

(
q9.5
)

3 O
(
q19.5

)
O
(
q19.5

)
- - O

(
q17.5

)
4 O

(
q27.5

)
O
(
q27.5

)
- - O

(
q25.5

)
a,d,e embedded G

(
4, 3

4

)
b,c embedded G

(
3, 3

4

)

Figure 6.1, we introduced the notation Ra:b,c:d to denote the sub-matrix consisting of rows

a through b and columns c through d of the matrix R. We next discuss the efficient ML

decoder of the embedded orthogonal space-time code for R = R1 shown in Figure 6.2.

The sphere decoder in Figure 6.2, termed EOS Multigroup Decoder is based on the fact

that the embedded orthogonal space-time block code is η-group decodable, with each group

containing M2 real symbols. The first two lines are initializations, where we perform a QR

decomposition of the effective channel matrix in line 1 and form the intermediate variable z

in line 2. The next five lines (line 3 through line 7) represent a loop that calls a real-valued
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Algorithm: [P̂ , x̂] = Sphere Decoder(y̌, Ȟ,K)
[Q,R] = QR decomposition(Ȟ)1

z = Q>y̌2

P̂ =∞3

[PK ,ΠK ] = sorta∈AR(|zK − rK,Ka|2)4

for nK from 1 to
√
q do5

if PK(nK) > P̂ , break, end6

xK = AR(ΠK(nK))7

v = zK−1 −RK−1,KxK8

[PK−1,ΠK−1] = sorta∈AR(|v − rK−1,K−1a|2)9

for nK−1 from 1 to
√
q do10

if (PK−1(nK−1) + PK(nK)) > P̂ , break, end11

xK−1 = AR(ΠK−1(nK−1))12

v = zK−2 −RK−2,K−1:K [xK−1, xK ]>13

[PK−2,ΠK−2] = sorta∈AR(|v − rK−2,K−2a|2)14

...15

for n2 from 1 to
√
q do16

if (P2(n2) + · · ·+ PK(nK)) > P̂ , break, end17

x2 = AR(Π2(n2))18

v = z1 −R1,2:K [x2, · · · , xK ]>19

x1 = Q(v/r1,1)20

P1 = |v − r1,1x1|221

P = P1 +
∑K

k=2 Pk(nk)22

if P < P̂ then23

P̂ = P24

x̂ = [x1, x2, · · · , xK ]25

end26

end27

...28

end29

end30

Figure 6.1: Real-valued sphere decoder with K tree levels.
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Algorithm: [P̄ ,x] = EOS Multigroup Decoder(y̌, Ȟ, η,M2)
[Q,R] = QR decomposition(Ȟ)1

z = Q>y̌2

for n from 1 to η do3

z̄ = [zn, zn+η, · · · , zn+(M2−1)η]4

Form R̄ from R according to (E.5)5

[Pn, [xn, xn+η, · · · , xn+(M2−1)η]] = Sphere Decoder(z̄, R̄,M2)6

end7

P̄ =
∑η

n=1 Pn8

x = [x1, · · · , xηM2 ]9

Figure 6.2: Pseudocode of a fast ML decoder for the embedded orthogonal space-
time block codes for R = R1.

sphere decoder with M2 levels. Specifically, the real-valued sphere decoder in Figure 6.1

is called in line 6 with an appropriate received vector z̄ (line 4), an appropriate effective

channel matrix R̄ (line 5), and the parameter M2 for the number of levels in the decoder. We

will discuss some important implications of the loop as written in the pseudocode shortly.

First, however, we proceed with the rest of the decoding algorithm. The path metric in line

8 is the sum of path metrics from the η decoders. Finally, the ML decision is formed in line

9 from the ML decisions of the η decoders.

We now discuss two implications regarding the loop in line 3 through line 7. First, we

have chosen to write a loop which executes the algorithm sequentially. We note, however,

that the loop can be unrolled, such that the Sphere Decoder algorithm executes in parallel

in a hardware implementation. On one extreme, the hardware can have as many as η

instances of the Sphere Decoder block running in parallel. This hardware implementation

has the largest area, but it also has the lowest decoding latency and highest throughput. On

the other extreme, the hardware can have one instance of the Sphere Decoder block, and it

executes η times, similar to what is shown in the pseudocode. This hardware implementation

has the smallest area, but it also has the highest decoding latency and lowest throughput.

In a practical implementation, hardware designers can choose between the two extremes

depending on the area, power dissipation, latency and throughput constraints of the system.

Second, it is not necessary to perform a QR decomposition inside the Sphere Decoder
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function when it is being called inside the loop. This is because the matrix R̄ is already an

M2 ×M2 upper triangular matrix. In a practical implementation, the QR decomposition

might be performed outside of the decoding function. We perform the QR decomposition

inside the function for the sake of self completeness.

Having discussed an efficient ML decoder for R = R1 for the embedded orthogonal

space-time code, we now present an efficient ML decoder for R > R1. The basic idea of

the decoding algorithm follows from the proof of Theorem 6.1. Specifically, the algorithm

consists of two parts. The first part decides on the best candidate symbol vector for the

first R−R1 layers, while the second part finds the best candidate symbol vector for the last

R = R1 layer, after canceling the interference from the first R − R1 layers. As might be

expected, the second part of the decoding algorithm that finds the best candidate symbol

vector for the last R = R1 layer is simply the EOS Multigroup Decoder function in Figure

6.2. The pseudocode of an efficient ML decoder for R > R1, termed EOS Decoder, is shown

in Figure 6.3. We next discuss the pseudocode in detail.

The first four lines are initializations that include a QR decomposition of the effective

channel matrix (line 1), forming the variable z (line 2), determining the number of symbols

in the last R = R1 layer (line 3) and initializing the sphere radius (line 4). The remaining

part of the algorithm can be interpreted as finding the candidate vector symbol for the

first 2K − L real symbols, where L = ηM2, and for each candidate vector, we find the

last L real symbols using the Sphere Multigroup Decoder. Specifically, line 5 through

line 24 find the candidate symbol vector [xL+1, xL+2, · · · , x2K ]. In fact, lines 5 through 24

represent a real-valued sphere decoder with 2K −L levels. We cancel the interference from

the symbols [xL+1, xL+2, · · · , x2K ] in line 25, and then we find the candidate symbol vector

[x1, x2, · · · , xL] in line 26. The total path metric is computed in line 27. Sphere radius

update (line 29) and best candidate vector update (line 30) occur if the current path metric

is smaller than the sphere radius in line 28. We end the discussion regarding the pseudocode

by noting that the QR decomposition performed inside the EOS Multigroup Decoder is

unnecessary since the effective channel matrix being passed as an input argument is already

an L×L upper triangular matrix. Again, we have chosen to include the QR decomposition
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Algorithm: [P̂ , x̂] = EOS Decoder(y̌, Ȟ,K, η,M2)
[Q,R] = QR decomposition(Ȟ)1

z = Q>y̌2

L = ηM23

P̂ =∞4

[P2K ,Π2K ] = sorta∈AR(|z2K − r2K,2Ka|2)5

for n2K from 1 to
√
q do6

if P2K(n2K) > P̂ , break, end7

x2K = AR(Π2K(n2K))8

v = z2K−1 −R2K−1,2Kx2K9

[P2K−1,Π2K−1] = sorta∈AR(|v − r2K−1,2K−1a|2)10

for n2K−1 from 1 to
√
q do11

if (P2K−1(n2K−1) + P2K(n2K)) > P̂ , break, end12

x2K−1 = AR(Π2K−1(n2K−1))13

v = z2K−2 −R2K−2,2K−1:2K [x2K−1, x2K ]>14

[P2K−2,Π2K−2] = sorta∈AR(|v − r2K−2,2K−2a|2)15

...16

for nL+2 from 1 to
√
q do17

if (PL+2(nL+2) + · · ·+ P2K(n2K)) > P̂ , break, end18

xL+2 = AR(ΠL+2(nL+2))19

v = zL+1 −RL+1,L+2:2K [xL+2, · · · , x2K ]>20

[PL+1,ΠL+1] = sorta∈AR(|v − rL+1,L+1a|2)21

for nL+1 from 1 to
√
q do22

if (PL+1(nL+1) + · · ·+ P2K(n2K)) > P̂ , break, end23

xL+1 = AR(ΠL+1(nL+1))24

v = [z1, · · · , zL]> −R1:L,L+1:2K [xL+1, · · · , x2K ]>25

[P̄ , [x1, x2, · · · , xL]] = EOS Multigroup Decoder(v,R1:L,1:L, η,M2)26

P̂ =
∑2K

k=L+1 Pk(nk) + P̄27

if P < P̂ then28

P̂ = P29

x̂ = [x1, x2, · · · , x2K ]30

end31

end32

end33

...34

end35

end36

Figure 6.3: Pseudocode of a fast ML decoder for the embedded orthogonal space-
time block codes for R > R1.
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inside the function for the sake of self completeness.

Having discussed an efficient decoder for the embedded orthogonal space-time codes, we

note that the basic ideas of the decoding algorithm can be used to decode the TAST and

perfect codes with real generator matrices and QAM alphabet. This is because the TAST

and perfect codes are 2-group decodable, with each group containing M real symbols for

R = 1. Therefore, for R = 1, we can use two real-valued sphere decoders, each having M

levels. By comparison, the embedded orthogonal code uses η real-valued sphere decoders,

η ∈ {4, 6}, each having M2 < M real symbols. The decoding for R > 1 for the perfect

and TAST codes follows similarly to the decoding of the embedded orthogonal codes for

R > R1. Specifically, the decoding algorithm also consists of two parts. The first part

decides on the best candidate symbol vector for the first R − 1 layers, while the second

part finds the best candidate symbol vector for the last R = 1 layer, after canceling the

interference from the first R− 1 layers.

6.3 Numerical Results

In this section, we present simulation results for up to six transmit antennas. The channel

was modeled using (2.2) with quasistatic i.i.d. Rayleigh fading, with constant coefficients

within each codeword block, but independent fading from block to block. The modulation

alphabet was QAM for all the simulated space-time codes except for perfect codes for six

transmit antennas, where the modulation alphabet is HEX. We show simulation results for

q = 4, q = 16 and q = 64, respectively. We next comment on the different efficient ML

decoders used for the different families of space-time block codes.

The embedded orthogonal code was decoded following the pseudocode in Figure 6.2 and

Figure 6.3. Similarly, the perfect and TAST codes with QAM alphabet were decoded using

similar pseudocode to Figures 6.2 and Figure 6.3 as discussed at the end of Section 6.2.3.

The perfect code with HEX alphabet was decoded using a complex-valued sphere decoder,

similar to the real-valued sphere decoder in Figure 6.1. The quasiorthogonal space-time

block code, which is 2-group decodable was decoded using a similar pseudocode to Figure

6.2. We omit any mention or comparison with DAST code since the R = 1 TAST code
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reduces to the DAST code. Similarly, we omit simulation results for SAST codes since the

embedded orthogonal space-time block code subsumes the SAST code as a special case for

R = 1. Finally, we omit simulation results for the single-symbol decodable space-time code

since it is only defined for M = 4, in which case, it is also equivalent to the embedded

orthogonal code for M = 4 and R = 1.

We start with R = 1 for M = 4 and M = 6 transmit antennas shown in Figure 6.4

and Figure 6.5, respectively. In both figures, we compare complexity and performance for

quasiorthogonal, TAST, perfect and embedded orthogonal space-time block codes.

In Figure 6.4, we see that quasiorthogonal codes and embedded orthogonal codes have

the lowest error probability and lowest decoding complexity, respectively, for all spectral

efficiencies. Therefore, there is not a single space-time code that is simultaneously better

performing and lower in decoding complexity. This leads us to a complexity-performance

tradeoff. Specifically, for a given SNR value at the receiver for which the best performing

code achieves a target error probability of 10−3, we determine the decoding complexity and

additional SNR required by the other codes to achieve the same error probability. We sum-

marize the complexity-performance tradeoff in Table 6.3. For example, for SNR = 10.7 dB

at which the quasiorthogonal space-time code achieves an error probability of 10−3 for q = 4,

we tabulate the additional SNR (i.e., SNR penalty) required by the embedded orthogonal,

TAST and perfect space-time codes to achieve the same error probability. Furthermore, we

tabulate the average complexity, measured by the average number of nodes visited in the

tree search to reach the ML decision.

From Table 6.3, we see that quasiorthogonal and embedded orthogonal designs are

favorable in terms of error rate performance and average complexity compared to TAST

and perfect codes. For example, for q = 64, the perfect code requires an additional 2.55

and 2.50 dB to achieve the same error rate as quasiorthogonal and embedded orthogonal

codes, respectively. Furthermore, the perfect code is 3% and 18% more complex than

quasiorthogonal and embedded orthogonal codes, respectively. Embedded orthogonal codes

are within 0.15 dB of quasiorthogonal codes in terms of error rate performance, and they

are 15% less complex in terms of the average number of nodes visited. Furthermore, the
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(f) Complexity for q = 64

Figure 6.4: Performance and complexity comparison for M = 4, R = 1 and N = 1
for quasiorthogonal (M), TAST (+), perfect (3) and embedded orthogonal space-time (�)
block codes.
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Table 6.3: Average Complexity and Additional SNR Required to Achieve Bit-Error Prob-
ability of 10−3 for M = 4, N = 1, and R = 1. Average Complexity and SNR Penalty are
Relative to 10.7, 14.7 and 19.05 dB for q = 4, q = 16 and q = 64, Respectively.

Code Average Complexity SNR Penalty (dB)

q = 4 q = 16 q = 64 q = 4 q = 16 q = 64

Quasiorthogonal 14.12 14.22 14.28 0 0 0

Embedded Orthogonal 12.02 12.05 12.06 0.15 0.08 0.02

Perfect 14.52 15.25 15.65 1.66 2.27 2.55

TAST 14.47 15.1 15.53 1.70 2.33 2.57

worst-case ML complexity of the embedded orthogonal code is 50%, 75% and 87% lower

than that of quasiorthogonal codes for q = 4, q = 16 and q = 64, respectively.

The error rate performance and complexity for R = 1 and M = 6 are shown in Figure

6.5. Because the real and imaginary parts in the HEX alphabet are not separable, we

used the complex-valued sphere decoder for the perfect codes. For the remaining codes,

however, we used the real-valued sphere decoder. In comparing the complex-valued and

real-valued sphere decoders, one might be tempted to simply count each complex node

as two real nodes. This comparison, however, is inaccurate. To illustrate that, consider

a two-level complex sphere decoder and the corresponding four-level real-valued decoder.

The minimum number of nodes visited by the complex-valued and real-valued decoders

is 3 and 7, respectively. Hence, simply counting each complex node as two real nodes is

unfair. Furthermore, the two-level complex-valued sphere decoder has 16+256=272 nodes,

while the real-valued decoder has 4+16+64+256=340 nodes. Therefore, we will omit the

complexity results for the perfect codes except for q = 64 to convince the reader that perfect

codes have the highest decoding complexity. As can be seen from Figure 5(b), the perfect

codes have the highest average node count even we are counting a complex node as one real

node. We summarize the complexity-performance tradeoff in Table 6.4.

From Table 6.4, we see that quasiorthogonal and embedded orthogonal designs are

favorable in terms of error rate performance compared to TAST and perfect codes. For

example, for q = 64, the TAST code requires an additional 2.4 and 1.9 dB to achieve the
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(f) Complexity for q = 64

Figure 6.5: Performance and complexity comparison for M = 6, R = 1 and N = 1
for quasiorthogonal (M), TAST (+), perfect (3) and embedded orthogonal space-time (�)
block codes.
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same error rate as quasiorthogonal and embedded orthogonal codes, respectively. Unlike

the case for M = 4, the TAST code has lower average complexity than the quasiorthogonal

code. This is expected since the worst-case ML decoding complexity of the TAST code is

O(q2.5), which is lower than that of the quasiorthogonal code with worst-case complexity of

O(q3). The embedded orthogonal code has the lowest decoding complexity. The embedded

orthogonal code suffers a 0.5 dB performance penalty compared to the quasiorthogonal

code, but it is at least 35% less complex than the quasiorthogonal code for any spectral

efficiency. Furthermore, the worst-case ML complexity of the embedded orthogonal code

is 93%, 99.5% and 99.9% lower than that of quasiorthogonal codes for q = 4, q = 16 and

q = 64, respectively.

Table 6.4: Average Complexity and Additional SNR Required to Achieve Bit-Error Prob-
ability of 10−3 for M = 6, N = 1, and R = 1. Average Complexity and SNR Penalty are
Relative to 9.3, 13.3 and 17.8 dB for q = 4, q = 16 and q = 64, Respectively.

Code Average Complexity SNR Penalty (dB)

q = 4 q = 16 q = 64 q = 4 q = 16 q = 64

Quasiorthogonal 31.1 32.4 32.8 0 0 0

Embedded Orthogonal 20.1 20.2 20.3 0.50 0.50 0.50

Perfect N/A N/A N/A 1.61 1.90 2.30

TAST 24.4 27.6 29.9 1.51 2.00 2.43

We have seen so far that the embedded orthogonal codes have the lowest decoding

complexity compared to quasiorthogonal, TAST and perfect codes for R = 1. Furthermore,

the embedded orthogonal codes are second only to the quasiorthogonal designs and they are

within a fraction of a dB in terms of the SNR required to achieve a target error probability.

We next present results for R > 1 and show that the embedded orthogonal designs are not

only favorable in terms in decoding complexity, but they are also lower in error probability.

The complexity and performance results for M = 4, N = 2 and R = 1.5 are shown in

Figure 6.6. In addition to the perfect, TAST and embedded orthogonal space-time code, we

show simulation results for a recently proposed code for the specific configuration of M = 4

and R = 1.5 [66]. We only show simulation results for 4-QAM because the space-time
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code was constructed by numerical optimization, and the authors note that optimizing the

code for larger size alphabets became numerically infeasible. The worst-case ML decoding

complexity for the code in [66] is O(q3). A detection algorithm, which has the same fixed

and worst-case decoding complexity of O(q3) was also proposed in [66]. We can interpret

the detection algorithm as a tree search, computing
√
q6 path metrics in a six level real-

valued tree. Hence, the number of nodes visited in the tree search is 2+4+8+16+32+64 =

126.

We see that the embedded orthogonal code has better performance than the perfect

and TAST codes as well as the code in [66]. It is interesting, however, to note that the

average complexity of embedded orthogonal, TAST and perfect codes is roughly the same,

even though the worst-case complexity of the embedded orthogonal code is 83%, 97% and

99% lower than that of the perfect and TAST code. We rationalize that this is mainly

due to the fact that the system is overdetermined such that there are more equations than

unknowns. Specifically, the effective channel matrix is of size 16 × 12. Compared to a

12× 12 effective channel matrix, the 16× 12 matrix is less likely to have columns that can

be expressed as a linear combination of the other columns. This results in an R matrix

that has larger diagonal elements compared to the R matrix for 12 × 12 effective channel

matrix. Having larger diagonal elements has two effects on the efficiency of the tree search.

First, on average, the starting node at each layer is closer to the ML node. This results in

reaching the ML solution in a fewer number of nodes visited. Second, the branch metric

for an incorrect branch is larger for larger values of the diagonal elements. This results in

pruning more tree branches since the sum of the branch metrics at a given level is more

likely to exceed the sphere radius. Hence, we are less likely to spend our search effort in

the upper tree branches. Given these two effects of having larger diagonal elements, it is

not surprising that the average node count for the perfect, TAST and embedded orthogonal

space-time codes is almost identical.

We summarize the complexity-performance results in Table 6.5. As can been seen from

Table 6.5, the embedded orthogonal space-time block code is at least 1 dB better than

the perfect and TAST codes, and it has the same average complexity. The worst-case ML
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(f) Complexity for q = 64

Figure 6.6: Performance and complexity comparison for M = 4, R = 1.5 and N = 2 for
TAST (+), perfect (3), embedded orthogonal space-time (�) block code and Ismail et al.
space-time [66] (∗) block code.
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decoding complexity also favors the embedded orthogonal space-time block code over the

TAST and perfect codes as mentioned earlier and shown in Table 6.2. Compared to the

code in [66], the embedded orthogonal space-time block code is 0.4 dB better in terms of the

SNR required to achieve 10−3 bit-error rate. It also has lower worst-case and lower average

complexity. This is a rather interesting result given the fact the code in [66] is designed

not only for low decoding complexity, but also for this one specific configuration and one

specific alphabet size.

Table 6.5: Average Complexity and Additional SNR Required to Achieve Bit-Error Prob-
ability of 10−3 for M = 4, N = 2, and R = 1.5. Average Complexity and SNR Penalty are
Relative to 8, 12.3 and 16.8 dB for q = 4, q = 16 and q = 64, Respectively.

Code Average Complexity SNR Penalty (dB)

q = 4 q = 16 q = 64 q = 4 q = 16 q = 64

Embedded Orthogonal 26.5 31.6 36.2 0 0 0

Perfect 26.8 32.2 36.8 1.1 1.1 1.1

TAST 26.7 32.4 37 1.1 1.1 1.1

Ismail et al. [66] 126 N/A N/A 0.4 N/A N/A

We next discuss complexity and performance results for M = 6, N = 2 and R = 1.5,

which are shown in Figure 6.7. We see that the embedded G(2, 1) and embedded G(4, 3
4)

orthogonal codes have better performance than the perfect and TAST codes. We omit

complexity results for the perfect code since it is decoded using the complex-valued sphere

decoder. We note, however, that even when we count a complex node as one real node, the

perfect space-time code is more complex than the embedded and TAST codes for certain

SNR values. For example, for q = 64 the perfect code is 40% and 70% more complex than

the G(4, 3
4) embedded code and TAST code, respectively, at the SNR required to achieve

bit-error rate of 10−3.

Similar to the case of R = 1.5 for M = 4 antennas, we see that the TAST and G(2, 1)

embedded orthogonal code have roughly the same complexity. Another interesting result

obtained in these simulation results is that the decoding complexity of the G(4, 3
4) embedded

orthogonal code is significantly higher than the TAST and G(2, 1) embedded code. We
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(f) Complexity for q = 64

Figure 6.7: Performance and complexity comparison for M = 6, R = 1.5 and N = 2 for
TAST (+), perfect (3), G(2, 1) embedded orthogonal (�) and G(4, 3

4) embedded orthogonal
(O) block codes.
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rationalize that this due to the fact that there are more levels in the tree for the G(4, 3
4)

embedded code than for the other codes. Specifically, there are 24 levels in the tree search for

the G(4, 3
4) embedded code, compared to only 18 for the other codes. This is due to the fact

that G(4, 3
4) itself is a tall matrix of size 4×3. Hence, for the embedded code to achieve R =

1.5, it transmits 12 complex information symbols in 8 signaling intervals. By comparison,

the perfect, TAST and G(2, 1) embedded code transmit only 9 complex information symbols

in 6 signaling intervals. The complexity-performance tradeoff is summarized in Table 6.6.

Table 6.6: Average Complexity and Additional SNR Required to Achieve Bit-Error Prob-
ability of 10−3 for M = 6, N = 2, and R = 1.5. Average Complexity and SNR Penalty are
Relative to 7.1, 11.2 and 15.7 dB for q = 4, q = 16 and q = 64, Respectively.

Code Average Complexity SNR Penalty (dB)

q = 4 q = 16 q = 64 q = 4 q = 16 q = 64

Embedded Orthogonal G(4, 3
4) 151 384 504 0 0 0

Embedded Orthogonal G(2, 1) 76 153 190 0.2 0.25 0.35

Perfect N/A N/A N/A 2.05 2.25 2.45

TAST 74 147 210 1.25 1.25 1.3

Based on Table 6.6, we believe that the G(2, 1) embedded orthogonal code offers the

best complexity-performance tradeoff since the marginal increase in performance of the

G(4, 3
4) embedded code might not justify the significant increase in decoding complexity.

The G(2, 1) embedded orthogonal code is within 0.35 dB of the G(4, 3
4) embedded code,

and it is better performing than TAST and perfect codes by at least 1.25 and 2.05 dB,

respectively.

Complexity and performance results for M = 4, N = 2 and R = 2 are shown in

Figure 6.8. We see that the embedded orthogonal space-time code is simultaneously lower

in decoding complexity and better performing than the perfect and TAST codes. The

complexity-performance tradeoff is summarized in Table 6.7.

As can be seen from Table 6.7, the embedded orthogonal space-time code is at least 0.85

dB better in terms of the SNR required to achieve error probability of 10−3 compared to

TAST and perfect codes for any spectral efficiency. Furthermore, the embedded orthogonal
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Figure 6.8: Performance and complexity comparison for M = 4, R = 2 and N = 2 for
TAST (+), perfect (3) and embedded orthogonal space-time (�) codes.
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Table 6.7: Average Complexity and Additional SNR Required to Achieve Bit-Error Prob-
ability of 10−3 for M = 4, N = 2, and R = 2. Average Complexity and SNR Penalty are
Relative to 9.5, 14.2 and 19 dB for q = 4, q = 16 and q = 64, Respectively.

Code Average Complexity SNR Penalty (dB)

q = 4 q = 16 q = 64 q = 4 q = 16 q = 64

Embedded Orthogonal 63 128 278 0 0 0

Perfect 82 197 407 0.85 0.88 1.17

TAST 81 208 408 0.85 0.92 1.16

code is 22%, 35% and 31% less complex than the perfect and TAST codes for q = 4, q = 16

and q = 64, respectively.

Complexity and performance results for M = 6, N = 2 and R = 2 are shown in Figure

6.9. We again omit complexity results for the perfect code since it is decoded using the

complex-valued sphere decoder. We also note that even when we count a complex node

as one real node, the perfect space-time code is more complex than the embedded and

TAST codes for certain SNR values. Similar to the case of four transmit antennas, the

embedded orthogonal space-time code is simultaneously lower in decoding complexity and

better performing than the perfect and TAST codes. The complexity-performance tradeoff

is summarized in Table 6.8.

Table 6.8: Average Complexity and Additional SNR Required to Achieve Bit-Error Prob-
ability of 10−3 for M = 6, N = 2, and R = 2. Average Complexity and SNR Penalty are
Relative to 8.7, 13.1 and 17.9 dB for q = 4, q = 16 and q = 64, Respectively.

Code Average Complexity SNR Penalty (dB)

q = 4 q = 16 q = 64 q = 4 q = 16 q = 64

Embedded Orthogonal 334 1750 7185 0 0 0

Perfect N/A N/A N/A 0.70 0.70 1.00

TAST 497 4250 21200 0.50 0.90 1.05

As can be seen from Table 6.8, the embedded orthogonal space-time code is 0.5, 0.7 and

1 dB better than the perfect and TAST codes for q = 4, q = 16 and q = 64, respectively.

Furthermore, the embedded orthogonal code is 33%, 59% and 66% less complex than the
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Figure 6.9: Performance and complexity comparison for M = 6, R = 2 and N = 2 for
TAST (+), perfect (3) and embedded orthogonal space-time (�) codes.
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TAST code for q = 4, q = 16 and q = 64, respectively.

Performance results for M = 6, N = 3 and R = 3 are shown in Figure 6.10. We omit

complexity comparison because the results obtained are statistically insignificant due to the

small number of channel realizations used to obtain the results. For example, 2000 channel

realizations at 4 dB SNR for 4-QAM generated more than 2000 bit errors for the TAST

curve (and other curves as well). However, it was observed that for one channel realization,

the sphere decoder visited more than 2.5 billion nodes, while for the rest of the channel

realizations, the sphere decoder visited less than 10,000 nodes, on average. By including

that one particular realization with more than 2.5 billion nodes visited in the average node

count, the average node count jumps two orders of magnitude to more than 1 million nodes.

As can be seen from Figure 6.10, the embedded orthogonal space-time block code is

more than 0.2 dB better than the perfect and TAST code in terms of the SNR required to

achieve error probability of 10−3 for any spectral efficiency.

We have shown through simulations that the embedded orthogonal space-time block

codes have lower average decoding complexity than the quasiorthogonal, perfect and TAST

codes for up to six transmit antennas. This result is not surprising given the fact the

embedded orthogonal codes have the lowest worst-case decoding complexity compared to the

quasiorthogonal, perfect and TAST codes as shown in Table 6.2. Furthermore, simulation

results show that the error rate performance of the embedded orthogonal codes is better

than the perfect and TAST codes for any rate and any spectral efficiency up to six transmit

antennas and bit-error rate of 10−4 or higher.

6.4 Conclusions

We have proposed a family of space-time codes for an arbitrary number of transmit antennas

and rates up to half the number of transmit antennas. We introduced the concept of em-

bedded orthogonal space-time codes, in which complex orthogonal designs assume the role

of complex information symbols in the encoding process. The proposed family of embedded

orthogonal codes has the lowest decoding complexity for any rate up to half the number of

transmit antennas. Furthermore, simulation results up to six transmit antennas show that
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Figure 6.10: Performance comparison for M = 6, R = 3 and N = 3 for TAST (+), perfect
(3) and embedded orthogonal space-time (�) block codes.
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the proposed embedded orthogonal space-time codes have better error rate performance

than previous constructions for all rates higher than one symbol per signaling interval. For

transmission rate of one symbol per signaling interval, the embedded orthogonal space-time

codes is within a fraction of a dB of the best performing space-time code, but it requires

lower decoding complexity.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we constructed space-time block codes with the aim of low complexity de-

tection at the receiver. Furthermore, we developed efficient maximum-likelihood decoding

algorithms of space-time block codes, with low average complexity. We next summarize the

contributions of this thesis to the transmitter and receiver design, and we highlight some

potential areas for future research.

7.1 Contributions

Because the worst-case decoding complexity plays a central theme in this thesis, we pre-

sented a unified framework for comparing space-time block codes in terms of their worst-case

decoding complexity. Using this framework, we showed that certain families of space-time

block codes have lower decoding complexity than an exhaustive-search decoder. One dra-

matic example that shows the value of our framework is the case of the golden code.

The golden code is one of the most important constructions of space-time block codes

for the two-input two-output channel offering not only full diversity but also full rate of

two symbols per signaling interval. Furthermore, the golden code achieves the diversity-

multiplexing tradeoff and in terms of the signal-to-noise ratio required to achieve a target

error probability, it performs better than all previously reported full-rate codes with two

transmit antennas. An exhaustive-search decoder for the golden code has a worst-case

decoding complexity grows with the fourth power of the alphabet size. We proved, however,

that the worst-case decoding complexity is sub-cubic in the alphabet size. Specifically, we

proved that the worst-case decoding complexity is O
(
q2.5
)
, where q is the alphabet size.

Furthermore, we proposed an efficient maximum-likelihood decoder that is not only 30%

lower in average complexity than a conventional sphere detector, but it outperforms a

conventional detector in terms of the worst-case decoding complexity, sort complexity and

decoding latency.
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Device mobility results in channels that could vary quickly between quasistatic fad-

ing and rapid time-varying fading, depending on the mobile speed or Doppler frequency.

Therefore, space-time block codes with reduced decoding complexity in both quasistatic

and rapid time-varying fading channels are of great practical importance. To this end,

we revisited the practically important two-transmit and two-receive antenna system and

proposed the asymmetric golden code. The asymmetric golden code is optimal in terms of

the diversity-multiplexing tradeoff, and it has a lower worst-case decoding complexity than

the golden code. Specifically, the worst-case decoding complexity is O
(
q2
)
. Compared

to previous constructions for the two-input two-output channel, the asymmetric golden

code has the lowest decoding complexity and maintains its low decoding complexity on

both quasistatic and rapid time-varying channels. Furthermore, we proposed and efficient

maximum-likelihood decoder with low average complexity. Simulation results show that

the asymmetric golden code is an attractive alternative to other constructions in terms of

its complexity-performance tradeoff.

The desire for achieving higher data rates provided the motivation to construct high-rate

space-time block codes, whose transmission rate is higher than one symbol per signaling

interval. Two important families were constructed that achieve full-rate equal to the num-

ber of transmit antennas, these are the perfect and threaded algebraic space-time block

codes. A drawback to the perfect and threaded algebraic codes is that they encode only the

information symbols, but not their conjugates. This results in an effective channel matrix

that contains only the fading coefficient, but not their conjugates, and hence, the effective

channel matrix cannot have orthogonal columns, in general. Therefore, unlike orthogonal,

quasiorthogonal and semiorthogonal algebraic space-time codes, the perfect and threaded

algebraic space-time block codes cannot exploit any reduction in decoding complexity that

would be possible due to the orthogonality among the columns of the effective channel

matrix.

We overcome the drawback of encoding only the information symbols in high-rate space-

time codes by introducing the concept of embedding, in which orthogonal designs subsume

the role of information symbols in the encoding process. The embedding concept was then
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used to construct the embedded orthogonal space-time block codes. Because information

symbols appear along with their conjugates in the space-time code matrix, fading coef-

ficients along with their conjugates also appear in the effective channel matrix, inducing

orthogonality among its columns. The embedded orthogonal space-time codes subsume two

important families as special cases, the single-symbol decodable space-time codes and the

semiorthogonal algebraic space-time block codes. When compared to previously reported

space-time codes including quasiorthogonal, threaded algebraic and perfect space-time block

codes with the same number of antennas and the same rate, the embedded orthogonal space-

time codes have the lowest worst-case decoding complexity. Furthermore, simulation result

show that the embedded orthogonal codes are also lower in error probability on quasistatic

Rayleigh channels for up to six transmit antennas and rates higher than one symbol per

signaling interval.

7.2 Future Work

The space-time block codes discussed in this research are not separable for rates higher than

one symbol per signaling interval. In other words, the decoding cannot be done over two

or more independent groups of symbols. One important contribution in this area would be

to establish necessary conditions for the existence of full diversity and high-rate separable

space-time codes. Equally as important is the determination of the maximum achievable

rate of a fully diverse space-time block code for a given number of antennas.

To our knowledge, the first separable high-rate design reported in literature is due to

Yuen-Guan-Tjhung [67]. In particular, a rate 5
4 design was proposed for four transmit

antennas. The proposed design in [67] not only sacrificed the transmission rate, but it

also sacrificed the transmission diversity such that it only achieves a second order diversity.

Another construction of rate 5
4 space-time code was proposed for four transmit antennas

in [68]. The proposed code in [68] also has second-order transmit diversity and as a result,

orthogonal and quasiorthogonal space-time block codes outperform the code in [68] at high

signal-to-noise ratio values. The maximum transmission rate of separable space-time block

codes, as well the systematic design of such codes remain open research problems.
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Another interesting direction for future research is the development of space-time block

codes that achieve full diversity when low complexity suboptimal decoders are used. Sev-

eral computationally efficient suboptimal decoders are proposed in the literature. These

suboptimal decoders vary in complexity, with some requiring only linear complexity, but

they do not achieve the optimal performance of the ML decoder. Hence, they offer a trade-

off between complexity and performance. Suboptimal decoders include the zero-forcing

and minimum mean-squared error linear equalizers, the decision-feedback equalizer, the

lattice-reduction-aided equalizer [69], and the fixed-complexity variants of the sphere de-

coding algorithm [70][71]. The interested reader is referred to [72] for an extensive review

of suboptimal MIMO decoders.

A recent contribution in this direction is the development of space-time block codes

that achieve full diversity when a linear equalizer is used to separate the decoding of the

transmitted symbols into two or more groups [73]. This approach is different from the

separable approach to the design of space-time block codes in the fact that the space-

time block codes developed in [73] are not separable until after a linear equalizer is used

to separate the decoding into two or more groups. Full transmit diversity can then be

harnessed at the receiver using an ML decoder applied to each group. The maximum rate

of these space-time block codes is 4
3 for two antennas, 8

5 for four antennas, and upper

bounded by 2 for larger number of antennas.
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APPENDIX A

OPTIMUM 4, 16 AND 64-POINT HEXAGONAL CONSTELLATIONS
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Figure A.1: Optimum hexagonal constellations for q = 4, q = 16 and q = 64.
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APPENDIX B

PROOF OF THE KEY PROPERTY FOR FAST DECODING OF THE

GOLDEN CODE

We will use a QR decomposition of H̄ from (4.4), namely H̄ = Q̄R̄, to construct a QR

decomposition of H = H̄Ψ, namely H = QR.

Inspection of (4.4) reveals that h̄∗1h2 = h̄∗1h4 = h̄∗2h3 = h̄∗3h4 = 0, which implies that the

subspace spanned by the first and third columns of H̄ is orthogonal to the subspace spanned

by the second and fourth columns. This fact implies that r̄1,2 = r̄1,4 = r̄2,3 = r̄3,4 = 0, so

that:

H = H̄Ψ

= Q̄



r̄1,1 0 r̄1,3 0

0 r̄2,2 0 r̄2,4

0 0 r̄3,3 0

0 0 0 r̄4,4





c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


= Q̄F, (B.1)

where

F =

X Y

0 Z

 ,

X =

 cr̄1,1 sr̄1,1

−sr̄2,2 cr̄2,2

 ,

Y =

 cr̄1,3 sr̄1,3

−sr̄2,4 cr̄2,4

 ,

Z =

 cr̄3,3 sr̄3,3

−sr̄4,4 cr̄4,4

 . (B.2)

Observe that the submatrices X and Z are entirely real, since c and s and r̄ii, i ∈ {1, 2, 3, 4},
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are all real. Therefore, we can transform F into an upper triangular matrix R = WF via

the purely real Givens rotation matrix:

W =

W1 0

0 W2

 (B.3)

where

W1 =
1√

(cr̄1,1)2 + (sr̄2,2)2

cr̄1,1 −sr̄2,2

sr̄2,2 cr̄1,1

 ,

W2 =
1√

(cr̄3,3)2 + (sr̄4,4)2

cr̄3,3 −sr̄4,4

sr̄4,4 cr̄3,3

 . (B.4)

Substituting F = W>R into (B.1) yields the desired QR decomposition H = QR, where

Q = Q̄W> and

R = WF =

W1 0

0 W2


X Y

0 Z

 =

A B

0 D

 . (B.5)

Since W1, W2, X and Z are all real, it follows that both A = W1X and D = W2Z are

real. And by construction of W1 and W2, both A and D are upper triangular.
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APPENDIX C

OPTIMAL ASYMMETRY COEFFICIENT K

For the asymmetric golden code, the coding gain in (2.12) can be written as

Γ = min
C−C̃

(
det(C− C̃)∗(C− C̃)

)1/M

= min
C−C̃

(
|det(C− C̃)|2

)1/2

= min
C−C̃

|det(C− C̃)|. (C.1)

Since we are maximizing the coding gain for QAM alphabet, which is a subset of Z[i] ,

{a + bi}, a, b ∈ Z, where i =
√
−1, and because the asymmetric golden code is linear, the

asymptotic coding gain of (C.1) can be written as:

Γ(K) = min
(∆x1,∆x2,∆x3,∆x4)∈M

|det(C)|, (C.2)

where M , {Z + iZ}4 − {0, 0, 0, 0} is the 4-tuple of all possible complex integers excluding

{∆x1,∆x2,∆x3,∆x4} = {0, 0, 0, 0}, which is the all zero 4-tuple. Since the difference

between two integers is again an integer, we simplify the coding gain expression as follows

Γ(K) = min
(x1,x2,x3,x4)∈M

|det(C)|. (C.3)

Substituting the definition of C in (5.13) into (C.3) yields:

Γ(K) = min
(x1,x2,x3,x4)∈M

∣∣∣∣ 2
1 +K2

(u1u
∗
2 −K2u3u

∗
4)
∣∣∣∣

=
1√
5

min
(x1,x2,x3,x4)∈M

∣∣∣∣ 2
1 +K2

(
g(x1, x2)−K2g(x3, x4)

)∣∣∣∣ , (C.4)

where

g(a, b) =
(
−|a|2 + |b|2 + <{a∗b} − i ·

√
5={a∗b}

)
. (C.5)

We next find the value of K that maximizes (C.4). We proceed in two steps: first, we

establish the bound Γ(K) ≤ 1/
√

20; then, we show that K = 1/
√

3 achieves the bound with

equality.
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To establish the bound, let us introduce L ⊆ {(0, 0, 1, 0), (1, 0, 1, 0), (1, 0, 1 + i, 0)} ⊆ M.

Because L is a subset ofM, it clearly follows that minM{ · } ≤ minL{ · }, so that the coding

gain of (C.4) can be bounded by:

Γ(K) ≤ 1√
5

min
(x1,x2,x3,x4)∈L

∣∣∣∣ 2
1 +K2

(
g(x1, x2)−K2g(x3, x4)

)∣∣∣∣
=

1√
5

min
{

2
1 +K2

K2,
2

1 +K2

(
1−K2

)
,

2
1 +K2

∣∣1− 2K2
∣∣}

≤ 2√
5

max
1>K>0

min

{
K2

1 +K2
,
1−K2

1 +K2
,

∣∣1− 2K2
∣∣

1 +K2

}
(C.6)

=
1

2
√

5
=

1√
20

. (C.7)

The inequality of (C.6) follows from the fact that h(K) ≤ max1>K>0{h(K)} for any function

h(K) and for any K > 0. The equality in (C.7) is a result from the following lemma.

Lemma C.1. The maximum of the minimum is:

max
1>K>0

min

{
K2

1 +K2
,
1−K2

1 +K2
,

∣∣1− 2K2
∣∣

1 +K2

}
=

1
4

, (C.8)

and is achieved for K = 1/
√

3.

Proof. The functions K2/(1 +K2) and (1−K2)/(1 +K2) are monotonically increasing and

decreasing, respectively. The function |1 − 2K2|/(1 + K2) is decreasing for K ∈
(
0, 1/
√

2
]

and increasing for K ∈ (1/
√

2, 1). We find the maximum of the minimum over two regions;

K ∈
(
0, 1/
√

2
]

and K ∈ (1/
√

2, 1).

For K ∈
(
0, 1/
√

2
]
, the maximum of the minimum of (C.8) occurs at the intersection

of the increasing function K2/(1 + K2) and the smaller of the two decreasing functions

(1−K2)/(1+K2) and |1−2K2|/(1+K2). Since |1−2K2| < (1−K2) for K ∈
(
0, 1/
√

2
]
, the

maximum of the minimum occurs at the intersection of K2/(1+K2) and |1−2K2|/(1+K2),

namely at K = 1/
√

3. The maximum of the minimum is given by 1
4 .

For K ∈ (1/
√

2, 1), the maximum of the minimum occurs at the intersection of the

decreasing function (1 − K2)/(1 + K2) and the smaller of the two increasing functions

K2/(1 +K2) and |1− 2K2|/(1 +K2). Since |1− 2K2| < K2 for K ∈ (1/
√

2, 1), the maximum

of the minimum occurs at the intersection of |1− 2K2| and (1−K2), namely at K =
√

2/3.
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The maximum of the minimum is given by 1/5 . Therefore, the maximum of the minimum

is 1
4 and occurs at K = 1/

√
3.

We next show that the bound Γ(K) ≤ 1
2
√

5
of (C.7) is in fact achievable with equality

with K = 1/
√

3. Substituting K = 1/
√

3 into (C.4), we have:

Γ(1/
√

3) =
1

2
√

5
min

(x1,x2,x3,x4)∈M
|3g(x1, x2)− g(x3, x4)| . (C.9)

In order to show that Γ(1/
√

3) = 1
2
√

5
, we first prove that Γ(1/

√
3) = 0 only if x1 = x2 =

x3 = x4 = 0 in the following lemma.

Lemma C.2. The function f(x1, x2, x3, x4) = 3g(x1, x2)−g(x3, x4) = 0, for xi ∈ {Z+ iZ},

i ∈ {1, 2, 3, 4}, only if x1 = x2 = x3 = x4 = 0.

Proof. Assume that f(x1, x2, x3, x4) = 0, then we have that

3g(x1, x2)− g(x3, x4) = 0. (C.10)

The equation in (C.10) implies that 3 divides g(x3, x4), which is denoted 3|g(x3, x4). We

next show that if 3|g(a, b), then 3|a, 3|b and 9|g(a, b).

Let a = 3la+ra and b = 3lb+rb, where la, lb ∈ {Z+iZ}, and ra, rb ∈ {0, 1, 2}+i{0, 1, 2}.

Since, 3|g(a, b), we have that 3|g(ra, rb). By considering the finite number of possibilities

for ra and rb, we can easily verify that 3|g(ra, rb) only if ra = rb = 0. Therefore, 3|a and

3|b. Consequently, g(a, b) is then given by

g(a, b) =
(
−|3la|2 + |3lb|2 + <{3l∗a3lb} − i ·

√
5={3l∗a3lb}

)
= 9

(
−|la|2 + |lb|2 + <{l∗alb} − i ·

√
5={l∗alb}

)
. (C.11)

As a result, we also have that 9|g(a, b).

Therefore, f(x1, x2, x3, x4) = 0 implies that 3|g(x3, x4), which in turn implies that 3|x3,

3|x4, and 9|g(x3, x4). However, 9|g(x3, x4) implies that 3|g(x1, x2), which in turn implies

that 3|x1, 3|x2, and 9|g(x1, x2). We then have that 3|xk, k ∈ {1, 2, 3, 4}. Hence, we can

divide (C.10) by 3 and obtain an identical equation in the coefficients yk = xk
3 , where

yk ∈ {Z + iZ}. Since we can repeat this argument and divide by 3 indefinitely, the only

possible solution to f(x1, x2, x3, x4) = 0 is when x1 = x2 = x3 = x4 = 0.
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The desired result that Γ(1/
√

3) = 1
2
√

5
follows from (C.9) and Lemma C.2. In particular,

Lemma C.2 proves that |3g(x1, x2)− g(x3, x4)| 6= 0 for (x1, x2, x3, x4) ∈ M. Since the real

part of 3g(x1, x2) − g(x3, x4) is an integer, while the imaginary part is an integer multiple

of
√

5, it follows immediately that:

min
(x1,x2,x3,x4)∈M

|3g(x1, x2)− g(x3, x4)| = 1. (C.12)

Substituting (C.12) into (C.9), we obtain that Γ(1/
√

3) = 1
2
√

5
.
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APPENDIX D

PROOF OF THE KEY PROPERTY FOR FAST DECODING OF THE

ASYMMETRIC GOLDEN CODE

Direct computation of the elements of R from the effective channel matrix in (5.21) yields:

r1,1 =

√
3
2

√
c2µ1 + s2µ2

r1,2 = 0

r1,3 =
3

2
√

5r1,1

(µ1 − µ2)

r1,4 =
√

3
2r1,1

µ3

r2,2 =
1√
3
r1,1

r2,3 =
√

3 r∗1,4

r2,4 =
−1√

3
r1,3

r3,3 =
√

27|µ4|√
8r2

1,1

√
c2µ1 + s2µ2

r3,4 = 0

r4,4 =
1√
3
r3,3, (D.1)

where these results are expressed in terms of the following four intermediate variables:

µ1 = |h1,1|2 + |h1,2|2

µ2 = |h2,1|2 + |h2,2|2

µ3 = h∗1,1h2,1 + h∗1,2h2,2

µ4 = h1,1h2,2 − h1,2h2,1. (D.2)

Because fading is quasistatic, we dropped the time index for simplicity of notation. Because

r1,2 = r3,4 = 0, the matrices A and D in (5.22) are diagonal with real entries. Specifically,
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we have:

A =

r1,1 r1,2

0 r2,2

 =

r1,1 0

0 1√
3
r1,1

 and D =

r3,3 r3,4

0 r4,4

 =

r3,3 0

0 1√
3
r3,3

 . (D.3)

153



APPENDIX E

PROOF OF THE SEPARABILITY OF EMBEDDED ORTHOGONAL

SPACE-TIME BLOCK CODE FOR R = R1

We will determine the separability and the worst-case ML decoding complexity of the em-

bedded orthogonal space-time block code by examining the properties of the R matrix in

the QR decomposition of the effective channel matrix in (6.24). For the G(M1,R1) em-

bedded code and for R = R1, then it follows immediately that R2 = dR/R1e = 1 and

M2 = M/M1. Without loss of generality, we can assume a single receive antenna such that

N = 1. Let η = 2R1T1, then the effective channel matrix is given by

Ȟ = blkdiag
(
H̄1

)
Ḡ

=



H1,1 0 · · · 0

0 H1,2 · · · 0
...

...
. . .

...

0 0 · · · H1,M2


(G⊗ Iη)

=



H1,1 0 · · · 0

0 H1,2 · · · 0
...

...
. . .

...

0 0 · · · H1,M2


︸ ︷︷ ︸

blkdiag(H̄1)



g1,1Iη g1,2Iη · · · g1,M2Iη

g2,1Iη g2,2Iη · · · g2,M2Iη
...

...
. . .

...

gM2,1Iη gM2,2Iη · · · gM2,M2Iη


︸ ︷︷ ︸

Ḡ

. (E.1)

We next perform a QR decomposition on blkdiag
(
H̄1

)
such that blkdiag

(
H̄1

)
=

QHRH . Because each subblock H1,m, m ∈ {1, · · · ,M2} in the block diagonal matrix is
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orthogonal, it follows that

blkdiag
(
H̄1

)
= QH



β1Iη 0 · · · 0

0 β2Iη · · · 0
...

...
. . .

...

0 0 · · · βM2Iη


︸ ︷︷ ︸

RH

, (E.2)

where βm =
√∑M1−1

l=0 |hM1m−l,1|
2, m ∈ {1, · · · ,M2}.

The effective channel matrix in (E.1) can then be expressed as

Ȟ = QH



β1Iη 0 · · · 0

0 β2Iη · · · 0
...

...
. . .

...

0 0 · · · βM2Iη





g1,1Iη g1,2Iη · · · g1,M2Iη

g2,1Iη g2,2Iη · · · g2,M2Iη
...

...
. . .

...

gM2,1Iη gM2,2Iη · · · gM2,M2Iη



= QH



β1g1,1Iη β1g1,2Iη · · · β1g1,M2Iη

β2g2,1Iη β2g2,2Iη · · · β2g2,M2Iη
...

...
. . .

...

βM2gM2,1Iη βM2gM2,2Iη · · · βM2gM2,M2Iη


= QHF. (E.3)

Let fm, m ∈ {1, · · · , ηM2}, designate the m-th column of the matrix F. There are η

orthogonal subspaces in the matrix F. This follows from the simple form of the matrix F,

wherein each subblock is a scaled η × η identity matrix with all its columns orthogonal to

each other. Specifically, the subspaces spanned by the group of columns F l =
{
fl+η(k−1)

}
for l ∈ {1, · · · , η} and k ∈ {1, · · · ,M2}, are orthogonal to each other. We perform another

QR decomposition; this time on the matrix F to obtain

F = QFR, (E.4)
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where

R =



r1,1Iη r1,2Iη · · · r1,M2Iη

r2,2Iη · · · r2,M2Iη
. . .

...

rM2,M2Iη



=



r1,1 r1,2 · · · r1,M2

r2,2 · · · r2,M2

. . .
...

rM2,M2


︸ ︷︷ ︸

R̄

⊗Iη

= R̄⊗ Iη. (E.5)

The form of the R matrix follows directly from the fact that there are η orthogonal sub-

spaces. Substituting F = QFR into (E.3) yields the desired QR decomposition Ȟ = QR,

where Q = QHQF .

Using the real-valued system model in (2.7), the ML decoder minimizes the cost function

P (x̌) = ‖y̌ − Ȟx̌‖2

= ‖z−Rx̌‖2, (E.6)

where z = Q>x̌ and R is given in (E.5). The cost function in (E.6) can be written as the

sum of η cost functions as follows

P (x̌) = ‖z−Rx̌‖2

=
η∑
l=1

‖zl − R̄x̌l‖2, (E.7)

where

• zl =
{
zl+η(k−1)

}
, l ∈ {1, · · · , η}, and k ∈ {1, · · · ,M2}

• x̌l =
{
x̌l+η(k−1)

}
, l ∈ {1, · · · , η}, and k ∈ {1, · · · ,M2}

• R̄ is the M2 ×M2 upper triangular matrix in (E.5)
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As can be seen from (E.7), the ML cost function can be written as the sum of η independent

terms. Therefore, the decoding can be done over η independent groups, with each group

containing M2 real symbols. Hence, the rateR = R1 embedded orthogonal space-time block

code for M antennas is η-group decodable. Since η = 2R1T1 ≥ 2 min{R1T1} ≥ 2 × 2 = 4,

the embedded orthogonal space-time block code is separable.

Finally, since each group contains M2 real symbols drawn from
√
q-ary alphabet, the

worst-case ML decoding complexity is O
(√
qM2−1

)
= O

(
q

M2−1
2

)
. This is because there

are
√
qM2−1 ways to choose the first M2 − 1 symbols, and for each choice, the last symbol

can be decoded using a slicer, whose complexity is O(1). Since M2 = M/M1, we have that

the ML decoding complexity is O
(
q

M/M1−1
2

)
.
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APPENDIX F

PROOF THAT THE EMBEDDED ORTHOGONAL SPACE-TIME

BLOCK CODE IS NOT SEPARABLE FOR R > R1

In order for the embedded orthogonal space-time block code to be separable, there needs

to be at least one column in one group of columns in the effective channel matrix that

is orthogonal to all the other columns in the other groups. For example, for a 2-group

decodable space-time code, there needs to be two groups of columns, where the columns in

the first group are orthogonal to all the columns in the second group.

It is sufficient to examine orthogonality between the columns in a simpler form of the

effective channel matrix. Specifically, we can assume a single receive antenna such that the

effective channel matrix is given by

H =
[
blkdiag

(
J 0H̄1

)
Ḡ blkdiag

(
J 1H̄1

)
Ḡ · · · blkdiag

(
JR2−1H̄1

)
Ḡ

]
, (F.1)

where R2 = dR/R1e ≥ 2. This simplification results from the fact that all subsequent rows

in the effective channel matrix have identical form to (F.1), and they do not encode fading

coefficients that appear in the first 2T1M2 rows.

Since φ can take any value such that |φ| = 1, we will simply assume that φ = 1. The

effective channel matrix in (F.1) can be written as

H =



g1,1H1,1 · · · g1,M2H1,1 · · · g1,1H1,M2 · · · g1,M2H1,M2

g2,1H1,2 · · · g2,M2H1,2 · · · g2,1H1,1 · · · g2,M2H1,1

... · · ·
...

. . .
... · · ·

...

gM2,1H1,M2 · · · gM2,M2H1,M2 · · · gM2,1H1,M2−1 · · · gM2,M2H1,M2−1


.

(F.2)

Separability for any space-time code should hold for all channel realizations. To show

that the embedded orthogonal code is not separable, we only need to show that there is at

least one channel realization for which the code is not separable. We will consider two cases,
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when M2 = 2 and when M2 > 2. We do not consider the case M2 = 1, since as discussed

earlier, it implies that there is no embedding, and we simply obtain the orthogonal design

with R = R1. As proven in lemma 6.2, the embedded orthogonal design is separable for

R = R1. In this lemma, we are concerned with the case of R > R1, which implies that

M2 > 1.

Case 1 (M2 = 2): Since M1 ∈ {2, 3, 4} and M2 = 2, we have that M ∈ {4, 6, 8}. Given

the finite number of configurations, one can easily verify numerically that the embedded

orthogonal space-time block code is not separable from the form of the R matrix in the QR

decomposition of the effective channel matrix.

Case 2 (M2 > 2): Let us assume a channel realization wherein H1,3 through H1,M2

are all zero. With this assumption, let us consider the orthogonality among M2 groups

of columns, where the `-th group, ` ∈ {0, · · · ,R2 − 1}, contains the columns of blkdiag(
J `H̄1

)
Ḡ. For a column in the `1-th group to be orthogonal to a column in the `2-th

group, where `1 6= `2, the product h>k1,1
hk2,2 must be zero, where hk1,1 is the k1-th column

in H1,1 and hk2,2 is the k2-th column in H1,2. This follows directly from the effective

channel matrix in (F.2) and from the assumption that H1,3 through H1,M2 are zero. For

example, for M2 = 3 and R2 = 2, we have

H =


g1,1H1,1 g1,2H1,1 g1,3H1,1 g1,1H1,2 g1,2H1,2 g1,3H1,2 0 0 0

g2,1H1,2 g2,2H1,2 g2,3H1,2 0 0 0 g2,1H1,1 g2,2H1,1 g2,3H1,1

0 0 0 g3,1H1,1 g3,2H1,1 g3,3H1,1 g3,1H1,2 g3,2H1,2 g3,3H1,2

 .

(F.3)

The product h>k1,1
hk2,2 is in general nonzero. Therefore, there is no column in the `1-th group

that is orthogonal to any column in the `2-th group, where `1 6= `2. Therefore, we cannot

construct a group of columns that contains columns from the different M2 groups such

that its columns are orthogonal to the other groups of columns. Therefore, the embedded

orthogonal space-time block code is not separable for M2 > 2.

The embedded orthogonal space-time block code is not separable for M2 > 1. Therefore,

the embedded orthogonal code is not separable for R > R2, since this relationship implies

that M2 > 1.
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