
LOW-COMPLEXITY LIST DETECTION ALGORITHMS FOR
THE MULTIPLE-INPUT MULTIPLE-OUTPUT CHANNEL

A Dissertation
Presented to

The Academic Faculty

by

David L. Milliner

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2009

Copyright© 2009 by David L. Milliner

LOW-COMPLEXITY LIST DETECTION ALGORITHMS FOR
THE MULTIPLE-INPUT MULTIPLE-OUTPUT CHANNEL

Approved by:

Professor John R. Barry, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Xiaoli Ma
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Gordon Stüber
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Alfred Andres
School of Mathematics
Georgia Institute of Technology

Professor Ye (Geoffrey) Li
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 14th of October 2009

ACKNOWLEDGEMENTS

This thesis is the result of my work in the Communication Theory Research Group at

the Georgia Institute of Technology in Atlanta Georgia, the Communications Systems

Laboratory at Texas Instruments in Dallas Texas and the Vodafone Chair Mobile Commu-

nications Systems group in Dresden Germany. First and foremost I would like to express

my profound gratitude towards my advisor John Barry. I have been fortunate to have such

a dedicated and insightful advisor who has always been able to provide valuable feedback

concerning my endeavors. I will always be thankful for his guidance and advice.

In the Spring of 2008 I was a Guest Scientist in the Vodafone Mobile Communications

Systems Chair at the Technische Universität Dresden. This opportunity was available to

me thanks largely to Ernesto Zimmermann. Ernesto is a brilliant mind and has contributed

significantly to the content of this thesis in many important areas. In particular Ernesto

has contributed heavily to the work in this dissertation on smart candidate adding and LLR

clipping. I learned much from collaborating with Ernesto and appreciate his generous

allocation of time to think about MIMO detection and other mutually interesting topics,

technical or otherwise. My gratitude extends to all the members of the Vodfaone Chair

who made my stay in Dresden so fulfilling. In particular I would like to mention Steffen

Bittner, Marco Krondorf, and Gerhard Fettweis.

Many current and former members of the Communication Theory Research Group have

contributed to my graduate study efforts. In particular I would like to thank Anuj Batra.

I first met Anuj while interning at Texas Instruments and since that time he has become

an incredible mentor and close friend. His mentorship has contributed significantly to the

work in this dissertation, in particular the work in chapter 6 on nonuniform computational

complexity allocation. I would also like to recognize Deric Waters for his contributions

iii

pertaining to the work in this dissertation on B-Chase ordering and nonuniform computa-

tional allocation. Deric has always been available to discuss research topics with me and his

ideas have always spurred interesting explorations. Thanks are also in order to Mohanned

Sinnokrot for his contributions pertaining to the work in this dissertation on soft-output

detection of the golden code.

Deep thanks are in order to Texas Instruments, and in particular the members of the

Communication Systems Laboratory. I am grateful to TI for many reasons including pro-

viding funding for significant portions of my research, opportunities to intern and mentor-

ship in many important areas of development over the years. In particular I would like to

recognize those who have been particularly involved with my Ph.D. research: Don Shaver,

Srinath Hosur, Bob Hewes, Deric Waters and Anuj Batra. In addition to the contributions

of Deric and Anuj mentioned previously, I would like to express my appreciation for the

sincere interest Don, Sri and Bob who have always shown a sincere interest in my endeav-

ors.

I would also like to thank the members of my dissertation defense committee: Gordon

Stüber, Ye (Geoffrey) Li, Xiaoli Ma, and Alfred Andrew. There are also several people

who have aided me tremendously in areas concerning the logistics of my graduate studies.

In particular I would like to thank Cordai Farrar for her help during the countless times I

have sought her assistance. I would also like to thank Josyane Roschitz and Florence Stoia

for handling the myriad of travel issues relating to my studies at the Georgia Tech Lorraine

campus in Metz, France. I would also like to thank Marilou Mycko for the coordination

of my ECE graudate studies and Pat Dixon for all of her prompt attention to many other

administrative issues.

Last but not least I would like to thank my family and friends for their support and

shared experiences. In particular I would like to thank my roommate Erich Stuntebeck for

all the fun times outside the office. I would also like to thank my new friends made at

iv

Georgia Tech Atlanta, Georgia Tech Lorraine and TU Dresden during my time as a grad-

uate student. The memories and opportunities each of you has provided to me will last a

lifetime and in many cases have formed lifelong friendships. Some of these friends I shared

office space with me for extended periods of time and I would like to thank Matthieu Bloch,

Arumugam Kannan, Demijan Klinc, Arunkumar Subramanian, Jiaxi Xiao, and Willie Har-

rison for the fond memories and pleasant working environment. Finally, as only a small

recognition for their unwavering love and support I would like to dedicate this thesis to my

Mom and Dad.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Research Focus . 1

1.2 Dissertation Outline . 5

1.3 Notation . 7

2 CLASSICAL AND STATE-OF-THE ART LIST MIMO DETECTION 9

2.1 Introduction . 9

2.2 MIMO Channel Model . 10

2.3 Problem Statement . 14

2.3.1 List Tree Search . 19

2.4 Search Algorithms . 22

2.4.1 Exact Minimum Cost Tree Search 22

2.4.2 Approximate Minimum Cost Tree Search 26

2.4.3 Max-Log Optimal Tree Search 28

2.5 Computational Complexity . 30

2.5.1 Measuring Computational Complexity 30

2.5.2 Computational Complexity Bounds and Non-bound Reference
Complexities . 33

2.5.3 Results . 37

2.6 Ordering of the Channel Matrix – Preprocessing 43

2.7 Enumeration for Breadth-First Detection 44

2.8 Discussion . 45

2.9 Further Reading . 46

2.10 Summary . 47

vi

3 SMART-ORDERED CANDIDATE-ADDING ALGORITHM 48

3.1 Introduction . 48

3.2 Motivation: Towards Fixed-Complexity Smart Candidate Adding 49

3.3 Fixed Complexity Smart Candidate Adding - SOCA Algorithm 51

3.4 Classifying Breadth-First Detectors . 58

3.4.1 Placement . 61

3.4.2 Computational Complexity . 64

3.5 Results and Analysis . 65

3.5.1 Simulation Setup . 66

3.5.2 Results . 67

3.6 Soft Fixed-Complexity Sphere Decoder 76

3.7 Summary . 77

4 SOFT-OUTPUT DETECTION OF THE GOLDEN CODE 78

4.1 Introduction . 78

4.2 Golden Code System Model . 79

4.3 Effective Channel Matrix . 80

4.4 Soft-Output Detection of the Golden Code 81

4.4.1 Ordering of the Effective Channel Matrix 82

4.4.2 ZF Equalization, List Enumeration, and DF Detection 82

4.4.3 Quantifying Complexity . 87

4.5 Results . 88

4.6 Summary . 91

5 LOG-LIKELIHOOD RATIO CLIPPING . 92

5.1 Introduction . 92

5.2 Fixed LLR Clipping Level (FLC) . 95

5.3 SNR-aware LLR Clipping (SLC) . 96

5.4 Results . 98

5.5 Further Reading . 100

vii

5.6 Summary . 102

6 NON-UNIFORM COMPUTATIONAL COMPLEXITY ALLOCATION . . . 103

6.1 Introduction . 103

6.2 OFDM System Model . 106

6.3 List Detection Error Probability . 106

6.3.1 Exact Analysis . 107

6.3.2 Minimum Distance Approximation 109

6.4 Nonuniform Computational Complexity Allocation for OFDM 113

6.5 Numerical Results . 116

6.6 Conclusion . 121

7 CONCLUSIONS . 122

7.1 Summary . 122

7.2 Future Work and Final Remarks . 125

REFERENCES . 127

viii

LIST OF FIGURES

2.1 A MIMO channel. 10

2.2 Coded system model depicting (a) MIMO transmitter and (b) MIMO receiver. 13

2.3 Partitioning of the set of transmission vectorsZ after linear transformation
by a channel H for the bit mapping corresponding to the (a) first bit trans-
mitted from the first antenna c1 and the (b) first bit transmitted from the
second antenna c2. Open and closed circles correspond to valid transmis-
sion vectors where the bit of interest is −1 and +1, respectively. 15

2.4 A minimum distance list (a) contains the ℓ candidates closest to r, while a
suboptimal list (b) might contain different candidates. 18

2.5 A q-ary tree for Nt = 2 and Z = {−1,−1}, {−1,+1}, {+1,+1} and {+1,−1}
(q = 2). 20

2.6 A 4-ary tree for Nt = 3. 21

2.7 Flow chart for Schnorr-Euchner realization of list sphere detector [47]. . . . 24

2.8 Flow chart for list sequential detector [11]. 26

2.9 Flow chart for soft M algorithm. 28

2.10 Example of a minimum spanning tree for (a) C = 2 ⇒ (µ = 3) and (b)
C = 4⇒ (µ = 4) for a 2 × 2 MIMO system employing QPSK transmission. 34

2.11 Example of an (a) best case max-log complexity (µ = 4) and (b) worst case
max-log complexity (µ = 8) for a 2 × 2 MIMO system employing QPSK
transmission. 36

2.12 Complexity Bounds for 4 × 4 MIMO in Rayleigh fading using 4-QAM
transmission and ZF-SQRD equalization. 39

2.13 Complexity Bounds for 4 × 4 MIMO in Rayleigh fading using 4-QAM
transmission and MMSE-SQRD equalization. 40

2.14 Complexity Bounds for 4 × 4 MIMO in Rayleigh fading using 64-QAM
transmission and MMSE-SQRD equalization. 41

2.15 Estimated probability mass functions for N the number of branch metrics
computed by the depth-first list sphere detector at (a) SNR = 20 dB and
(b) SNR = 30 dB, assuming 8 × 8 Rayleigh-fading channel with 64-QAM
inputs. These results were found by simulating the list sphere detector
T = 2×105 times, with independent noise, channel, and symbol realizations
for each trial, then estimating the pmf for N according to Pr[N = n] = In/T ,
where In is the number of trials for which n nodes were visited. 42

ix

3.1 SOCA Algorithm Description. 55

3.2 Example of SOCA algorithm for a 4-ary tree with two layers. 56

3.3 Smart-Ordered QR (SOQR) Decomposition. 59

3.4 Algorithm for Generalized Breadth-First Soft-Output Detection. 60

3.5 Performance vs. complexity for soft-output 4×4 MIMO detection schemes
using 16-QAM transmission in fast Rayleigh fading. The numbers corre-
sponding to the SOCA curve represent the value for b1 and the numbers
corresponding to STS-LSD curves represent Lmax. 70

3.6 Performance vs. complexity for soft-output 4×4 MIMO detection schemes
using 64-QAM transmission in fast Rayleigh fading. Results for the LFSD
[8] are provided for b = [64 1 1 1], b = [64 2 1 1] and b = [64 4 2 1]. . . . 71

3.7 Performance vs. complexity for soft-output 4×4 MIMO detection schemes
using 16-QAM transmission in slow Rayleigh fading. 73

3.8 Performance vs. complexity for soft-output 4×4 MIMO detection schemes
using 64-QAM transmission in slow Rayleigh fading. 74

3.9 Performance vs. complexity for soft-output 8×8 MIMO detection schemes
using 16-QAM transmission in fast Rayleigh fading. 74

3.10 Performance vs. complexity for soft-output 8×8 MIMO detection schemes
using 16-QAM transmission in slow Rayleigh fading. 76

4.1 System model with (a) MIMO transmitter and (b) MIMO receiver. 80

4.2 Ordering Algorithm . 83

4.3 Enumerated list when x̂1 = 3−3 j and β = 3 for (a) 16-QAM with
√
ℓ = 11

and (b) 64-QAM with
√
ℓ = 13. 85

4.4 Proposed Algorithm . 86

4.5 Soft-output golden code performance for 16-QAM. 89

4.6 Soft-output golden code performance for 64-QAM. 90

5.1 The pdf for Lclip for i.i.d Rayleigh fading for a 4 × 4 MIMO system using
(a) 4-QAM and (b) 64-QAM transmission and K = ℓ = {1, 4, 8} and K =
ℓ = {1, 4, 16}, respectively. The maximum values for Lclip are not shown
due to precision issues which force these values to be infinite. 99

5.2 SNR-aware LLR clipping versus fixed LLR clipping for a 4-QAM coded
non-iterative system for a 4 × 4 MIMO system under Rayleigh fading. . . . 100

5.3 SNR-aware LLR clipping versus fixed LLR clipping for a 64-QAM coded
non-iterative system for a 4 × 4 MIMO system under Rayleigh fading. . . . 101

x

6.1 List detector decision regions of a 4-QAM list detector when ℓ = 2. 108

6.2 List detector decision regions of a 4-QAM list detector when ℓ = 3. 108

6.3 The exact list detection decision region R2(a) for list length ℓ = 2 and 16-
QAM is a semi-infinite polygon. The approximate list detection decision
region D2(a) is the circular disc centered at a with radius d2(a). 110

6.4 List detection decision regions for 16-QAM with ℓ = 3 for (a) corner point;
(b) inner point; and (c) edge point. 112

6.5 List detection decision regions for 16-QAM with ℓ = 3 for (a) corner point;
(b) inner point; and (c) edge point. 112

6.6 Comparing the actual list detection error probability to the minimum-
distance approximation for 16-QAM and AWGN, for list lengths ℓ = 1,
ℓ = 3 and ℓ = 7. 113

6.7 An algorithm for allocating complexity with budget B amongst J OFDM
subcarriers. 115

6.8 The instantaneous SNR values for two typical channels (a)-(b), their in-
verse values (c)-(d), and the corresponding list-length allocation (e)-(f) of
allocate, with an average SNR of 8 dB, 16-QAM alphabet, and B = 144. 117

6.9 The average SNR (a) and inverse SNR (b) after ordering, averaged over
104 channel realizations, and the corresponding average list lengths for a
16-QAM alphabet with (c) B = 96, (d) B = 192, (E) B = 288, and (f)
B = 384. 118

6.10 Error probability performance for B-Chase over a 4-input 4-output
frequency-selective Rayleigh-fading channel with 16-QAM on each
OFDM subcarrier. The complexity budget is B = 96 for both the uniform
(conventional) and nonuniform (proposed NCCA) receivers. 119

6.11 Performance-complexity trade-off for B-Chase over a 4-input 4-output
frequency-selective Rayleigh fading channel with 64-QAM on each OFDM
subcarrier for various complexity budgets. 120

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation and Research Focus

The thirst of today’s society for communication systems supporting ever-increasing data

rates remains unquenched. This thirst originates from user growth and increasingly data-

intensive applications such as next-generation voice and video communications, high res-

olution imaging, mobile data distribution, and network backhauling. Quenching the global

thirst for high-data-rate communication systems is not easy, particularly in the case of wire-

less communications, where regulation and fundamental physical constraints manifest the

scarcity of radio frequency spectrum. Because frequency spectrum is a limited natural re-

source, utilizing this resource efficiently is paramount to meeting the demands of current

and future communication systems.

A way to intelligently utilize radio frequency spectrum is through the use of antenna

arrays. Antenna arrays can be used to increase the radiated power in a desired direction

(i.e. beamsteering), combat fading environments, and utilize radio frequency spectrum ef-

ficiently. The differing antennas in an array may be physically co-located or distributed. In

the case of a distributed antenna array, cooperation is typically required amongst the sep-

arate locations. In this dissertation we focus on receiver design for high data rate commu-

nication systems utilizing physically co-located arrays, although the principles presented

may be applied to distributed networks.

When antenna arrays are found at both the transmitter and the receiver, i.e. more than

one antenna at both locations, a multiple-input multiple-output (MIMO) channel is formed.

This MIMO channel allows for communication systems to exploit spatial diversity for data

1

rate and/or reliability gains. These gains are most significant in rich-scattering environ-

ments where the MIMO channel is uncorrelated (i.e. independent fading at both the trans-

mitter and receiver) and of high rank.

The potential data rates of MIMO communication systems are higher than single-input

single-output (SISO) systems. Specifically, in a rich-scattering propagation environment,

the upper bound on the amount of information that can be reliably transmitted over a

communications channel, i.e. the capacity, increases linearly with the minimum of the

number of transmit and receive antennas. Schemes that exploit the spatial dimension to

transmit multiple data streams simultaneously over each of the transmit antennas are known

as spatial multiplexing schemes.

In addition to increased capacity, MIMO channels enable greater reliability due to the

fact that an increase in the number of propagation paths between the transmitter and re-

ceiver decreases the probability that all paths will be subject to a deep signal fade simulta-

neously. Schemes that exploit the spatial dimension to provide the receiver with multiple

copies of the same message, thereby increasing the communication system’s robustness,

are known as spatial diversity schemes.

Examples of spatial multiplexing schemes include bit-interleaved coded modulation

(BICM) [21] and the Bell Labs Layered Space-Time (BLAST) transmission scheme [33].

Examples of spatial diversity schemes include space-time block codes [2, 89] and antenna

beamforming [36]. It is also possible to exploit both the spatial diversity and the spatial

multiplexing capabilities of the MIMO channel. Such schemes are sometimes referred to

as diversity-multiplexing schemes [108]. Algebraic space-time codes can be considered

diversity-multiplexing schemes. A particularly important algebraic space-time code con-

sidered in this work is the golden code [13, 27].

In this dissertation we constrain ourselves to communication systems obtaining high

data rates over a given frequency band, i.e. high spectral efficiency, where the transmitter

complexity is low and the receiver design is a challenge. Specifically, in this dissertation

2

we elect to focus on multiantenna communication systems transmitting at least 8 bits per

second per Hertz (and often much higher spectral efficiencies). Due to system constraints

we will impose such as no channel state information at the transmitter and moderate to large

transmission alphabets, the multiantenna receiver design is a challenging problem. This

dissertation presents detection algorithms for receivers in a multiantenna communication

system that simultaneously possess low computational complexity and achieve good error

rate performance. In particular we will focus on receivers for BICM spatial multiplexed

systems and diversity-multiplexing systems employing the golden code.

Error-control coding is an essential technique for both approaching the capacity in

a communication system and ensuring reliable communication for the same. Like any

communication system, a MIMO system relies on error-control coding. And while error-

control coding is relatively easy to implement at the transmitter, even for a MIMO sys-

tem, the problem of error-control decoding at the receiver is greatly complicated by the

presence of a MIMO channel. In fact, an optimal receiver that jointly accounts for the mu-

tual interference of a MIMO channel and error-control coding is completely intractable for

any realistic code and channel. For this reason, a practical MIMO receiver will account

for the constraints introduced by the channel code and the mutual interference introduced

by the MIMO channel separately using first a MIMO detector, which effectively ignores

the presence of the code by assuming that the code bits are independent and uniformly

distributed, and then an error-control decoder.

Ignoring the presence of coding is tantamount to assuming that the coded bits are in-

dependent and equally likely to be 0 or 1. In this setting, the best the MIMO detector can

do is to compute the a posteriori probability (APP) for each of the coded bits, which is the

conditional probability that each coded bit is 1 (or 0) given the observation of the channel

output.

A detector that produces binary decisions about the coded bits by comparing each APP

3

to a threshold of one-half is called a hard-output detector; anything else is called a soft-

output detector. A detector that quantizes each APP to two or more bits of precision is an

example of soft-output detector, while the exact APP detector is the ultimate soft-output

detector.

The literature on hard-output MIMO detection is vast. The optimal hard-output detec-

tor, known as the joint maximum likelihood (JML) detector, finds the best symbol vector

from all possible transmission vectors and has a worst-case computational complexity that

grows exponentially in the number of transmitters. Suboptimal hard-output detection al-

gorithms exist, but they require increased power at the transmitter to achieve the same

error-rate performance as the JML detector. Consequently, there is a trade-off between

the error-rate performance and the required computational complexity in MIMO detection.

This same trade-off exists for the more challenging problem of soft-output detection, where,

in the presence of error-control coding and for the same signal-to-noise ratio, lower error

rates than those obtained via hard-output detection are achieved.

The problem of soft-output detection, which aims to compute or approximate the exact

APPs, is important for two fundamental reasons: First, the performance of the error-control

decoder depends critically on how well its inputs approximate the true APPs, and second,

the high complexity of soft-output detection can easily dominate the other receiver tasks

such as error-control decoding. This is because the complexity of exact APP computation

grows exponentially with both the number of transmit antennas and the number of bits per

transmitted symbol, and is prohibitively complex even for MIMO systems with moderately

small antenna arrays and transmission alphabet sizes. Consequently, the soft-output detec-

tor is often the critical determining factor in both the performance and the complexity of

the overall system. The significant impact of soft detection on the performance and com-

plexity of MIMO systems makes an efficient and accurate soft-output detector essential for

modern communication systems.

While many efficient soft-output detection algorithms with low-error-rate performance

4

exist [47, 42, 87], gaps in the research on this important topic remain. In particular, there is

a lack of soft-output detection algorithms that approach the error-rate performance of the

exact APP detector with low and fixed computational complexity. This dissertation con-

structs soft-output detection algorithms to fill this gap. Other gaps in the literature that we

fill in this dissertation pertain to the analysis of computational complexity in relation to list-

based soft-output detection, near exact APP detection of the golden code with low and fixed

computational complexity, and the use of channel state information to constrain approxi-

mated APPs. Additionally, we apply list detection to the design of hard-output receivers

for multiantenna orthogonal frequency-division multiplexing (MIMO-OFDM) channels.

We use the remainder of this chapter to present the structure of and notation for the rest

of this dissertation.

1.2 Dissertation Outline

• Chapter 2 serves as a summary of prior art on list detection algorithms for the MIMO

channel. The chapter begins by introducing the MIMO channel model, followed by

the coded system model used throughout this dissertation. We then provide an in-

troduction to the soft-output MIMO detection problem, with a focus on tree-based

detection algorithms. The chapter then provides a baseline understanding of clas-

sical and state of the art approaches for tackling the soft-output MIMO detection

problem. In section 2.5 we introduce the notion of computational complexity, pro-

vide metrics for computational complexity, and establish bounds and non-reference

computational complexities for tree-based MIMO detection. Next, we describe the

significant impact on system error-rate performance and/or computational complex-

ity resulting from mapping layers in the detection tree to transmitted symbols. We

then conclude the chapter with a general discussion of soft-output MIMO detection

algorithms and provide suggestions for further reading.

Portions of section 2.5 represent original and collaborative contributions (see [69]),

5

while the rest of chapter 2 describes prior art. The remainder of the dissertation

represents original contributions, with the aid of collaborators as noted in the ac-

knowledgements.

• Chapter 3 proposes a soft-output MIMO detection algorithm called the smart-ordered

candidate-adding (SOCA) algorithm. The algorithm is motivated and connected to

prior breadth-first detection algorithms. Then, after presenting the proposed algo-

rithm, a framework for fixed computational complexity breadth-first MIMO detec-

tion algorithms is provided. The chapter concludes with a collection or performance

versus computational complexity results.

• Chapter 4 presents a low- and fixed- computational complexity soft-output detector

for an important algebraic space-time code known as the golden code.

• The value at which the log-likelihood ratio (LLR) of conditional probabilities for a

transmitted bit being either a 1 or a 0 is clipped has an impact on the overall system

performance. Chapter 4 proposes a new approach for determining an LLR clipping

level to improve the overall system performance. In contrast to prior LLR clipping

approach which employ a predetermined fixed LLR clipping level, the contribution

in this chapter is an LLR clipping algorithm that exploits channel state information

to improve the system performance of suboptimal list MIMO detection algorithms.

• Orthogonal frequency-division multiplexing is an effective technique for combatting

frequency-selective wideband communication channels. It is common practice for

MIMO-OFDM detectors to implement the same detector at each subcarrier, in which

case the overall performance is dominated by the weakest subcarrier. In chapter 6

we propose a hard-output list detection receiver strategy for MIMO-OFDM chan-

nels called nonuniform computational complexity allocation (NCCA), whereby the

receiver adapts the computational resources of the MIMO detector at each subcarrier

6

to match a metric of the corresponding channel quality. The proposed nonuniform

algorithm is shown to improve performance over uniform allocation.

• A summary of this dissertation, suggestions for future work, and concluding remarks

are provided in chapter 7.

1.3 Notation

We now briefly provide the necessary notation. Matrices are set in boldface capital let-

ters and vectors in boldface lowercase letters. We denote the entry in the ith row and vth

column of the matrix R as Riv, the vth column of R as Rv and the ith entry of the vector

b = [b1 b2 . . . bN]T as bi.

hT, HT The transpose of a vector h, or a matrix, H.

h∗, H∗ The conjugate transpose of a vector h, or a matrix, H.

H† The Moore-Penrose pseudoinverse of H.

||h|| The Euclidian norm of a vector h, i.e. ||h|| =
√

h∗h.

|A| The cardinality or size of a finite setA, i.e. the number of elements inA.

R, C, Z The sets of real, complex and integer numbers.

Pr(x) Probability of x.

Pr(x|y) Probability of x given y.

â, â Estimate of the scalar, a, or vector a.

[·] Component-wise rounding to Z.

[·]A Component-wise rounding to the nearest element ofA.

N(µ,N0) Gaussian distribution with mean µ and variance N0.

ln Natural logarithm.

logb Base b logarithm.

7

IN and 0N N × N identity and zero matrices, respectively.

E[·] The expectation operator.

8

CHAPTER 2

CLASSICAL AND STATE-OF-THE ART LIST MIMO DETECTION

2.1 Introduction

Multiantenna communication systems are capable of increased data rates and improved

reliability relative to single antenna systems. Like any communication receiver, the goal of

a MIMO receiver is error free recovery of the transmit sequence. An essential component

of a receiver is the detector, whose job is the extraction of information concerning the input

data sequence in the absence of cooperation with the sender. Multiantenna detection is the

central theme of this dissertation.

A detector for which the extracted information is strictly a decision of 0 or 1 for each

of the transmitted bits is known as a hard-output detector. Any detector that goes beyond

a simple decision of 0 or 1 for a transmitted bit to express the detector’s confidence in a

given decision is known as a soft-output detector. In the case where the detector assumes

a bit sequence is independent and equally likely to be 0 or 1, the best the MIMO detector

can do is to compute the a posteriori probability for each of the coded bits, which is the

conditional probability that each coded bit is 1 (or 0) given the observation of the channel

output.

This dissertation’s primary objective is the design of multiantenna detectors whose per-

formance is as close as possible to the exact a posteriori probability detector with low and

fixed computational complexity. In order to achieve this objective there are many impor-

tant concepts and prior art which must be presented in order to establish the foundation for

the original contributions subsequently presented. Laying this foundation is the function

of the current chapter. Specifically, the purpose of this chapter is to summarize classical

and state-of-the-art solutions to the MIMO detection problem, with a focus on soft-output

9

Figure 2.1: A MIMO channel.

detection.

The first step in laying the foundation upon which the contributions in this dissertation

are based is to establish the multiantenna channel model and overall coded system model.

With sufficient understanding of the system setup we are ready to tackle the problem of

MIMO detection. In this dissertation we will almost exclusively solve the MIMO detection

problem using a construct known as a detection tree. The detection tree is formulated us-

ing the MIMO channel and, with the addition of the received signal, can then be searched

thereby facilitating detection. Prior art pertaining to tree-based detection comprises much

of the content in this chapter. We also use this chapter to establish benchmarks on com-

putational complexity so that in future chapters we are able to assess the contribution of

our proposed detection algorithms relative to prior art. Other topics in this chapter include

receiver preprocessing algorithms and tree-based search enumeration algorithms. We con-

clude the chapter with a discussion of MIMO detectors that fall outside the scope of this

dissertation and provide suggestions for further reading.

2.2 MIMO Channel Model

The Nt-input Nr-output memoryless multiantenna channel model used in this dissertation

is depicted in Fig. 2.1. The linear and complex-valued baseband model may be expressed

10

as:

r = Ha + w, (2.1)

where a ∈ C[Nt×1] is the vector of transmitted symbols, one for each transmit antenna,

r ∈ C[Nr×1] is the vector of received samples, one for each receive antenna, w ∈ C[Nr×1] is

additive noise, and H ∈ C[Nr×Nt] is the channel matrix.

We assume a single-carrier narrowband flat-fading channel. Typical broadband commu-

nication channels are frequency-selective. A common solution for overcoming frequency

selective channels is the use of orthogonal frequency division multiplexing (OFDM) [5].

The use of OFDM transforms a frequency-selective MIMO channel into a parallel bank of

flat-fading MIMO channels, one for each subcarrier. This transformation enables the use of

a memoryless single-carrier MIMO detection algorithm (i.e., one designed for a flat-fading

channel) by simply applying the same detection algorithm at each subcarrier. Consequently,

MIMO detection algorithms designed for transmission over narrowband flat-fading single-

carrier MIMO channels may be applied to broadband frequency-selective channels and our

assumption is justified.

Throughout this dissertation we assume additive white Gaussian noise (AWGN),

so that the components of w are zero-mean, circularly symmetric, independent and

identically-distributed (i.i.d.) complex Gaussian random variables with variance N0, so

that E[ww∗] = N0I, where w∗ denotes the complex conjugate of w. The entry in the ith

row and vth column of H represents the complex channel gain between transmit antenna

v and receive antenna i and is normalized such that E[|Hi,v|] = 1. The SNR at any re-

ceive antenna is SNR = E/N0. Throughout this dissertation we consider Rayleigh fading,

typical of non-line-of-sight communication systems, so that the entries of H are i.i.d. com-

plex Gaussian random variables. The adoption of a non-line-of-sight propagation environ-

ment is necessary to support spatial multiplexing at the transmitter, because sufficient scat-

tering is required for this transmission scheme at practical signal-to-noise ratios (SNRs),

e.g. less than 30 dB.

11

Throughout this dissertation the entries of a are chosen from the same complex q-ary

quadrature amplitude modulation (QAM) alphabet A with energy E/Nt, where q = |A|.

Additionally, we will exclusively focus on the scenario where Nr ≥ Nt. This is justified by

the fact they were are interested in exploiting the spatial multiplexing gain made possible

by the MIMO channel, where the multiplexing gain is defined as min{Nt,Nr}. It is therefore

imprudent to increase the number of transmit streams beyond Nr. When Nt > Nr a more

sensible approach would be to encode Nr transmit streams across the Nt transmit antennas

using a space-time code. Additionally, the assumption that Nr ≥ Nt avoids the complexity

challenge inherent in underdetermined systems [25]. We assume the receiver knows the

channel perfectly. Finally, we assume the transmitter has no knowledge of channel state

information (CSI). We justify this by noting that providing accurate CSI to the transmitter

requires overcoming mismatched CSI between the transmitter and receiver, caused by the

analogue front-end and background noise. Moreover, transmitter CSI is only possible when

the channel changes slowly with time; a situation typically not found in high frequency

communications. While we have elected to not consider channel estimation and transmitter

CSI, we note that these are important topics that prevent performance degradation and

improve reliability/performance, respectively.

We now incorporate our MIMO channel model into a communication system for use

throughout this dissertation. Our simple transmitter model is shown in Fig. 2.2-a [47].

The input is a vector u of i.i.d. uniform information bits that is encoded and interleaved,

perhaps using a turbo or low-density parity-check (LDPC) code. We then partition the

coded bit stream into blocks c of ωNt bits and map each block onto a vector a whose

Nt component symbols are taken from the complex alphabet A of size q = |A| = 2ω and

energy E
(

|ai|2
)

= E/Nt, whereω is the number of bits per symbol. The vector of transmitted

symbols a is sent through the Nr × Nt MIMO channel model of 2.1 to produce the vector

of received samples r at the receiver.

12

Figure 2.2: Coded system model depicting (a) MIMO transmitter and (b) MIMO receiver.

In Fig. 2.2-b we show a MIMO receiver consisting of a MIMO detector (this disserta-

tion’s focus), a deinterleaver, and an error-control decoder. The detector’s job is to produce

hard or soft estimates L for the bit stream c. After the detector the receiver subtracts off any

a priori information from the decoder, i.e. LA, and then deinterleaves this signal producing

LA,Dec, the a priori information for the decoder. The decoder improves the estimate for u

by exploiting the presence of the error correcting code. An iterative detection-decoding

system based on the turbo principle [44] can improve performance.

In this dissertation we will not concern ourselves with a receiver employing iterative

detection-decoding for two reasons. First, by focusing on a non-iterative receiver we are

able to capture the essence of the soft-output MIMO detection problem with distracting

ourselves with the added distraction of a detection-decoder symbiotic relationship based

on the turbo-principle. Second, when the computational complexity resources available to

the receiver are low, performing multiple executions of the detector and decoder is com-

putationally burdensome and goes against our dissertation objective of low computational

complexity. For these two reasons we limit our discussion to a non-iterative system where

there is no feedback from the decoder to the detector.

13

2.3 Problem Statement

The aim of a soft-output detector is to calculate or approximate the a posteriori probability

(APP) for each of the coded bits c j in a given signaling interval, where j ∈ {1, . . . ωNt}

is the bit index. This probability is conveniently represented by the so-called a posteriori

log-likelihood ratio (LLR):

L(c j|r) := ln
Pr[c j = +1|r]

Pr[c j = −1|r]
. (2.2)

The sign of L(c j|r) is the maximum a posteriori (MAP) estimate for c j, and the magnitude

represents the reliability of the estimate. Larger magnitudes correspond to higher reliability,

and smaller magnitudes indicate low reliability. In particular, the extreme case of L = 0

indicates that c j is equally likely to be +1 and −1.

Applying Bayes’ rule to (2.2) yields:

L(c j|r) = ln
f (r|c j = +1)

(

Pr[c j = +1]/ f (r)
)

f (r|c j = −1)
(

Pr[c j = −1]/ f (r)
)

= ln
Pr[c j = +1]

Pr[c j = −1]
+ ln

f (r|c j = +1)

f (r|c j = −1)

= LA(c j) + LE(c j|r), (2.3)

where Pr[c j = +1] and Pr[c j = −1] are the a priori probabilities that bit c j is 1 or −1,

respectively, and where

LA(c j) = ln
Pr[c j = +1]

Pr[c j = −1]
(2.4)

is the a priori LLR for the j-th bit. The second term LE in (2.3) represents the extrinsic

contribution to the a posteriori LLR [47]. Using the law of total probability, it can be

written as:

LE(c j|r) = ln
f (r|c j = +1)

f (r|c j = −1)
= ln

∑

ĉ∈X+1
j

f (r|ĉ)
∑

ĉ∈X−1
j

f (r|ĉ)
, (2.5)

where we rely on a partitioning of the vector alphabet into two, depending on whether the

bit of interest is 1 or −1. Specifically, the set of possible c vectorsX = {±1}ωNt is partitioned

into X+1
j and X−1

j , where X+1
j denotes the set of 2ωNt−1 vectors c ∈ X for which c j = +1, and

14

X+1
j denotes the set of 2ωNt−1 vectors c ∈ X for which c j = −1. For use later, let us similarly

define Z = ANt as the set of all possible symbol vectors a, one for each binary vector

c ∈ X, as determined by the mapping from coded bits to transmitted symbols. Similar to

X±1
j , letZ±1

j denote the partitioning ofZ depending on whether the jth bit label is 1 or −1,

namely:

Z+1
j =

{

a(c) : c j = +1
}

,

Z−1
j =

{

a(c) : c j = −1
}

. (2.6)

Fig. 2.3 shows an example of partitioning for a vector alphabet after linear transforma-

tion by H. The vector alphabet size is 32, which might arise from a binary scalar alphabet

and Nt = 5. The partitions in (a) and (b) correspond to bits one and two from the binary

transmission vector.

Figure 2.3: Partitioning of the set of transmission vectorsZ after linear transformation by
a channel H for the bit mapping corresponding to the (a) first bit transmitted from the first
antenna c1 and the (b) first bit transmitted from the second antenna c2. Open and closed
circles correspond to valid transmission vectors where the bit of interest is −1 and +1,
respectively.

Since the noise is AWGN, the conditional probability density function f (r|ĉ) reduces

to [12]:

f (r|ĉ) =
1

(πN0)Nr
exp

(−‖r −Ha(ĉ)‖2
N0

)

, (2.7)

where a(ĉ) ∈ Z is the unique vector of transmitted symbols associated with the bit vector ĉ.

15

Substituting (2.7) and (2.5) into (2.3) yields:

L(c j |r) = ln
Pr[c j = +1]

Pr[c j = −1]
︸ ︷︷ ︸

LA(c j)

+ ln

∑

ĉ∈X+1
j

exp
{

−‖r −Ha(ĉ)‖2/N0

}

∑

ĉ∈X−1
j

exp
{−‖r −Ha(ĉ)‖2/N0

}

︸ ︷︷ ︸

LE(c j |r)

, (2.8)

where L is broken into an a priori component LA and an extrinsic component LE .

In the context of the iterative receiver shown in Fig. 2.2, the a priori information LA

is provided to the detector via feedback from the error-control decoder, and the extrinsic

information LE is the extra contribution to the a posteriori LLR that was gleaned from the

detector, above and beyond what was provided by the decoder. Computing (2.8) for a given

bit c j requires knowledge of the received vector r, the channel H, the mapping a(·) from

bits to symbols, and any a priori information, if available.

Exact evaluation of (2.8) requires that a computation of the form ‖r−Ha‖2 be computed

qNt times. As an example, for a 4-input MIMO system with each input coming from a 64-

QAM alphabet, this amounts to over 16 million times! Clearly a lower complexity solution

is needed. Additionally, the exponential operation must be applied to each of these 16

million squared norms, resulting in an extremely high computational complexity.

The max-log approximation

ln(ea + eb) = max{a, b} + ln(1 + e−|a−b|)

≈ {a, b} |a − b| >> 1 (2.9)

significantly reduce the complexity of computing (2.8) with only a slight performance

degradation. A common approximation for (2.8) is to use the max-log approximation:

L(c j|r) ≈ LA(c j) + max
ĉ∈X+1

j

{−‖r −Ha(ĉ)‖2
N0

}

− max
ĉ∈X−1

j

{−‖r −Ha(ĉ)‖2
N0

}

. (2.10)

The max-log approximation is based on the assumption that the exponential term with

maximum argument in the sum of exponentials will dominate the summation. By avoiding

the sum of exponentials only one exponential term remains in the numerator and one in the

denominator of (2.8). After some simplifications, the result is (2.10). This approximation

16

is widely accepted because of its relatively small performance loss [43, 74]. The max-log

approximation does not, however, reduce the problem size of soft-output MIMO detection.

Specifically, a brute-force search for the a(ĉ) ∈ Z minimizing ‖r−Ha(ĉ)‖2 in (2.10) would

still need to consider qNt possibilities.

Although at a glance it might appear from (2.10) that the receiver will need to perform

a pair of optimizations for each of the ωNt bits of interest, for a total of 2ωNt optimizations

per signaling interval, in fact the MAP solution will always be one of each pair. So to

compute (2.10) for each of the ωNt bits, it would be sufficient to find the MAP solution

once, and then, for each of the ωNt bits, to find a candidate for which the bit of interest

is negated. This candidate, for which the bit of interest is the negation of the MAP (or

approximate MAP) solution is known as a counterhypothesis.

A detector that solves (2.10) exactly is max-log optimal. Specifically, a max-log optimal

detector finds the MAP solution and the minimum cost counterhypothesis transmission

vector for each transmitted bit. A max-log optimal detector that searches over the entire

set of possible transmission vectors a ∈ Z to solve (2.10) exactly is intractable for even a

small number of transmit antennas and moderate alphabet sizes.

Near max-log optimal performance can be obtained by constructing a list of transmis-

sion vectors L ⊆ Z. List detection is the process of finding this list of candidates. The list

detection version of (2.10) is given by:

L(c j|r) ≈ LA(c j) + max
â∈L∩Z+1

j

{−‖r −Hâ‖2
N0

}

− max
â∈L∩Z−1

j

{−‖r −Hâ‖2
N0

}

. (2.11)

Despite the notational changes to operate on the vector alphabet Z instead of the binary

vector X, the key difference between (2.10) and (2.11) is the insertion of the list L, where

the list length ℓ = |L| plays a critical roll in the overall complexity and performance.

Two example lists, for the received vector r from Fig. 2.3, are depicted in Fig. 2.4.

The elements within the boundaries of the circular region depicted in Fig. 2.4-a comprise

the minimum-distance list. The elements within the boundaries of the region in Fig. 2.4-b

comprise a suboptimal list. The performance of a system using the list in Fig. 2.4-b would

17

Figure 2.4: A minimum distance list (a) contains the ℓ candidates closest to r, while a
suboptimal list (b) might contain different candidates.

suffer relative to the one using the list in Fig. 2.4-a because the list in Fig. 2.4-b does not

include the elements to optimize (2.10) for each of the 5 transmission bits.

In the remainder of this dissertation we consider the scenario where there is no a priori

information, i.e. no feedback from the decoder to the detector, as justified in section ??. In

this setting (2.11) reduces to:

L(c j|r) ≈ 1
N0

 min
â∈L∩Z+1

j

‖r −Hâ‖2 − min
â∈L∩Z−1

j

‖r −Hâ‖2

 . (2.12)

In terms of the partition into white and black points, as shown in Fig. 2.4, one of the

minimizations of (2.12) will produce the squared distance to the nearest black point, while

the other minimization will produce the squared distance to the nearest white point. Specif-

ically we see that, because the suboptimal list of Fig. 2.4-b excludes the closest white point,

it will overestimate the reliability of the bit in question.

18

2.3.1 List Tree Search

A useful construct for efficiently finding a list of candidates is that of a tree [3, 55, 108].

The detection tree can be derived and interpreted in two ways: either geometrically or

algebraically.

The geometric view is based on the fact that the candidate vectors after the channel

fall on a lattice whenever the alphabets are QAM. And any lattice can be decomposed into

the union of multiple sublattices that are translated relative to each other. Therefore, the

squared distance from a received vector to any point on the lattice is easily expressed in

terms of the projection of the received vector onto the hyperplane spanned by the lattice

point’s sublattice; namely, the squared distance decomposes into the sum of the squared

distance from the received vector to the projection vector, plus the squared distance from

the projection vector to the sublattice point. And this latter term can be computed recur-

sively based on the same principle.

As an example of this geometric construction [88], consider the example shown in

Fig. 2.5 for a 2-transmitter system with an antipodal alphabet A = {+1, − 1}. Fig. 2.5-a

depicts a received vector r and the valid transmission vectors after being transformed by the

channel. These detection vectors are denoted with a gray circle, a black circle, a gray-black

and a black-gray circle corresponding to the valid vectors {−1, − 1}, {+1, + 1}, {−1, + 1}

and {+1, − 1}, respectively.

Ultimately we are interested in computing the squared Euclidean distance from the

received vector to a valid transmission vector in the detection space, i.e. ‖r−Hâ‖2. For the

purposes of the example in Fig. 2.5-a we can employ the Pythagorean theorem to compute

these squared Euclidean norms. Specifically, if we are interested in computing the squared

norm from r to the detection vector Hâ, where â = {−1, − 1}, then one leg of a triangle

corresponds to the squared distance from r toΦ and the other leg corresponds to the squared

distance from Φ to Hâ. Summing these squared distances via Pythagoras, i.e. c2 = a2 + b2,

yields the squared Euclidean distance ‖r −Hâ‖2 when â = {−1,−1}. Similarly the squared

19

Euclidean distances to all other elements of HZ can be computed.

Figure 2.5: A q-ary tree for Nt = 2 and Z = {−1,−1}, {−1,+1}, {+1,+1} and {+1,−1}
(q = 2).

Fig. 2.5-b depicts these same squared Euclidean distance calculations using a tree. The

distance from r to Φ is the cost when the first detected symbol is −1 and is represented by

the gray branch emanating from the root node of the detection tree. Similarly, the distance

from r to Ω corresponds to the cost when the first detected symbol is +1 and is represented

by the black branch emanating from the root node. Computing the squared Euclidean

distances from Φ to Hâ, where â = {−1, − 1} and â = {−1, + 1} completes the left half of

the tree and computing the squared Euclidean distances from Ω to Hâ, where â = {+1, − 1}

and â = {+1, + 1} completes the right half of the tree. Consequently, each of the nodes at

the bottom of the detection tree, referred to as leaf nodes, corresponds to a unique decision

from the set of all possible transmission vectorsZ.

In contrast to the geometric view, the algebraic view is based on a QR decomposition.

Specifically, the squared distance for a candidate â is:

J(â) = ‖r −Hâ‖2 (2.13)

= ‖y − Râ‖2 (2.14)

=
∑

1≤i≤Nt

|yi −
∑

1≤v≤i

Rivâv|2, (2.15)

20

where H = QR is the QR decomposition of the channel matrix H, where R is an Nt ×

Nt lower triangular matrix, where Q is an orthogonal matrix and where y = Q∗r. The

QR decomposition is an orthogonal and triangular decomposition of the channel matrix H

allowing for the computation of (2.15).

The cost function (2.15) can be interpreted as the sum of Nt branch metrics, one for

each branch in a path from the root of the detection tree to a leaf node, where the metric for

a branch in the i-th stage of the detection tree with path history {a1, a2, . . . ai} is [12]:

∣
∣
∣
∣
∣
∣
∣

yi −
∑

1≤v≤i

Rivav

∣
∣
∣
∣
∣
∣
∣

2

. (2.16)

We refer to the sum of the i branch metrics in the path from the root node to the node of

interest in the detection tree as a path metric.

Figure 2.6: A 4-ary tree for Nt = 3.

Fig. 2.6 depicts a detection tree for a 3-input MIMO system employing a 4-ary alphabet.

There are three layers of the tree, one for each input, and there are qNt = 43 = 64 leaf nodes.

There are 4 + 16 + 64 = 84 total branches. Some of the branch metrics are shown, where

21

the superscript for a decision â
(·)
i denotes the index from the q-ary alphabet.

Keeping in mind the problem of list detection, the objective of tree-based detection is

to find the ℓ = |L| leaf nodes in the tree, corresponding to valid elements from the set Z,

that yield an accurate solution to (2.12). Using the minimum distance list as our guide, we

seek to find the ℓ leaf nodes in the tree with minimum cost. Specifically, the soft-output

MIMO detection problem boils down to the following:

Goal: Find the ℓ leaf nodes in the tree with minimum cost.

2.4 Search Algorithms

There are many ways to search the detection tree in order to find a set of leaf nodes with low

costs. We define an exact tree-based list search algorithm as one that finds the ℓ minimum

cost leaf nodes in the tree. An approximate tree-based list search algorithm finds ℓ leaf

nodes with low (but not necessarily lowest) cost. In this section we consider classical and

state-of-the art tree search algorithms used to solve the soft-output list MIMO detection

problem either exactly or approximately.

2.4.1 Exact Minimum Cost Tree Search

We now present two classical algorithms for exact tree-based list detection. The first is

perhaps the most famous soft-output detection algorithm, known as the list sphere detector

(LSD) [47]. The second is the list sequential (LISS) detector [11, 42], which in [111] was

shown to be the tree search scheme with lowest complexity, under certain assumptions, for

solving the soft output detection task optimally for a given list size, where optimality is

defined as maximizing the a posteriori probability.

22

2.4.1.1 The List Sphere Detector

The LSD [47] is a famous variable complexity algorithm for finding the ℓ minimum cost

leaf nodes in the tree exactly. In this section we begin with an intuitive description of the

LSD. Following this, we provide a flowchart for implementing the LSD.

The LSD begins at the root node and advances through the tree in a greedy fashion. At

each node the LSD selects the child node with minimum weight. This process continues

until we reach a leaf node or the cost of the node we are visiting exceeds a threshold. For

the purposes of this discussion we initialize the threshold to ∞. Consequently, a leaf node

will always be found at the start of our search. This leaf node becomes the first element of

a list, although it might later be replaced.

The LSD then backtracks one layer and considers the inclusion of “sibling” nodes of the

leaf node it has just found. A Fincke-Pohst [32] enumeration would explore these siblings

in a natural order, say from left to right, with no regard to their weights. Fewer nodes will

be visited if a Schnorr-Euchner [76] enumeration is adopted, which explores the siblings

in an order determined by their weights, with the best first. We assume Schnorr-Euchner

enumeration in our discussion.

The process of adding sibling nodes to the first leaf node found continues until either

there are no more sibling nodes to enumerate, or until the list consists of ℓ leaf nodes. In

either case the algorithm backtracks an additional layer in the tree so that it is two layers

removed from the leaf nodes. If the algorithm backtracks because the list is comprised of ℓ

leaf nodes, then the threshold value must be updated to the weight of the highest cost leaf

node in the list.

Now two layers removed from the leaf nodes in the tree, the LSD enumerates the lowest

weight child node it has not yet explored and continues in a greedy fashion to either add

leaf nodes to the list (if its cost is less than the threshold) or backtrack (if the cost exceeds

the threshold). Anytime a leaf node is found with weight less than the threshold and the

list size is already ℓ, the new leaf node replaces the leaf node in the list with highest cost.

23

Figure 2.7: Flow chart for Schnorr-Euchner realization of list sphere detector [47].

Upon a replacement event, the LSD updates the threshold to the cost of the largest weight

leaf node remaining in the list.

When there are no more nodes left to be explored at a given layer in the tree either

because of exhaustive search or all remaining nodes exceed the threshold, the algorithm

backtracks up the tree to determine if there are any nodes left to be explored at higher

layers in the tree. The LSD terminates when it can no longer backtrack.

The process just described for finding leaf nodes in the detection tree, where the search

begins at the root node and proceeded as far as possible in the tree before backtracking,

24

is known as depth-first search. Fig. 2.7 summarizes the depth-first LSD using a flowchart.

The only listed input to the algorithm is the list length ℓ. The output of the LSD is the list

L. In order to compute the branch metrics, as described in (2.15), we require the equalized

received signal y and the triangular matrix R, but we omit these as inputs for simplicity of

notation.

2.4.1.2 The List Sequential Detector

An alternative to the LSD for finding the ℓ minimum cost leaf nodes in the tree is the list

sequential (LISS) detector [11, 42]. In contrast to the LSD, which maintains only one node

at a time in the detection tree, the LISS maintains multiple nodes in the tree simultaneously.

During the search of the detection tree the node(s) that currently has the lowest cost(s)

is/are extended. We call this type of search metric-first search [71]. We note that the nodes

maintained need not be at the same layer in the tree.

The LISS algorithm is implemented using a stack to maintain the nodes currently under

consideration. In this section we begin with an intuitive description of the LISS. We follow

up with a flowchart description.

With the stated objective of finding the ℓ leaf nodes with minimum weights in the tree,

the LISS algorithm begins by initializing the stack to be the root node and its associated

cost to be 0. After this initialization, we remove this minimum cost node in the stack (at

this point it is the only node in the stack) and replace it in the stack with all q = |A| of its

child nodes. We then order the stack in terms of costs, placing the minimum cost node at

the top of the stack.

Here the process begins to repeat itself. As before we remove the minimum cost node

from the stack and replace it with its q children. We reorder the stack once more and replace

the minimum cost node by its q children. Each time leaf nodes are reached we remove them

from the stack and place them in a list.

The algorithm terminates when the node on top of the ordered stack (i.e. the one with

25

minimum cost) has weight greater than or equal to the cost of the ℓth minimum weight leaf

node in the list1. Upon termination we can truncate the list to the ℓ minimum weight leaf

nodes.

Fig. 2.8 summarizes the LISS algorithm using a flow chart. As before, we assume that

all branch weights are known so that the only input required by the algorithm is the list

length ℓ. The output of the algorithm is the list L. Unlimited memory is assumed to avoid

a discussion about truncation of the stack.

Figure 2.8: Flow chart for list sequential detector [11].

2.4.2 Approximate Minimum Cost Tree Search

The LSD and LISS algorithms just described are efficient ways to achieve the goal of

finding the ℓ leaf nodes in a tree with minimum weights. What happens if we modify our

goal by relaxing the constraint that we must find the ℓ leaf nodes with minimum weights

1This termination condition is slightly different than the one in [11], but is needed to ensure that we find
the ℓ minimum weight leaf nodes.

26

and instead search for ℓ leaf nodes with small weights? The advantage of such an approach

would be that our search could visit fewer nodes in the tree, thereby reducing complexity.

The obvious disadvantage would be a suboptimal solution to our problem.

For the LSD and LISS algorithms described in the previous section we can solve the

relaxed constraint problem through early termination. For the LSD this can be achieved by

stopping once a certain number of nodes have been visited or by aggressively reducing the

threshold value to search fewer nodes in the tree. For the LISS algorithm, we can terminate

early once a certain number of leaf nodes are in the list or we could reduce the size of the

stack to a predetermined fixed value such that it retains fewer nodes. A third option is to

bias paths based on their layer in the tree to avoid extending nodes which are unlikely to

produce a leaf node with small weight [41]. Additionally, to achieve our new goal of finding

the ℓ leaf nodes with small weight, we can not only modify the LSD or LISS algorithms,

but we can also consider other ways to search the tree.

An efficient way to search a tree, when a suboptimal list is allowed, is to search the

tree layer-by-layer and at each layer remove nodes which are unlikely to produce a leaf

node with small weight. Algorithms that search the tree using a layer-by-layer approach

are breadth-first. Breadth-first search algorithms have higher complexity than depth-first

or metric first approaches when the goal is to find the minimum cost(s) leaf node(s) in the

tree. They are, however, a viable alternative when suboptimal search is allowed. This is

because, in contrast to depth-first or metric first approaches, breadth-first algorithms have

fixed complexity, meaning that they visit the same number of nodes in the tree independent

of the branch weights on the tree. This is significant because it means that the algorithm

has a regular structure which lends itself to practical implementation.

We now describe a breadth-first algorithm, which we call the soft M algorithm because

of its close relation to the classical M algorithm [3]. The soft M algorithm begins by

extending the b ≤ q minimum weight nodes from the root of the tree using Schnorr-Euchner

enumeration. Assuming the algorithm would like to keep all of these nodes, it can then

27

extend the b best child nodes from each of the b parent nodes yielding b2 nodes at the

second layer in the tree. If b2 is greater than some value, call it m, then the algorithm

sorts the b2 nodes and retains only the m best. This process of extending b nodes from

each retained parent node and retaining only the m minimum weight nodes (assuming m is

less than the number of retained nodes) continues until we reach the final layer in the tree,

where ℓ leaf nodes are found for inclusion in the list (assuming ℓ ≤ m).

Fig. 2.9 summarizes the soft M algorithm using a flow chart. The inputs to the algo-

rithm are the list length ℓ, the b parameter, which determines the number of nodes to extend

from each retained parent node, and the m parameter, which is used to prune the tree when

the number of nodes in the tree exceeds m. The output of the algorithm is the list L.

Figure 2.9: Flow chart for soft M algorithm.

2.4.3 Max-Log Optimal Tree Search

We now return to the problem statement at the end of section 2.3, namely (2.12). Ignoring

for the moment the use of a list, one way to solve this expression exactly (i.e. max-log opti-

mally) is to first find the âMAP ∈ Zminimizing ‖r−Hâ‖2, where âMAP denotes the maximum

a posteriori (MAP) solution. Then, perform a constrained search for all j = {1, . . . ωNt} for

â−MAP
j , âMAP, where â−MAP

j denotes the constrained MAP solution subject to the constraint

28

that its jth bit is the negation of the jth bit for âMAP. This negation is a boolean logic nega-

tion if we are talking about binary bits 1 and 0 and straightforward in the case of 1 and

−1. The vectors âMAP and â−MAP
j are counterhypotheses of one another because the bit of

interest is a different hypothesis (e.g. either 1 or −1) for each vector.

2.4.3.1 Smart Candidate Adding

Smart candidate adding (SCA) is the name given to approaches that search for candidate

lists that either exactly or approximately include (1) âMAP and (2) â−MAP
j for each of the

j ∈ {1, . . . ωNt} transmitted bits [62]. Because there are ωNt bits for each a, the size of the

listL optimally solving (2.12), for a given r and H, is at most ℓ = 1+ωNt, where the 1 term

corresponds to âMAP and the ωNt terms stem from the fact that the constrained solutions for

each of the ωNt bits might be a unique element fromZ.

Smart candidate adding is effective for improving the error rate performance of soft-

output MIMO detection algorithms. Early SCA approaches [62, 105, 94] focused on find-

ing the maximum a posteriori (MAP) estimate (or an approximation thereof) and supple-

menting this estimate with directed searches for counterhypotheses.

In [50] an improvement over the SCA approaches of [62, 105, 94] was proposed that

finds its list using a single pass through the detection tree, rather than using multiple

searches. A state-of-the-art max-log optimal detection algorithm, motivated by the algo-

rithm in [50] is the single-tree-search list sphere detector (STS-LSD) [87]. Specifically, the

STS-LSD is an efficient depth-first algorithm that searches for the MAP estimate and each

of the ωNt optimal counterhypotheses without visiting nodes in the detection tree more

than once. In contrast to the classical LSD, the STS-LSD prunes the detection tree only

when a given node is unable to produce an improved MAP estimate or counterhypothesis

to the current MAP estimate. This targeted search, focused on counterhypotheses rather

than the ℓ minimum distance candidates, is efficient for finding the max-log optimal list of

candidates.

29

2.5 Computational Complexity

Thus far in this chapter our list MIMO detection goal is the construction of low compu-

tational complexity tree-based soft-output detectors with near max-log optimal error rate

performance. Assessing whether this goal is achieved requires knowledge of the system

error rate performance as well as the computational complexity. A trade-off exists between

these two salient properties [95].

Evaluating the error rate performance of a soft-output detector is straightforward. All

that is required is to measure the average number of bit, symbol, or frame errors. Evaluating

a detector’s computational complexity is typically far more exacting because there are many

ways by which complexity can be measured.

The receiver’s computational complexity is critically important because it affects the

chip size, execution time and power requirements for practical systems. Analyzing compu-

tational complexity is often a difficult undertaking because there are many ways by which

we measure complexity. Despite these obstacles there are a number of effective techniques

for roughly analyzing computational complexity. In this section we provide an overview

of methods for measuring computational complexity, followed by a discussion of the com-

putational complexity metrics used throughout this dissertation. We then establish compu-

tational complexity bounds and reference complexities for tree-based detection. Finally, a

collection of results demonstrate the utility of the aforementioned reference complexities.

2.5.1 Measuring Computational Complexity

Measuring computational complexity for the purpose of constructing a fair comparison

amongst different solutions to the tree-based soft-output MIMO detection problem is a

challenge. Nuanced trade-offs between latency, power consumption and silicon area all

play important roles in the resultant quality of a detector’s architectural implementation.

These trade-offs are often jumbled by design constraints that force system engineers to

30

tailor implementations for target architectural platforms. For example, an optimized archi-

tectural implementation used for a fixed-point ASIC would differ significantly from one

tailored for a floating point DSP.

The number of design considerations necessary for an initial architectural implemen-

tation, and the more time-consuming task of design optimization, render a direct and

fair comparison between competing algorithms a formidable task, although some system

attributes are quantifiable without a complete architectural implementation. An example of

such an architecture agnostic attribute is the order of an algorithm’s execution time. How-

ever, in most cases, an architectural implementation is required in order to accurately assess

the computational complexity. This is particularly true for the material design considera-

tions of power consumption and silicon area.

Another factor complicating a direct comparison of computational complexity is that,

even for the same algorithm, many possible architectural implementations exist. For ex-

ample, just a sampling of the many architectural implementations for the sphere detector,

i.e. the LSD with ℓ = 1 [47], are found in [35, 18, 19, 80, 87, 64]. Given that even for the

same detection algorithm there are many architectural implementations means that a com-

prehensive complexity analysis falls outside the scope of this dissertation. However, we

still desire the ability to compare algorithms using computational complexity as a salient

design criterion. We therefore require a simple and architecture independent metric for

computational complexity that is useful in guiding our algorithmic construction.

One architecture independent metric for computational complexity is the number of real

operations, be they fixed or floating point operations. The number of real operations, while

often cumbersome to compute, is a useful metric for computational complexity across a

wide range of algorithms. On occasion in this dissertation we consider the number of real

operations, although we prefer an easier to calculate metric. Fortunately, tree-based detec-

tors possess a fundamental metric of computational complexity that is easily calculated.

We now discuss this metric.

31

A well-suited measure of computational complexity for tree-based detectors is the num-

ber of branch metrics computed during a tree search. Specifically, the number of branch

metric computations is invariant to the architectural implementation, well accepted, and

easy to calculate relative to other previously mentioned metrics and provides valuable in-

sight into the overall system complexity [19, 108, 8, 68].

The number of branch metric computations corresponds to an upper bound on the num-

ber of visited nodes in the detection tree, since visiting a node in the tree requires calcu-

lating the corresponding branch metric. Using the number of visited nodes was proposed

(and gained increased popularity due to the one node per cycle hardware implementation)

in [19]. The advantage of using the number of branch metric computations, rather than the

number of nodes visited, is that computing branch metrics avoids a complexity comparison

that is unbalanced in favor of schemes that calculate metrics for nodes they later discard

(as, e.g. the M algorithm [3]) as opposed to algorithms that only calculate metrics for nodes

they do visit (as, e.g. the Schnorr-Euchner sphere decoder).

The disadvantages of using the number of branch metric computations as a measure of

complexity is that it does not tell the entire story. First, the number of branch metric com-

putations does not explicitly tell us about the time required to search through the detection

tree or the memory required to store nodes in a stack. Second, the number of branch met-

ric computations omits the complexity of the preprocessing algorithm. Such an omission

may not be acceptable for fast-fading scenarios where the computational complexity of the

detection ordering dominates, but is more appropriate for scenarios where the coherence

time of the channel is long. Despite these disadvantages, the aforementioned benefits (i.e.

invariance to the architectural implementation and ease of calculation) manifest the utility

of using the number of branch metric computations as a complexity metric.

A first example of the utility of using the number of branch metric computations as a

measure of computational complexity is to measure the complexity of the worst-case brute-

force detector. Specifically, the brute-force detector must compute all
(

qNt+1 − q
)

/ (q − 1)

32

branch metrics for a given detection tree. We can do better. We next quantify how much

better.

2.5.2 Computational Complexity Bounds and Non-bound Reference

Complexities

An ideal communications receiver would enable capacity achieving performance while re-

quiring a negligible amount of computational complexity. Such a receiver is, of course,

impossible to realize. For this reason, establishing computational complexity bounds and

non-bound reference complexities is of great practical importance. The number of branch

metric computations allows us to establish the following bounds and non-bound reference

complexities for tree-based detectors. These reference complexities are useful for system

engineers designing MIMO receivers:

• A lower bound on the number of branch metric computations required to ensure

the JML solution and fixed number of counterhypotheses to this solution, up to and

including ωNt counterhypotheses.

• The maximum and minimum computational complexities required to obtain max-log

optimal performance, i.e. max-log optimal complexity bounds.

• A 99th percentile computational complexity for the minimum number of branch met-

rics required to find the ℓ lowest cost leaf nodes in the detection tree.

We next discuss each of these ideas in detail.

Minimum Spanning Tree Bound: This is a lower bound on the number of branch metric

computations required to ensure the JML solution and a fixed number of counterhypotheses

to this solution, up to and including ωNt counterhypotheses. This bound can be derived by

considering a minimum spanning tree, where we define the minimum spanning tree to be

a detection tree with the minimum number of branches required to generate one leaf node

33

Figure 2.10: Example of a minimum spanning tree for (a) C = 2 ⇒ (µ = 3) and (b)
C = 4⇒ (µ = 4) for a 2 × 2 MIMO system employing QPSK transmission.

and an additional C − 1 counterhypotheses. Consequently, when using this definition, C

may not exceed 1 + ωNt.

The minimum spanning tree bound for C = 2 consists of the JML solution and a coun-

terhypothesis for exactly one bit, i.e. the bit pattern for the JML solution and the bit pattern

for the lone counterhypothesis differ in only one position. Fig. 2.11-a depicts an exam-

ple minimum spanning tree when C = 2 for a system with 2 input streams and QPSK

modulation. The minimum number of branch metrics required to obtain the JML solution

is Nt. Given C = 2, ensuring that exactly one counterhypothesis is found, and simul-

taneously computing the minimum number of branch metrics requires that the leaf node

corresponding to the counterhypothesis be a “sibling”node of the JML solution at the fi-

nal layer in the detection tree. For this case, the minimum spanning tree corresponds to

µ = (Nt −1)+2 = Nt+1 branch metric computations (c.f. Fig. 2.11-a). Note, however, that

the performance of a detector simply employing the minimum spanning tree would suffer

relative to an algorithm generating the C nodes with minimum metrics (as, e.g. the LSD).

Fig. 2.11-b depicts the minimum spanning tree for the same system as Fig. 2.11-a except

that C = 4. For C = 2 the minimum spanning tree possesses three branches, whereas for

C = 4 the minimum spanning tree possesses four branches.

The minimum spanning tree bound, in terms of the number of branch metric computa-

tions µ as a function of the parameters C, ω and Nt, is given by:

34

µ =

Nt C = 1

Nt + 1 C = 2 : 1 + ω

Nt + 2 C = 2 + ω : 1 + 2ω

· · · · · ·

2Nt − 1 2 + (Nt − 2)ω : 1 + ω(Nt − 1)

2Nt C = 2 + (Nt − 1)ω : 1 + ωNt

. (2.17)

The fact that µ = Nt for C = 1 is obvious: One leaf node requires a branch metric from

each of the Nt layers in the detection tree. The minimum spanning tree for the case where

each bit has a counterhypothesis, i.e. C = 1 + ωNt, corresponds to the situation where the

bit pattern corresponding to each leaf node in the detection tree is the logical negation of

the other, e.g. 010010 and 101101. Consequently, any two leaf nodes in the tree whose bit

patterns are the boolean negation of each other represent the potential minimum spanning

tree for C = 1 + ωNt. This implies µ = 2Nt.

Max-Log Optimal Bounds: The number of leaf nodes required to compute the soft-output

for max-log optimal detection ranges from a minimum of 2, in the case where, for all bit

positions, the same candidate vector is used to provide the counterhypothesis to the JML

decision, to a maximum of ωNt + 1, in the case where, for each bit position, a different

leaf node provides the counterhypothesis. In the former case, which is unlikely, at least

µ = 2Nt branch metrics must be computed. We will refer to this complexity as the “max-log

best case” computational complexity. Note that this best case max-log optimal complexity

corresponds to the minimum spanning tree bound for C = ωNt + 1. The “max-log worst

case” computational complexity is found by considering the spanning tree for the case

where each bit position requires a unique leaf node as the best counterhypothesis to the

JML estimate. The resulting computational complexity for the max-log worst case is given

35

Figure 2.11: Example of an (a) best case max-log complexity (µ = 4) and (b) worst case
max-log complexity (µ = 8) for a 2 × 2 MIMO system employing QPSK transmission.

by:

µ =
∑

1≤i≤Nt

1 + iω = Nt

(

1 +
ω (Nt + 1)

2

)

. (2.18)

Fig. 2.11-a and Fig. 2.11-b depict the best case and worst case max-log optimal complexi-

ties, respectively, for a 2 × 2 MIMO system employing QPSK transmission.

99th Percentile Computational Complexity: For the 99th percent computational com-

plexity, we use the LISS as a practical algorithm for finding the ℓ leaf nodes in the detec-

tion tree with minimum costs. We elect to use the LISS algorithm because in [111] the

LISS employing a Schnorr-Euchner enumeration strategy computes the minimum number

of branch metrics necessary to find a given number of hypotheses on the transmit signal

which maximize the a posterior probability. It it thus the tree search scheme with lowest

complexity for solving the soft output detection task optimally for a given list size, where

optimality is defined as maximizing the a posteriori probability. If the number of branch

metric computations is the sole measure of complexity (i.e. ignoring the storage and sorting

overhead of the LISS which are often high), it would therefore make no sense to employ

any other tree search algorithm – which can only require more branch metric computations

to achieve the same goal.

One drawback for the LISS is that its complexity is variable and so, in the worst case,

the number of branch metrics computed by the LISS is equivalent to the exponential com-

plexity of the brute force max-log optimal detector. A useful metric on this variable com-

plexity is a 99th percentile metric on the number of branch metric computations calculated.

36

The 99th percentile metric is used to denote the number of branch metric computations

calculated in at most 1% of the tree search realizations for a list of length ℓ. Using the

99th percentile (as opposed to, say, the 90th percentile) is motivated by the fact that a LISS

whose complexity is upper bounded to this number of branch metric computations will

stop its search prematurely in at most 1% of the cases. For state-of-the-art error correction

codes, this will have a negligible impact on performance [108, 113]. We will refer to the

99th percentile metric as the 1% upper bound on computational complexity.

We conclude by observing that the 99th percentile computational complexity must be

found via simulation and is therefore non-deterministic. Consequently, we do not depict a

detection tree for this reference complexity.

Genie Spanning Tree: Consider the situation of a genie tree search, i.e. the ℓ minimum

cost leaf nodes are known a priori. Pruning this tree to only consist of nodes that are

ancestor nodes (e.g. parent or grandparent nodes) for any of the ℓminimum cost leaf nodes.

This genie spanning tree differs from the previously described minimum spanning tree

bound in so far as the generated branches for the genie spanning tree are not automatically

drawn from the lowest possible layers in the tree. Rather, the ℓ minimum cost leaves in the

tree are found and all unnecessary branches are pruned. The remaining paths are used to

calculate the total number of branches in the detection tree.

2.5.3 Results

For simulation we use a setup equivalent to the one in [47]: transmission occurs over a

spatially and temporally i.i.d. fading 4 × 4 MIMO channel using 4-QAM and 64-QAM

modulation alphabets. The information block size (including tail bits) is 9216 bits, using a

rate 1/2 PCCC based on (7R, 5)octal convolutional codes for channel coding and 8 internal

iterations of logMAP decoding, where R denotes which generator is in the denominator.

The LLR magnitudes for bits without a counterhypothesis were set to the values found in

37

Table I in [70], for the 4 × 4 MIMO setup with 4-QAM and 64-QAM transmission2.

The choice of the coding scheme is relevant to the overall system performance in MIMO

detection. If near-capacity performance is desired then the channel code has to be designed

to fit the EXIT characteristic of the detector [90], and multiple iterations between the de-

tector and decoder are required. In this work we use the aforementioned system setup for

ease of comparison with previous works, e.g. [47].

Fig. 2.12 depicts the complexity bounds outlined in the previous section for a 4 × 4

MIMO channel with 4-QAM transmission using the simulation setup just described, where

equalization is performed using the zero-forcing (ZF) sorted QR decomposition (SQRD)

[103] ordering and performance is measured as the SNR required to obtain a bit error rate

(BER) of 10−5. The lowest complexity curve, denoted with diamond markers, is the mini-

mum spanning tree, where the marked points correspond to C = {2, 4, 8, 16}. For all other

curves each marker corresponds to a unique list length ℓ = {2, 4, 8, 16}, where the list used

is the minimum cost list. The highest complexity curve in Fig. 2.12, denoted with a solid

curve and upward facing triangular markers, is the 99% percentile computational complex-

ity for the LISS. The average LISS complexity is also shown, using a dark dashed curve

with square markers. Also shown are the best and worst case max-log optimal detector

complexities, the genie spanning tree mean and genie spanning tree 99% percentile com-

plexities. The best and worst case max-log optimal computational complexity for the given

configuration correspond to µ = 8 and µ = 24, respectively.

As becomes clear from Fig. 2.12, the variance in complexity of the LISS is relatively

small. Specifically, there is roughly a factor of 2 between the average and the 99th per-

centile complexity. This is consistent with results in [108]. Note, however, that for a list

size of 16, the 99% percentile LISS complexity is already around µ ≈ 150 branch met-

ric computations – about 2/3 of the brute force max-log optimal detector. Considering

2Justification and the original derivation for these clipping levels can be found in [108]. Additionally,
chapter 5 describes the LLR clipping problem in detail.

38

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
10

0

10
1

10
2

10
3

Eb/N0 [dB] Required for BER of 10−5

B
ra

nc
h

M
et

ri
c

C
om

pu
ta

ti
on

s
µ

Max-log Best Case

Max-log Worst Case

LISS 99th Percentile

LISS: Mean

Genie Spanning Tree: 99th Percentile
Genie Spanning Tree: Mean

Minimum Spanning Tree

ℓ
=

16

ℓ
=

8

ℓ
=

4

ℓ
=

2

C = 2
C = 4

C = 8C = 16

Figure 2.12: Complexity Bounds for 4× 4 MIMO in Rayleigh fading using 4-QAM trans-
mission and ZF-SQRD equalization.

the relative complexity of the practical LISS algorithm and the genie spanning tree for the

LISS, there is roughly a 3-4 times complexity difference between the two cases if the av-

erage complexity is evaluated, and around a factor of 5, if the 99% LISS complexity is

considered to be the most relevant design criterion.

As we have seen, the use of a minimum mean-square error (MMSE) effective channel

matrix for detection ordering can reduce the complexity required to find a list of length ℓ

[103]. However, when using MMSE preprocessing it is important to calculate LLR values

using unbiased detection (2.19) to avoid performance degradation.

Fig. 2.13 depicts results for the same system as Fig. 2.12, except that we use MMSE-

SQRD preprocessing. The minimum spanning tree does not change, but results for the

remaining curves vary dramatically. Additionally, the best and worst case max-log opti-

mal computational complexities do not change. However, the complexities of the reference

complexities for the LISS (i.e. genie spanning tree mean and 99% percentile computational

39

4 4.2 4.4 4.6 4.8 5 5.2 5.4
10

0

10
1

10
2

Eb/N0 [dB] Required for BER of 10−5

B
ra

nc
h

M
et

ri
c

C
om

pu
ta

ti
on

s
µ

Max-log Best Case

Max-log Worst Case

LISS 99th Percentile

LISS: Mean
Genie Spanning Tree: 99th Percentile

Genie Spanning Tree: Mean
Minimum Spanning Tree

ℓ
=

16

ℓ
=

8

ℓ
=

4

ℓ
=

2

C = 2
C = 4

C = 8C = 16

Figure 2.13: Complexity Bounds for 4× 4 MIMO in Rayleigh fading using 4-QAM trans-
mission and MMSE-SQRD equalization.

complexities and LISS detector mean and 99% percentile computational complexities) un-

dergo a reduction in the computational complexity due to the MMSE preprocessing. The

impact of the MMSE-SQRD ordering is even more substantial for tree search schemes with

higher variability in detection complexity than the LISS, such as the sphere decoder, and/or

for larger problem sizes [108]. We next consider the situation where we employ a 64-QAM

modulation alphabet.

Fig. 2.14 depicts the same reference complexities as in the previous diagrams, but for

the case of 64-QAM transmission using MMSE-SQRD equalization. For this higher modu-

lation scenario, the difference between the genie spanning tree (genie LISS) and the actual

number of branch metric computations for LISS detection are more evident – for a list

length of 64, there is a factor of around 10 between the two cases, for the 99% percentile

computational complexities. The best case max-log optimal computational complexity re-

mains unchanged at µ = 8 while the worst case grows, due to the increased constellation

size, to µ = 64.

40

13 14 15 16
10

0

10
1

10
2

10
3

Eb/N0 [dB] Required for BER of 10−5

B
ra

nc
h

M
et

ri
c

C
om

pu
ta

ti
on

s
µ

Max-log Best Case

Max-log Worst Case

LISS 99th Percentile

LISS: Mean
Genie Spanning Tree: 99th Percentile

Genie Spanning Tree: MeanMinimum Spanning Tree

ℓ
=

64

ℓ
=

16

ℓ
=

8

ℓ
=

4

ℓ
=

2

C = 2
C = 4C = 8C = 16C = 64

Figure 2.14: Complexity Bounds for 4 × 4 MIMO in Rayleigh fading using 64-QAM
transmission and MMSE-SQRD equalization.

2.5.3.1 Variable vs. Fixed Computational Complexity

As we will see throughout this dissertation, MIMO detection algorithms can possess either

variable or fixed computational complexity. For variable complexity algorithms, the num-

ber of branch metric computations is a random variable whose probability mass function is

a strong function of the SNR. Typically, as the SNR increases the number of branch metric

computations decreases. For many algorithms, the worst-case complexity can be very high

(i.e. comparable to the worst-case brute-force complexity), but the average complexity can

be extremely small.

Because the number of branch metric computations performed by the LSD is a ran-

dom variable whose probability mass function is a strong function of the SNR, as the SNR

increases the number of branch metric computations decreases. While the worst-case com-

plexity of the list sphere detector can be very high (i.e. comparable to the brute-force

detector), the average complexity can be extremely small. We will now illustrate this using

41

an Example 1.

Example 1: LSD Branch Metric Example: Consider an 8-input, 8-output

memoryless spatially and temporally i.i.d. fading channel in AWGN, and as-

sume the inputs are independent uncoded 64-QAM symbols. An exhaustive

search would have to consider 648 = 248 > 2.8 × 1014 leaf nodes. Let N denote

the number of branch metric computations performed by a the list sphere de-

tector, assuming the inputs are ordered according to the near-optimal Minimum

Mean-Square-Error (MMSE) sorted-QR decomposition [103]. The probability

mass function for N is easy to estimate using simulation. Two examples are

shown in Fig. 2.15. When the SNR is 20 dB as in Fig. 2.15-a, the list sphere

detector computes N̄ = 550.7 and N̄ = 2010.4 branch metrics on average for

ℓ = 7 and ℓ = bNt + 1 = 49, respectively. When the SNR is 30 dB, as shown in

Fig. 2.15-b, the list sphere detector computes only N̄ = 462.2 and N̄ = 1861.4

branch metrics on average for ℓ = 7 and ℓ = 49. From these results we ob-

serve that the average number of branch metric computations decreases with an

increase in SNR and increases with the list length.

Number of branch metric computations n

P
r[

N
=

n]
P

r[
N
=

n]

0
0

0
0

0.02

0.02

0.04

0.04

0.06

0.06

0.08

0.08

0.1

0.1

500

500

1000

1000

1500

1500

2000

2000

2500

2500

3000

3000

(a)
SNR = 20 dB
Uncoded BER = 1.1 × 10−1

(b)
SNR = 30 dB
Uncoded BER = 2.0 × 10−6

A
V

E
R

A
G

E
=

55
0.

7

A
V

E
R

A
G

E
=

20
10
.4

A
V

E
R

A
G

E
=

46
2.

2

A
V

E
R

A
G

E
=

18
61
.4ℓ = 7

ℓ = 7

ℓ = 49

ℓ = 49

Figure 2.15: Estimated probability mass functions for N the number of branch metrics
computed by the depth-first list sphere detector at (a) SNR = 20 dB and (b) SNR = 30
dB, assuming 8 × 8 Rayleigh-fading channel with 64-QAM inputs. These results were
found by simulating the list sphere detector T = 2 × 105 times, with independent noise,
channel, and symbol realizations for each trial, then estimating the pmf for N according to
Pr[N = n] = In/T , where In is the number of trials for which n nodes were visited.

42

In contrast to variable complexity approaches, tree-based algorithms which calculate

a fixed number of branch metric computations exist. For these algorithms, the number

of branch metrics can be expressed deterministically. Our objective in this dissertation

is the construction of soft-output MIMO detection algorithms possessing low and fixed

computational complexity. Specifically, in our setting of tree-based list detectors we state

our overarching dissertation goal as:

Dissertation Objective: Find ℓ leaf nodes in the tree with low
path cost using low and fixed computational complexity.

2.6 Ordering of the Channel Matrix – Preprocessing

The mapping of layers in the detection tree to transmitted symbols is a critical factor in

determining either the performance or the computational complexity (or both) for soft-

output MIMO detection. This mapping, which is a direct consequence of the channel

matrix ordering during the QR decomposition, deserves careful attention.

An ordered QR decomposition leads to the detection tree layer mapping, i.e. HP = QR,

where P is a permutation of INt . The BLAST ordering [34] is the optimal detection order

for hard-output decision-feedback detection, where only a single path of the tree from root

to leaf is traversed, since it maximizes the SNR at each layer. An attractive alternative to

the BLAST ordering is the sorted QR decomposition (SQRD) [102], which achieves nearly

the same hard-output decision-feedback performance as the BLAST ordering with reduced

complexity. Specifically, the BLAST ordering is roughly twice as complex as the SQRD,

but with improved performance as a result of its better ordering criterion [95]. Other useful

orderings which we will discuss in more detail in the next chapter include the one employed

by the parallel detector (PD) [58], the fixed-complexity sphere decoder (FSD) [9, 51], and

B-Chase preprocessing [96, 97, 95, 98].

43

All of the preprocessing algorithms for which we present results in this dissertation

have a fixed computational complexity on the order of Θ(N3
t). We note, however, that

highly effective preprocessing algorithms with variable computational complexity do ex-

ist. An important class of variable complexity preprocessing algorithms are based on using

the idea of lattice-reduction-aided (LR-aided) detection [46, 56, 57], with [57] achievable

in polynomial time. Because we focus on fixed-computational complexity in this disser-

tation, we will logically only consider preprocessing algorithms with fixed-computational

complexity.

The use of a minimum mean-square error (MMSE) effective channel matrix when per-

forming the ordered QR decomposition can further improve performance and/or reduce

complexity [103]. Unlike the ZF detector, which minimizes interference while neglecting

noise effects, the MMSE linear detector achieves an optimal balance of noise enhancement

and interference suppression [12]. While MMSE detection is well known to be an effective

detection technique, it is important to compute the path metrics for the detection tree in

an unbiased way. As reported in [109] this is accomplished by considering the following

system model:

∥
∥
∥r̄ − H̄a

∥
∥
∥

2
=

∥
∥
∥
∥
∥
∥
∥
∥
∥

r

0Nt×1

−

H

σINt

a

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

= ‖r −Ha‖2 + σ2 ‖a‖2 , (2.19)

where r̄ is the effective received signal and H̄ is the MMSE effective channel matrix, and

σ2 = E/(NtN0). It is the term σ2 ‖a‖2 that must be removed for unbiased MMSE detection

of the path metrics.

2.7 Enumeration for Breadth-First Detection

The order in which child nodes are extended from a parent nodes in the detection tree is

referred to as enumeration. Enumeration can have a significant impact on the overall com-

putational complexity of the tree search. A Fincke-Pohst [32] enumeration considers the

child nodes in a natural order, say from left to right, with no regard to their weights. Fewer

44

nodes will be visited if a Schnorr-Euchner [76] enumeration is adopted, which explores

child nodes in an order determined by their weights, with the best first. All results and

algorithms in this dissertation assume Schnorr-Euchner enumeration.

A recently proposed approach for implementing a Schnorr-Euchner enumeration is the

one in [19], where for QAM alphabets the constellation is mapped onto several concentric

circles each corresponding to a phase shift keying (PSK) alphabet. Within each PSK subset

the preferred child node is established and the PSK subsets are compared to determine the

next child node from the QAM parent node. For QPSK modulation only one subset is

necessary and thus no comparison is required. For 16-QAM and 64-QAM three and nine

parallel subset instantiations are required, respectively.

Enumeration is an important consideration for breadth-first detection as well, but here

the goal is to enumerate the bi best nodes at the given layer in the detection tree, from

each of the retained survivor nodes. An enumeration technique well-suited for breadth-first

detection was proposed in [63]. This is accomplished by mapping the detection problem

onto a geometrical approach: For a known relative position of the received symbol to an

initial reference point within a given grid, an unique sequence of favorable nodes can be

identified. More specifically, this enables a heuristic determination of favorable child nodes

without their calculation, by only requiring a few inexpensive comparisons for a given

parent node, independent of the constellation size [63]. The result of using this approach is

that the number of required metric calculations is reduced to a minimum of one calculation

per examined node. Consequently any sort operations for node selection are redundant and

our use in this dissertation of the number of branch metric computations is supported as an

acceptable measure of computational complexity.

2.8 Discussion

Before advancing to the contributions in this dissertation, let us first step back to compare

the universe of soft-output MIMO detection algorithms. Table 2.1 classifies soft-output

45

MIMO detectors into four quadrants based on whether or not a list L ⊆ Z and/or a tree

is used in the detection process. In this dissertation we elect to focus on the upper left

quadrant of this grid, i.e. tree-based list detectors. We made the decision to focus on list

detectors because they are a viable solution to the suboptimal soft-output MIMO detection

problem with lower computational complexity than an exact solution. Detection algorithms

without a list are feasible, e.g. [78, 24, 15], but their performance often is far from the

exact solution. Soft-output detection algorithms that do not use a list and obtain strong

performance therefore represents a potential area for further research. Our decision to focus

on tree-based approaches for finding the list is based on the fact that tree-based detectors

efficiently solve the list detection problem and have a desirable performance-complexity

trade-off.

Table 2.1: Classification of soft-output MIMO detection algorithms.

LIST NO LIST

TREE
List Sphere Detector [47]
List Sequential Detector [11, 42]
Soft M Algorithm [3, 68]

NO TREE
Monte Carlo Methods [30, 38, 31] Soft ZF/MMSE [29, 20]
Semidefinite Programming [86, 73] Soft Interference Cancelation[24, 15]
Soft Sphere Projection [78]

2.9 Further Reading

Other soft-output tree-based MIMO detection algorithms include iterative tree search [28],

the list fixed-complexity sphere detector [8], and the soft fixed-complexity sphere detector

[6]. Detailed treatment of tree search algorithms can be found in [3] and [55]. Additionally,

as detailed in Table 2.1 there are many soft-output MIMO detection algorithms that fall

outside the scope of list and tree based detection algorithms. Some of these approaches

include Monte-Carlo methods [30, 38, 31], semidefinite programming [86, 73], space-time

Chase detection [59], and soft sphere projection [78]. Details on architectural issues

46

pertaining to soft-output MIMO detection algorithms are provided in [39, 22, 87]. Recent

advances relating to Schnorr-Euchner enumeration can be found in [19] and [63].

2.10 Summary

In this chapter we motivated the problem of soft-output MIMO detection. MIMO channels

enable greater reliability in the presence of fading and/or increased throughput via spatial

multiplexing gains. Because MIMO systems employ error control coding and soft-output

detection algorithms achieve lower error rates in the presence of error control coding than

hard-output detectors, the soft-output detection problem is critically important. While a

variety of approaches for the solving the soft-output MIMO detection problem exist (see

section 2.8), we motivated our reasoning for focusing on tree-based list detectors in this

dissertation. Specifically, it is because these detectors are efficient and capable of near

max-log optimal performance. As stated in this chapter, our dissertation objective is to

find a list of low cost leaf nodes in the detection tree with low and fixed computational

complexity. The remainder of this dissertation is used to achieve this objective.

47

CHAPTER 3

SMART-ORDERED CANDIDATE-ADDING ALGORITHM

3.1 Introduction

The design of multiantenna detection algorithms that simultaneously achieve low error rate

performance and low computational complexity is a challenge. This challenge is exac-

erbated as the spectral efficiency increases. In fact, the computational complexity of the

optimal multiantenna detector grows exponentially with increased spectral efficiency. In

this chapter we propose a soft-output detection algorithm, known as the smart-ordered

candidate-adding (SOCA) algorithm, that allows for multiantenna detection with low error

rate performance and low computational complexity. In fact the SOCA algorithm not only

obtains near max-log optimal error rate performance with low computational complexity,

it does so with fixed computational complexity as well.

The SOCA algorithm employs a smart-ordered QR decomposition and parallel smart

candidate adding to achieve its desirable performance-complexity tradeoff. The SOCA al-

gorithm’s fixed computational complexity is a function of the fact that it uses a breadth-first

search of the detection tree to perform candidate enumeration. Moreover, the deterministic

nature of the SOCA’s computational complexity and a careful architectural implementation

have the potential to produce a parallel architectural structure with a low and predictable

latency.

In the next section we lay the groundwork for the construction of the SOCA algorithm

by first combining the idea of smart candidate adding with breadth-first tree-based detec-

tion. We follow this motivation with the proposed SOCA algorithm in section 3.3. Next, we

extend traditional ways of classifying breadth first detection algorithms to include allowing

variable parameterization for each layer of the detection tree, as well as the inclusion of

48

parallel smart candidate adding in section 3.4. Results are presented in section 3.5, sugges-

tions for further reading in 3.6 and a chapter summary in section 3.7.

3.2 Motivation: Towards Fixed-Complexity Smart Candidate Adding

Recall the breadth-first M algorithm from chapter 2 [3]. As any other breadth first scheme,

it traverses the tree layer-by-layer; extending the b “best” children (with minimum branch

metrics) from all nodes retained from the previous layer in the tree and subsequently main-

tains the m nodes with minimum path cost from the set of extended nodes. Consequently,

the M algorithm can be parameterized by two scalar values, m and b.

Many detection algorithms are special cases of the classical M algorithm with specific

parameterizations and preprocessing. The simplest example is the hard-output decision

feedback detector, for which m = b = 1. With b = q and m = ∞, where an m value of ∞

implies that all nodes extended are retained, the algorithm turns into the maximum com-

plexity, brute-force, approach which enumerates all possible transmit vectors. For b = q,

and arbitrary positive m, the M algorithm is also known as the K-best algorithm [101, 39].

As described in chapter 2, an effective way to improve the error-rate performance of

soft-output MIMO detection algorithms is through the use of smart candidate adding. We

next show how SCA can be incorporated into a breadth-first tree search by not only con-

sidering branch metrics for the detection tree, but also the corresponding bit mappings.

Recall from section 2.4.3.1 that SCA algorithms search for candidate lists that either ex-

actly or approximately include (1) âMAP and (2) â−MAP
j for each of the j ∈ {1, . . . ωNt} trans-

mitted bits [62]. Incorporating SCA into a breadth-first detector was proposed in [110].

This so-called SCA-M algorithm combined the classical M algorithm with an approximate

candidate adding algorithm. Specifically, the SCA-M algorithm can be broken into two

stages [110]:

• Stage 1: is a breadth-first list tree-search for the MAP estimate. This search, which

finds a list of candidates with low cost (and which does not necessarily include the

49

exact MAP solution) can potentially search the entire signal setZ depending on the

selection of m(1) and b(1), where the superscript (1) is used to denote stage 1. The

parameters m(1) and b(1) should be selected so that the MAP estimate is an element of

the stage 1 list, denoted L1, with high probability. The list size at the end of stage 1

is ℓ1 = |L1|.

• Stage 2: searches for counterhypotheses for bits inL1 that do not yet have a counter-

hypothesis, i.e. all candidates in L1 possessing the same logical bit (0 or 1) for each

given bit j ∈ {1, . . . ωNt}. Consequently, stage 2 searches over only a constrained

signal setZ−MAP
j for each bit j ∈ {1, . . . ωNt} in L1 without a counterhypothesis, and

is referred to as a constrained search. An M-Algorithm with m(2) and b(2) is used to

find the list L2, where the final list for the SCA-M algorithm is L = L1
⋃L2.

Achieving low error rates using the SCA-M algorithm is possible even when the stage

2 list length, as well as the parameter m(2) and b(2), are small. In fact, results in [110]

show that low error rates are possible when ℓ2 = L2 = m(2) = b(2) = 1. This implies that

once the MAP estimate is found, the search for counterhypotheses need not require high

computational complexity.

A key drawback of the SCA-M algorithm, like many prior SCA algorithms [62, 105,

94], is that it requires multiple searches through the detection tree. Additionally, we observe

that depending on the stage 1 list L1, stage 2 constrained searches may be required for all

j ∈ {1, . . . ωNt} bits (only possible when ℓ1 = 1) or a stage 2 constrained search may not be

required (in the case where all ωNt bits in L1 have a counterhypothesis). This observation

implies that stage 2 for the SCA-M algorithm has a variable computational complexity that

ranges from requiring between 0 and ωNt constrained searches, depending on the number

of counterhypotheses in L1 relative to the minimum cost estimate in L1. Out of the two

aforementioned drawbacks of the SCA-M algorithm, namely multiple searches through

the detection tree (i.e. stage 1 and stage 2) and the variable complexity of stage 2, we

50

consider the multiple searches through the detection tree to be the more critical drawback

because it leads to higher than necessary computational complexity. In the next section we

propose a single-tree-search low- and fixed- computational complexity algorithm, known

as the SOCA algorithm, that solves both the problem of multiple searches and variable

computational complexity.

3.3 Fixed Complexity Smart Candidate Adding - SOCA Algorithm

The computational complexity of breadth-first smart candidate adding can be fixed by per-

forming constrained searches for counterhypotheses concurrently with the MAP estimate as

the search proceeds through the detection tree, rather than through supplemental searches.

This is similar to the variable-complexity depth-first “parallel sphere detector” approach

taken in [50] and improved upon in [87]. Enabling concurrent counterhypothesis searches

requires a single pass through the detection tree. We accomplish this by electing to perform

a single pass of the detection tree using the fixed-complexity breadth-first M-Algorithm. A

direct consequence of this decision is that the counterhypothesis for a bit of interest can

only be found relative to the best partial MAP (PMAP) estimate at the current level in

the detection tree – as opposed to the exact MAP estimate in prior approaches. We there-

fore obtain a complexity reduction by using this proposed parallel smart candidate adding

(PSCA) approach at the cost of a small loss in performance.

We next propose an algorithm for solving the soft-output MIMO detection problem

called the smart ordering and candidate adding algorithm. The SOCA algorithm consists

of two stages and allows for a tradeoff between error-rate performance and computational

complexity. These two stages are (1) a preprocessing stage and (2) a core processing stage.

The preprocessing stage is used to determine the mapping between layers in the detection

tree and the transmitted vector of information symbols. The core processing stage finds

the list L, the output of the SOCA algorithm. Because the preprocessing algorithm can be

considered a performance enhancement, we begin by describing the core processing.

51

3.3.0.2 SOCA Core Processing

The SOCA algorithm finds L using a standard detection tree like the one described in

section 2.3.1. The foundation of the SOCA algorithm is a simple breadth-first strategy for

searching the tree that is closely related to the M algorithm [3]. Like the M algorithm, the

SOCA algorithm moves through the tree one layer at a time, discarding all but a subset

of “surviving” nodes from a given layer before moving to the next. One difference is how

many surviving nodes are retained at each layer; rather than keeping this fixed, the SOCA

algorithm allows for the possibility that this number mi may depend on the layer index i.

Another difference is how many children from each surviving node are extended; rather

than keeping this fixed, the SOCA algorithm allows for the possibility that this number bi

may also depend on the layer index i.

We proposed the idea of varying the number of surviving nodes extended from retained

parent nodes for each layer in the detection tree, i.e. the bi’s, in [68]. We called the detector

in [68] the channel-based layer-adaptive M (CLAM) algorithm. The CLAM algorithm

attempted to allocate the most computational resources to the layer most likely to be in error

based on each of the per-layer SNRs. Hard-output results demonstrated that the CLAM

algorithm is on average less complex than the M algorithm while achieving significantly

improved performance. A key finding from our work on the CLAM algorithm is that,

similar to the parallel detector and the fixed-complexity sphere detector, it is most important

to allocate computational resources to the first (or first few) layers in the detection tree.

Consequently, while the SOCA algorithm does not allocate the bi’s based on channel state

information, the idea of varying these bi’s is motivated by the ideas we proposed in [68].

The SOCA algorithm builds upon its breadth-first foundation by inserting a new step.

Before pruning away (if necessary) all but the mi best surviving nodes from a current set

of candidate nodes at layer i, the SOCA algorithm identifies the candidate node with the

best metric as the partial MAP node. Once identified, the SOCA algorithm adds new nodes

to the candidate set so that each of the ω bits corresponding to the current symbol ai has

52

a counterhypothesis. Specifically, if ĉPMAP denotes the ωi-bit pattern corresponding to the

node with the best metric, with the last ω of these bits corresponding to ai, then the SOCA

algorithm adds the ω sibling nodes of the partial-MAP node by simply flipping each of

the last ω bits of ĉPMAP in turn. This bit flipping strategy was chosen because of its low

complexity, despite the facts that (1) the counterhypotheses so generated may not be the

ones having the best metric, and (2) a counterhypothesis for the bit in question may already

be represented in the candidate set. Once added, these counterhypotheses may be immedi-

ately pruned, although our results indicate that for MIMO system sizes at least as large as

4× 4, the performance benefit of protecting these added counterhypotheses combined with

the increased computational complexity of a candidate sort to determining which nodes to

prune mean that protecting all enumerated nodes for the SOCA algorithm is advised.

In the case of gray mapping and QAM alphabets, while the sibling nodes are not guar-

anteed to have small metrics, they are likely to have small metrics because at least two, and

at most four, of the siblings are nearest neighbors of the transmitted symbol estimate. In

fact, exactly two, three and four siblings correspond to nearest neighbors in the case of an

estimated corner, border, and interior point for a gray-mapped QAM alphabet, respectively.

Because the SOCA algorithm is breadth-first and possesses fixed computational com-

plexity it lends itself well to architectural implementation. For reasons we will discuss

later, namely the preprocessing algorithm, the SOCA algorithm does not need to consider

the problem of missing counterhypotheses to the children extended from the root node, i.e.

the SOCA algorithm does not concern itself with missing counterhypotheses at the first

layer of the detection tree.

Like any other algorithm built on the foundation of the M algorithm, the tree for the

SOCA algorithm can be pruned using a sort-and-select procedure, reducing the number of

nodes to the mi best nodes whenever mi is less than the number of nodes enumerated at the

current layer in the tree. When mi is larger than the number of nodes extended at a given

layer in the tree, this sort-and-select stage is omitted for reduced complexity. In this case,

53

instead of a sort-and-select procedure, all that is required is to determine the minimum cost

node at each layer in the tree. If a sort-and-select is necessary, one option is the heapsort

algorithm [55]. The heapsort algorithm, at the ith layer of the tree, can be achieved with

computational complexity Θ(mi log mi).

A concise description of the SOCA algorithm is provided in Fig. 3.1. In summary, the

SOCA algorithm takes as input the received signal r, the MIMO channel H, the constella-

tion A, and two vectors b = [b1 b2 . . . bNt] and m = [m1 m2 . . . mNt], where b grows the

tree by adding nodes and m prunes the tree by deleting nodes. The set F is used to denote

the surviving nodes at the current layer in the tree. We recommend keeping the elements

of b small (1 if possible), with an exception for the first detection layer (i.e. b1 > 1) due

to the fact that the diversity order of the first symbol to be detected is Nr − Nt + 1 and a

mistake here leads to error propagation. In many practically relevant system configurations

b = [b1 1 . . . 1] with b1 set to between 25% and 50% of q yields excellent performance at

very low complexity. The reason we do not need to set b1 equal to q is because of our use of

a smart-ordered QR algorithm, i.e. the first line in Fig. 3.1. Without lines 6 through 11 and

the assurance of a smart-ordered QR decomposition in line 1, the rest of the pseudocode is

simply the M algorithm with variable b and m.

We will discuss the preprocessing for the SOCA algorithm momentarily. First, we

provide a simple example of the core processing for a two transmitter system employing

QPSK modulation. Specifically, we are interested in finding the leaf nodes resulting from

searching the tree in Fig. 3.2-a for b = [3 1] and m = [3 5]. The bit mappings for each

decision are, from left to right, 00, 01, 11 and 10, as noted above and below the detection

tree in Fig. 3.2-a, and the branch metrics are labeled on each branch for Fig. 3.2-a.

Fig. 3.2-b begins the algorithm by enumerating the b1 = 3 best nodes from the root of

the tree, i.e. the nodes corresponding to branch metrics of 2, 3 and 7, and excluding the

branch with metric 8. Then, because m1 = 3 and only three nodes have been enumerated,

no pruning occurs. These three remaining nodes serve as parent nodes for the next layer in

54

Algorithm: SOCA
Input: r,H, b,m

Output: L
[Q,R,P] = SOQR(H, b1)1

y = Q∗r2

F = root node3

for i = 1 : Nt do4

F = ∪node∈F {bi best children of node}5

if i > 1 then6

for j = (i − 1)ω + 1 : iω do7

Flip bit j of ĉPMAP and add the corresponding node to F8

end9

end10

F = mi best of F11

end12

L = PF13

Figure 3.1: SOCA Algorithm Description.

the detection tree.

We continue on at the next layer in the tree by enumerating the b2 = 1 best child node

from each of the retained parent nodes, as shown in Fig. 3.2-c. This yields 3 · 1 = 3 leaf

nodes in the detection tree. We then perform parallel candidate adding on the best estimate

in the tree, i.e. 0000 as shown in Fig. 3.2-d yielding five leaf nodes. Because there are five

leaf nodes and m2 = 5 we retain all leaf nodes for our list and we are done. Observe that

the bit patterns corresponding to the five nodes are 0000, 0010, 0001, 0111 and 1000. As

desired, given that no pruning occurs (i.e. m2 = 5), every bit, in the layers after the first,

has an associated counterhypothesis. In fact, it turns out that for this example all bits have

a counterhypothesis, although for the SOCA algorithm this is not generally guaranteed

at the first detection layer. Observe that for this example the node 0001, with cost 7, is

unnecessary because node 0111, with its lower cost of 6, serves as the counterhypothesis to

the MAP node 0000 with cost 3 for both the second and fourth bits. For completeness we

remark that node 0010 serves as the counterhypothesis for bit three and node 1000 serves

55

Figure 3.2: Example of SOCA algorithm for a 4-ary tree with two layers.

as the counterhypothesis for bit one.

3.3.0.3 Ordering of the Channel Matrix

As we have seen in previous chapters, the mapping of layers in the detection tree to trans-

mitted symbols is a critical factor in determining either the performance or the computa-

tional complexity (or both) for soft-output MIMO detection. An ordered QR decomposition

is used to achieve the desired ordering, i.e. HP = QR, where P is a permutation of INt .

The BLAST ordering [34] presented in chapter 2 is not generally optimal when more

than one node is enumerated at any stage in the detection tree. For example, the parallel

detector (PD) of [58] enumerates all q child nodes of the root node and extends each of

these nodes using decision feedback to obtain q leaf nodes. The parallel detector works

best when the weakest received signal component is detected first, so that its contribution

is completely removed from the detection problem. Intuitively, this is because there is no

possibility for an error to occur in a layer where all child nodes are enumerated. Con-

sequently, it is desirable to enumerate all child nodes in the layer with the largest noise

enhancement to minimize performance loss. In [9] the parallel detector ordering was ex-

tended by employing the weakest-first parallel detector ordering for layers where all q child

56

nodes are enumerated and the strongest-first BLAST ordering for all other layers. In [51] it

was shown that the ordering of [9] maintains the diversity order of the maximum-likelihood

detector with a fixed complexity and order Θ(q
√

Nt) if Nr = Nt, when all nodes in the first

⌊
√

Nt⌋ layers are enumerated.

A detection order for cases where the number of child nodes to be enumerated from

each parent is between 1 and q is given by the B-Chase detector [98]. B-Chase preprocess-

ing has been shown to gracefully trade off between the opposing design goals of maximiz-

ing (as in the BLAST ordering) vs. minimizing (as in the PD ordering) the SNR of the first

detection layer by allowing the ordering algorithm to consider an increase in the number of

child nodes enumerated from the root node as an effective SNR gain for the receiver.

We now present a particular B-Chase preprocessing configuration that we found to

perform well. We call this configuration the smart-ordered QR (SOQR) decomposition.

A SOQR decomposition takes as inputs H and b1 and produces the outputs Q, R, and P.

The key step in the SOQR is to determine which layer to detect first. This decision is a

function of the per-layer SNRs and b1. As b1 is increased from 1 to q the layer selected

to be detected first moves from the one with the highest SNR to the one with the lowest.

This is done so that as b1 is increased to approach q we order the detection based on the

assumption that detection errors in the first layer in the tree are unlikely. Indeed, they are

impossible when b1 = q.

We propose that the index k of the first layer to be detected be chosen according to the

B-Chase criterion [98]:

k =

arg max
n∈{1,...Nt}

‖Yn‖2, b1 = q

arg max
n∈{1,...Nt}

min

{
γ2

b1

‖Yn‖2 , 1
min
s,n
{‖Ys‖2−|gs,n |2}

}

, otherwise
(3.1)

where Y∗ = R−1 is determined by a QR decomposition of the channel matrix, i.e. QR = H.

Additionally, gs,n = Y∗sYn/‖Yn‖, where Yn is the nth column of Y. The parameter γ2
b1

is the

57

effective SNR gain (see [98]) at the first detection layer when b1 child nodes are enumerated

from the root node. For QPSK transmission γ2
1 = 1, γ2

2 = γ
2
3 = 2 and γ2

4 = ∞. Values of

γ2
bi

for 16 and 64-QAM transmission are found in [98]. However, because the value for γ

can be determined using a lookup table that is a function of the parameter b1, the selection

for b1 does not influence the complexity of the SOQR decomposition. The complexity of

(3.1) is dominated by computing the squared column norm ‖Yn‖2 a total of Nt times and

the Nt(Nt − 1) vector multiplications Y∗sYn to compute all gs,n values.

After selecting the index of the first layer to be detected, the remainder of the SOQR

is essentially a SQRD [102], where the ordering of the first detection layer is forced. The

SOQR can be achieved with complexity order Θ(N3
t). Pseudocode for the SOQR algorithm

is provided in Fig. 3.3. Pseudocode for the SOQR algorithm is provided in Fig. 3.3. Note

that the forced ordering in line 1, the initialization of k2 in line 3, and the forced ordering

of lines 5-12 ensures the first layer detected is chosen according to (3.1).

In the next section we classify a number of hard- and soft-output breadth-first detection

algorithms of which the SOCA algorithm is an example. Results for the SOCA algorithm,

as well as many others detailed in the next section, will be presented following this classi-

fication.

3.4 Classifying Breadth-First Detectors

Clarifying and extending the presentation in the previous section, we propose to classify

breadth-first detectors by specifying the following parameters individually for each layer

in the detection tree: (1) the number of child nodes enumerated from each retained parent

node, (2) the number of nodes to retain before extending child nodes, and (3) whether or

not to perform parallel smart candidate adding. Additionally, it is essential to specify the

preprocessing algorithm in order to accurately describe a breadth-first detector.

We specify the three parameters for a breadth-first tree search using 1 × Nt vectors

m = [m1 m2 . . . mNt], b = [b1 b2 . . . bNt] and s = [s1 s2 . . . sNt], respectively, where bi

58

Algorithm: SOQR
Input: H, b1

Output: Q,R,P

Find k using (3.1): a function of H and b11

Q = H, R = 0Nt , P = INt2

d = diag(Q∗Q); k2 = k3

for i = NT : −1 : 1 do4

if i==1 then5

k = 16

else7

k = arg min
k,k2

d
8

end9

if i == k2 then10

k2 = k11

end12

Swap columns i and k in Q, R, P13

Swap elements i and k in d14

Ri,i =
√

di15

qi = qi/Ri,i16

for j = i − 1 : −1 : 1 do17

Ri, j = q∗i q j18

q j = q j − Ri, jqi19

d j = d j − |Ri, j|220

end21

di = ∞22

end23

Figure 3.3: Smart-Ordered QR (SOQR) Decomposition.

represents the number of children extended from each parent node at the ith tree layer

of the detection tree, where mi represents the number of nodes retained at the ith layer

and the boolean vector s = [s1 s2 . . . sNt] determines whether or not to perform parallel

smart candidate adding at the ith layer. The union of the m, b and s vectors, along with

a specification for the preprocessing algorithm, leads to a framework that allows for the

characterization of a large class of fixed complexity, single-pass tree search, breadth-first

59

MIMO detectors. While this framework is simple to describe, it enables a myriad of possi-

bilities and brings to light many new design considerations. An appropriate configuration

is crucial to achieving a desirable performance-complexity tradeoff.

A concise description of the generalized framework is provided in Fig. 3.4. In fact the

framework is very close to the pseudocode description for the SOCA algorithm provided in

Fig. 3.1, with the modification that the ordered QR decomposition is algorithmic specific

and the vector s is introduced. Our generalized framework takes as input the received

signal r, the MIMO channel H, the alphabet A, and three vectors b = [b1 b2 . . . bNt],

m = [m1 m2 . . . mNt], and s = [s1 s2 . . . sNt]. The set F is used to denote the surviving

nodes at the current layer in the tree. More detail concerning the detection ordering is

provided in section 3.3.0.3.

Algorithm: Generalized Breadth-First Soft-Output Detection
Input: r,H, b,m, s

Output: L
[Q,R,P] = OrderedQR(H)1

y = Q∗r2

F = root node3

for i = 1 : Nt do4

F = ∪node∈F {bi best children of node}5

if si = 1 then6

for j = (i − 1)ω + 1 : iω do7

Flip bit j of ĉPMAP and add the corresponding node to F8

end9

end10

F = mi best of F11

end12

L = PF13

Figure 3.4: Algorithm for Generalized Breadth-First Soft-Output Detection.

60

3.4.1 Placement

We will now place existing fixed-complexity breadth-first detectors into the framework just

presented and discuss the design considerations that accompany each detection scheme,

as well as relationships amongst them [68]. While the list of detection algorithms in this

subsection does not claim to be complete, it does provide insight into many of the most

common and effective fixed complexity breadth-first schemes.

Decision-Feedback: The simplest scheme to be captured by the presented framework

is the decision-feedback equalizer (DFE), or successive interference cancelation (SIC)

detector. After removing (“canceling”) the signal contribution of previous layers, this

scheme will recursively determine the single best candidate at the currently considered

layer, i.e. single enumeration, and proceed with this decision to the next layer. Obviously,

the tree width is minimized by this scheme. Good DFE performance thus heavily

depends on making the correct decision in the initial detection layer (having the lowest

diversity order). BLAST (or SQRD) should therefore be used to obtain the optimal (or

nearly optimal) DF performance. DF detection is captured through the parameterization

b = [1 . . . 1], m = [∞ . . . ∞], and s = [0 . . . 0] and the specification of the preprocessing

algorithm. Consequently µ = Nt and ℓ = 1.

Parallel Detector [58]: Rather than using single enumeration at the first detected layer,

i.e. b1 = 1, the parallel detector uses full enumeration at this layer, i.e., b1 = q so that all

candidates are enumerated. All subsequent layers are detected from the q parent nodes at

the first layer using decision feedback detection. The PD also adopts a special ordering,

where the weakest received signal component is detected first. Subsequent layers use

the BLAST ordering. The intuitive justification for such an approach is that in each

layer where all nodes are enumerated, no decision errors can occur. It is therefore more

desirable to enumerate all candidates for the layers with the largest noise enhancement, to

61

minimize performance loss, rather than waste complexity on layers which do not enhance

the noise significantly. The PD uses the parameterization b = [q 1 . . . 1], m = [∞ . . . ∞],

s = [0 . . . 0] and PD preprocessing. Thus, µ = qNt and ℓ = q.

B-Chase Detection [96, 97, 95, 98]: The B-Chase(ℓ) detector is a hard-output detector

that generates a list of ℓ tentative decisions for the first detected symbol, and implements

a bank of ℓ ordered decision-feedback detectors in parallel, one for each element of the

list. In the case of hard-output detection, the final decision vector is the DF equalized

output that minimizes the mean-squared error (MSE). As described in section 3.3.0.3, the

performance-complexity trade-off for Chase detection is easily adapted by adjusting ℓ, as

Chase detection reduces to ordered DF when ℓ = 1 and the PD when ℓ = q. Increasing

ℓ improves performance at the cost of a complexity growing linearly in ℓ. The B-Chase

detector uses the parameterization b = [ℓ 1 . . . 1], m = [∞ . . . ∞], s = [0 . . . 0] and

B-Chase preprocessing. Hence, it computes µ = ℓNt branch metrics and the list size is ℓ.

Fixed-Complexity Sphere Decoder [9, 51]: The FSD extends the PD to handle cases

when the number of candidates enumerated at a detection layer is neither 1 or q. Specif-

ically, when all nodes are enumerated at a given layer in the detection tree, the FSD

adopts the ordering criterion of the PD, otherwise it uses the BLAST ordering. Similar

to the PD and the B-Chase detector, paths once generated are never pruned. The FSD is

capable of many parameterizations, where s is always the zero vector. The most effective

parameterizations, however, are those of the PD and, for large dimensions such as 8 × 8

[7], the parameterization b = [q q 1 . . . 1] and m = [∞ . . . ∞].

List Fixed-Complexity Sphere Decoder[8]: The list fixed-complexity sphere decoder

(LFSD) is a soft-output extension of the FSD. It builds on the FSD approach by typically

62

computing more branch metrics than the FSD, in order for L to include more counter-

hypotheses to the hard-output FSD decision vector. In [8] this was typically done using

balanced powers of 2 for b2, . . . bNt . In the event that this was not possible due to list

length constraints, these powers of 2 are weighted to earlier layers in the detection tree.

Parallel Smart Candidate Adding [113]: The parallel smart candidate adding algorithm

is very similar to the SOCA algorithm except that s1 = 1 and a SQRD preprocessing

is used. Consequently, the SOCA represents an improvement over the PSCA algorithm

[113]. The PSCA algorithm is captured through the parameterization m = [∞ . . . ∞],

s = [1 . . . 1], and an appropriate selection of the preprocessing algorithm and the vector

b. Note that in the case bi > 3 (bi > 2 for the real-valued model) a slight variance in

complexity is possible, since the bi closest points will then generate a varying number of

counter-hypotheses to the partial MAP estimate.

Smart Ordered Candidate Adding [67]: The proposed SOCA algorithm has been

discussed in detail in this chapter. As described, two key parameter choices allow for the

near max-log optimal performance of the SOCA algorithm. First, the smart-ordered QR

decomposition provided in Fig. 3.3 is employed. Second, the SOCA algorithm is realized

by keeping the elements of b small (1 if possible), with an exception for the first detection

layer (i.e. b1 > 1) due to the fact that the diversity order of the first symbol to be detected

is Nr − Nt + 1 and a mistake here leads to error propagation. Due to the selection of b1 > 1

the PSCA parameter is set to s = [0 1 . . . 1].

63

3.4.2 Computational Complexity

We now describe the core processing computational complexity of breadth-first detectors,

as classified in section 3.4, using the total number of branch metric computations µ. Specif-

ically, µ is a function of the number of nodes retained ζi for a given layer in the detection

tree [68]:

ζi = min (ζi−1bi + siκi,mi) (3.2)

where i is the detection layer, ζ0 is initialized to 1, and κi denotes the number of branch

metrics calculated as part of the smart candidate adding at layer i. The term κi is given by:

κi = max
(

ω − 2(
√

bi − 1), 0
)

. (3.3)

For the complex-valued system model it is assumed that bi is the square of an integer [68].

The total number of branch metric computations for schemes in our framework becomes:

µ =

Nt∑

i=1

(ζi−1bi + siκi) . (3.4)

The final list size is ℓ = |L| = ζNT . Consequently, all that is required to determine the core

computational complexity for breadth-first detectors, as classified in section 3.4, in terms

of the number of branch metrics are the vectors b, m and s. Large entries for the vector b,

particularly at the early layers in the detection tree, and m = ∞ lead to a large detection

tree, whereas small entries for the vector b and m = ∞ yield a smaller detection tree.

The desire to keep the entries in b small (as close to 1 as possible) is in many ways the

motivation behind the SOCA algorithm.

The SOCA algorithm has the property that when m = ∞ and b = [b1 1 . . . 1], as is the

case for the 4 × 4 results presented in section 3.5.2, only

µ = b1 +

Nt∑

i=2

b1 + ω(i − 1) = Nt

(

b1 +
ω(Nt − 1)

2

)

(3.5)

branch metrics are computed. The intuition behind (3.5) is that first there are b1 nodes

enumerated from the root of the detection tree and each of these traverses each of the Nt

64

layers of the detection tree resulting in Ntb1 leaf nodes. Additionally, at each layer of the

detection tree, excluding the first (i.e. Nt−1 layers) ω additional nodes are added for which

decision feedback detection occurs until ω leaf nodes are obtained. Multiplying out the

right hand side of (3.5) demonstrates that the number of branch metric computations for

the SOCA algorithm has orderΘ(N2
t). As a sanity check, for the formula in (3.5) and b1 = 3

and Nt = 2 the SOCA algorithm computes exactly eight branch metrics. This is the same

result as in the example in Fig. 3.2.

The number of candidate vectors in the list L for the SOCA algorithm when b =

[b1 1 . . . 1] is given by:

ℓ = min
(

mNt , b1 + ω (Nt − 1)
)

. (3.6)

When mNt = ∞ then ℓ = b1 + ω (Nt − 1). This is simply a mathematical statement saying

that, for each detection layer after the first, ω additional nodes are enumerated in addition

to the decision feedback detection occurring from each node retained from the previous

layer in the tree, ultimately resulting in an additional ω(Nt − 1) leaf nodes. Consequently,

for the SOCA algorithm, the list size grows linearly with the number of input streams.

3.5 Results and Analysis

This section is used to provide performance versus computational complexity results for

the proposed SOCA and PSCA algorithms, as well as many of the soft-output detection

algorithms detailed so far in this dissertation. We begin by describing the simulation setup,

followed by the specific parameterizations used for both fast and slow fading channel con-

ditions. We present results and analysis for both fast and slow fading scenarios in order to

consider situations where the ability to extract either (a) the time diversity or (b) the spatial

diversity from the channel is essential.

65

3.5.1 Simulation Setup

For both fast and slow fading scenarios the detector is run only once, i.e. we do not employ

iterative detection-decoding. For all scenarios, detection is performed using the complex-

valued system model, a random interleaver is used, and we employ unbiased MMSE de-

tection, as detailed in section 2.6. Additionally, LLRs were clipped at a magnitude of ±6

for all investigated algorithms. LLR clipping based on channel state information improves

performance and is the focus of chapter 4.

3.5.1.1 Fast Fading

For the fast-fading scenario we use temporally i.i.d. fading, i.e., each transmitted vector

symbol sees a new channel realization. For coded results, the information block size (in-

cluding tail bits) is 9216 bits and a setup equivalent to the one in [47] is employed: a rate 1/2

parallel concatenated convolutional code (PCCC) based on memory 2 constituent convo-

lutional codes with generator polynomials (7R, 5)octal using 8 internal iterations of logMAP

decoding, where R denotes which generator is in the denominator. Fast-fading performance

is measured in terms of the averaged Eb/N0 in dB to achieve an uncoded BER (uBER) of

10−2 or a coded BER (cBER) 10−5 to match [47].

3.5.1.2 Slow Fading

Here we assume the channel does not change during the duration of the entire transmitted

codeword and that the channel matrix entries are drawn anew with the transmission of

each new codeword. A convolutional code with code polynomial [133 171] and constraint

length 7, punctured to code rate 3/4 is employed and the information block size (including

tail bits) is 3456. The convolutional decoder employed is MaxLog(MAP). Performance is

measured in terms of the Eb/N0 in dB required to achieve a frame error-rate (FER) of 10−2.

We used the FER to measure slow-fading performance because for this scenario, where

we employ a weak code and the channel offers no time diversity, BER results can often be

66

misleading. The target FER of 10−2 was selected because it is common to design systems

for this error rate [87].

3.5.2 Results

A summary of the algorithmic placements from the previous subsections is provided in

Table 3.5.2 for a 4 × 4 fast fading MIMO channel [68]. In addition to specifying the pa-

rameterization of the aforementioned algorithms, it provides the number of branch metric

calculations for a 4×4 MIMO system using 16-QAM and 64-QAM transmission alphabets,

as well as the SNR required to achieve the target uncoded and coded BERs. Typical param-

eterizations for the M, LFSD, PSCA, and SOCA algorithms are provided. Additionally, the

preferred channel decomposition for each algorithm is provided.

The algorithms listed in the first three results columns of Table 3.5.2, i.e. the BLAST-

ordered decision feedback detector [91, 34, 60], the parallel detector [58], and the B-Chase

detector [98] were all designed as hard-output detectors. As the B-Chase detector is a

generalization of both the BLAST-ordered decision feedback detector and the parallel de-

tector, we recommend it to those seeking a hard-output MIMO detector that has a good

performance-complexity tradeoff. Results in [68] support this recommendation.

Out of the soft-output detectors in Table 3.5.2, i.e. the LFSD, the PSCA and the SOCA

algorithms, the SOCA algorithm parameterized with b = [8 1 1 1] and b = [16 1 1 1] has

the most desirable performance-complexity tradeoff. These two SOCA realizations are

within 0.3 and 0.2 dB of the LFSD with b = [q 2 2 2] for 64-QAM transmission, and re-

quire only 6% and 10% of the computational complexity of the realized LFSD, respectively.

We now present a series of error-rate performance versus computational complexity

results, with an emphasis on the proposed SOCA algorithm. In addition to the fixed com-

putational complexity SOCA algorithm, results are presented for the LSD [47] and the

LISS [11]. The LISS employs a bias parameter to perform statistical tree pruning set to 1

67

B
L

A
S

T
P

D
B

-C
ha

se
(1

)
B

-C
ha

se
(q

)
B

-C
ha

se
(ℓ

)
L

F
S

D
L

F
S

D
P

S
C

A
P

S
C

A
S

O
C

A
S

O
C

A
F

S
D

(1
)

F
S

D
(Q

)
m

∞
∞

∞
∞

∞
∞

∞
∞

∞
b

[1
1

1
1]

[q
1

1
1]

[ℓ
1

1
1]

[q
2

1
1]

[q
2

2
2]

[1
1

1
1]

[4
4

1
1]

[8
1

1
1]

[1
6

1
1

1]
s

[0
0

0
0]

[0
0

0
0]

[0
0

0
0]

[0
0

0
0]

[0
0

0
0]

[1
1

1
1]

[1
1

1
1]

[0
1

1
1]

[0
1

1
1]

µ
16

-Q
A

M
4

64
4ℓ

11
2

24
0

44
96

56
88

S
N

R
[d

B
]

10
−2

uB
E

R
16

.0
5

12
.8

5
–

–
–

13
.0

6
12

.8
1

–
–

S
N

R
[d

B
]

10
−5

cB
E

R
13

.0
8

9.
67

–
9.

33
8.

84
9.

37
8.

95
9.

10
9.

03
µ

64
-Q

A
M

4
25

6
4ℓ

44
8

96
0

64
13

4
62

94
S

N
R

[d
B

]
10
−2

uB
E

R
21

.6
6

17
.8

8
–

–
–

18
.4

4
18

.0
6

–
–

S
N

R
[d

B
]

10
−5

cB
E

R
18

.0
1

13
.8

4
–

13
.3

7
12

.9
6

13
.7

2
13

.2
2

13
.6

4
13

.3
1

T
a

b
le

3
.1

:
C

om
pa

ri
so

n
of

va
ri

ou
s

fi
xe

d-
co

m
pl

ex
it

y
br

ea
dt

h-
fi

rs
tM

IM
O

de
te

ct
io

n
sc

he
m

es
fo

r
a

4
×

4
M

IM
O

ch
an

ne
l.

68

at each level of the detection tree [16]. This bias parameter reduces computational com-

plexity at the cost of a small performance penalty relative to the LSD with the same list

size. We also compare against the single-tree-search LSD algorithm [87]. Finally, results

for a soft-output implementation of the M algorithm [3] are provided, where we form L

from the mNt best leaf nodes at the final detection layer. Finally, all algorithms employ the

best-first Schnorr-Euchner enumeration [76], rather than Fincke-Pohst enumeration [32].

Fig. 3.5 depicts performance versus computational complexity results for 16-QAM

transmission in fast Rayleigh fading. The average computational complexities for the LSD,

LISS, and STS-LSD are represented using dashed lines and the 99.9th percentile compu-

tational complexities are represented using solid lines. The LSD is represented by square

markers, the STS-LSD by diamond markers and the LISS by circular markers. For the

LSD the list size ℓ is provided for each marker. The same list sizes are represented for the

LISS, although the performance results differ due to the statistical tree pruning performed

by the LISS [16]. For the STS-LSD the numbers next to the markers represent the value of

the clipping/pruning parameter Lmax as described in [87], instead of the list length, because

this parameter determines the computational complexity for the STS-LSD. In addition to

the variable complexity algorithms, the solid curve denoted with pentagram markers rep-

resents the proposed fixed complexity SOCA algorithm. The numbers corresponding to

each SOCA marker denote the number of nodes enumerated at the first detection layer b1.

Finally, we note that for all 4× 4 SOCA results we use the parameterization b = [b1 1 1 1],

where b1 is the number of child nodes enumerated from the root of the tree, and m = ∞

so that no tree pruning occurs. A consequence of omitting tree pruning is that we do not

need a sort-and-select stage to determine the mi nodes to retain at the ith layer of the tree.

Instead, all that is needed is the selection of the lowest cost node at any layer in the tree so

that parallel smart candidate adding can be applied to this node.

Fig. 3.5 shows that for the fast-fading case, the averaged computational complexity

for the STS-LSD (i.e. STS-LSD) algorithm achieves a desirable performance-complexity

69

10
1

10
2

10
3

8.5

9

9.5

10

10.5

11

11.5

12

12.5

Branch Metric Computations

E
b
/N

0
[d

B
]

R
eq

ui
re

d
fo

r
B

E
R

10
−5

L
SD

LSD

L
ISS

SO
C

A

L
ISS

ST
S-L

SD

ST
S-L

SD

0.50.5
11

33

66

Average

99.9%

ℓ = 1

ℓ = 2

ℓ = 4

ℓ = 8

ℓ = 16

ℓ = 64

1

2

4

8 16

Figure 3.5: Performance vs. complexity for soft-output 4 × 4 MIMO detection schemes
using 16-QAM transmission in fast Rayleigh fading. The numbers corresponding to the
SOCA curve represent the value for b1 and the numbers corresponding to STS-LSD curves
represent Lmax.

tradeoff. Often the worst-case (or bounded worst-case) computational complexity is more

important in terms of system design. The performance-complexity curve for the STS-LSD

therefore serves as a somewhat idealized reference to which other detection algorithms

should aspire. Here the fixed-complexity SOCA algorithm with b1 = 8 is an attractive

option because, while it performance-complexity profile is worse than the STS-LSD, it sig-

nificantly outperforms the 99.9th percentile STS-LSD. Fig. 3.5 also shows that for b1 > 4

the SOCA achieves a better performance-complexity tradeoff than the LISS or LSD algo-

rithms.

In contrast to all variable complexity algorithms, the SOCA algorithm achieves its

performance-complexity tradeoff with fixed computational complexity, an advantage from

an architectural standpoint because it leads to a regular design structure. Additionally, the

breadth-first layer-by-layer nature of the SOCA algorithm means that it is possible to con-

struct a parallel architectural implementation with low latency [75].

70

10
1

10
2

10
3

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

Branch Metric Computations

E
b
/N

0
[d

B
]

R
eq

ui
re

d
fo

r
B

E
R

10
−5

LSD

LSD

L
FSD

Average
STS-LSD

STS-LSD

LFSD

PD

0.50.5

11

3
3

6

6 [64 2 1 1]b

[64 4 2 1]b

99.9%
M(4, 4)

M(8, 8)

ℓ = 1

ℓ = 2

ℓ = 4

ℓ = 8

ℓ = 16

ℓ = 64

1

2

4

8

16
32 64

M(256, 64)

Figure 3.6: Performance vs. complexity for soft-output 4 × 4 MIMO detection schemes
using 64-QAM transmission in fast Rayleigh fading. Results for the LFSD [8] are provided
for b = [64 1 1 1], b = [64 2 1 1] and b = [64 4 2 1].

71

Fig. 3.6 provides the same performance-complexity plot as Fig. 3.5, but for 64-QAM

transmission. Once more the SOCA performance-complexity curve falls between that of

the average and 99.9th percentile computational complexity for the STS-LSD, with the

SOCA having fixed computational complexity. Fig. 3.6 also compares against the soft-

output M algorithm [3] and the LFSD [8]. The reference performance provided was found

using the K-best algorithm and m = 256. Such a realization would compute over 36000

branch metrics and so the computational complexity is not shown. The LFSD is denoted by

lightly shaded circular markers with dark edges. In its minimum configuration the LFSD

reduces to a soft-output parallel detector, i.e. b = [64 1 1 1] with all leaf nodes in the tree

used to formL. LFSD results are also provided for b = [64 2 1 1] and b = [64 4 2 1], where

the subscript b is used to denote that the vector to which it is attached is b. One reason the

SOCA algorithm outperforms the LFSD in terms of the performance-complexity tradeoff

is because of the way it adds counterhypotheses. Specifically, rather than increasing the

elements of b like the LFSD (i.e. bi > 1), the SOCA simply bit flips around the estimate that

is currently best, thereby growing the tree by addition of nodes rather than a multiplicative

factor of nodes. Additionally, because of its use of the SOQR, the SOCA does not need to

extend all q = 16 child nodes at the first layer of the tree to achieve good performance.

Fig. 3.7 provides a performance-complexity plot for 16-QAM transmission in slow

fading, where the curves, algorithms and markers are the same as outlined previously, with

LFSD results provided for [16 1 1 1]b, [16 2 2 1]b, [16 2 2 1]b and [16 4 2 2]b. From

Fig. 3.7 it can be observed that an increase in SNR is required for the slow-fading scenario

to achieve comparable error-rate performance to the fast-fading scenario. In slow fading

the SOCA algorithm remains an attractive option, even though its performance-complexity

profile is never superior to the average computational complexities of the LSD, LISS, or

STS-LSD. However, the fixed computational complexity of the SOCA algorithm is again

significantly lower than the worst-case (or bounded worst-case) computational complex-

ity of the LSD and LISS. Finally, the 99.9th percentile computational complexity for the

72

10
1

10
2

10
3

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

0.5

3

6

0.5

3

6

Branch Metric Computations

E
b
/N

0
[d

B
]

R
eq

ui
re

d
fo

r
F

E
R

10
−2

LSD
LSD

L
ISS

SO
C

A

LISS

Average

99.9%ST
S-L

SD

ST
S-L

SD

LFSD

PD
4

8

16

ℓ = 1

ℓ = 2

ℓ = 4

ℓ = 64

[16 2 2 1]b

[16 2 2 2]b [16 4 4 2]b

Figure 3.7: Performance vs. complexity for soft-output 4 × 4 MIMO detection schemes
using 16-QAM transmission in slow Rayleigh fading.

STS-LSD has almost the same computational complexity as the SOCA algorithm for the

algorithmic realizations presented. Here, the STS-LSD employing upper bounded compu-

tational complexity is an attractive alternative to the SOCA.

Fig. 3.8 provides results for a 4 × 4 channel employing 64-QAM transmission in slow

fading and is used to demonstrates the importance of the SOQR on the overall error-rate

performance. The solid curve with left facing triangular markers, denoted SQRD-CA,

represents the SOCA algorithm except that instead of using a SOQR decomposition the al-

gorithm employs the commonly used sorted-QR decomposition [102]. Ignoring the forced

detection ordering in the first layer, the SQRD-CA and SOCA have identical computa-

tional complexities, yet the SOCA algorithm outperforms the SQRD-CA algorithm by 1.2

dB when b1 = 16.

We now look at a larger 8 × 8 communication channel. Fig. 3.9 provides performance

versus computational complexity results for a fast-fading 8×8 MIMO channel. The perfor-

mance of the K-best algorithm with m = 512 is the reference performance for this system

73

10
1

10
2

10
3

21

21.5

22

22.5

23

23.5

24

24.5

25

Branch Metric Computations

E
b
/N

0
[d

B
]

R
eq

ui
re

d
fo

r
F

E
R

10
−2

L
SD

LSD
SO

C
A

SQRD-CA

Average
99.9%

ST
S-L

SD

ST
S-L

SD

0.5
0.5

33

6
6

ℓ = 1

ℓ = 2

ℓ = 4

ℓ = 64

8

8 16

16

32

64

64

Figure 3.8: Performance vs. complexity for soft-output 4 × 4 MIMO detection schemes
using 64-QAM transmission in slow Rayleigh fading.

10
1

10
2

10
3

10
4

9

9.5

10

10.5

11

11.5

12

12.5

Branch Metric Computations

E
b
/N

0
[d

B
]

R
eq

ui
re

d
fo

r
B

E
R

10
−5

LSD

LSD

LISS

SO
C

A

L
ISS

Average

99.9%

STS-LSD

ST
S-L

SD

0.50.5

33

66

ℓ = 1

ℓ = 2

ℓ = 4

ℓ = 8

ℓ = 16

ℓ = 64

4

8

12 16

M(512, 16)

M(4, 4)

M(8, 8)

Figure 3.9: Performance vs. complexity for soft-output 8 × 8 MIMO detection schemes
using 16-QAM transmission in fast Rayleigh fading.

74

configuration. We also depict the M algorithm with m = b = 4 and m = b = 8. In order

to achieve a desirable performance versus computational complexity tradeoff for this larger

system size, the SOCA algorithm requires a change to b such that b = [b1 2 . . . 2], where

b1 is the number of child nodes enumerated from the root of the tree. This is because the

performance drops off significantly when b is maintained at b = [b1 1 . . . 1]. A second

important change is the incorporation of tree pruning. For the results shown in Fig. 3.9, at

each level of the tree the survivor nodes were pruned to mi = b1, i.e. the m vector for the

SOCA algorithm was set to m = [b1 b1 . . . b1]. This means that in Fig. 3.9 the correspond-

ing value next to each marker for the SOCA represents the algorithmic realization when

b1 = m1 = ℓ. Without tree pruning the performance of the SOCA algorithm is slightly

improved relative to the SOCA without tree pruning. However, these results are not shown

because the computational complexity would increase prohibitively when tree pruning is

omitted. This increase is due to the large system size which, without tree pruning, allows

for extra layers of tree growth. Finally, we note that the SOCA algorithm has roughly the

same performance-complexity curve as the average complexity of the STS-LSD.

Fig. 3.10 provides the same 8 × 8 16-QAM results as Fig. 3.9 but for the slow-fading

scenario. The SOCA algorithm with b1 = m1 = 16 has roughly the same performance

as the LISS with ℓ = 4 but its computational complexity is 45% of the 99.9th percentile

computational complexity. Additionally, the SOCA algorithm with b1 = 12 has roughly

the same performance as the M algorithm with parameterization m = b = 8, but with 57%

of the complexity. This savings reduction come from the fact that, for layers 2 down to Nt

of the tree, we have a multiplier of bi = 2 for the SOCA and a significantly larger bi = 8 for

the M algorithm. Finally, we observe that the SOCA algorithm has a fixed performance-

complexity curve that sits between the average and 99.9th percentile computational com-

plexity of the STS-LSD. Thus, even for the most challenging scenario presented (i.e. 8 × 8

16-QAM in slow fading) the SOCA algorithm remains a good choice for soft-output MIMO

detection.

75

10
1

10
2

10
3

10
4

13.5

14

14.5

15

15.5

16

16.5

17

17.5

Branch Metric Computations

E
b
/N

0
[d

B
]

R
eq

ui
re

d
fo

r
F

E
R

10
−2

LSD

LSDLISS

SO
C

A

LISS

Average

99.9%

ST
S-L

SD

ST
S-L

SD

0.50.5

3 3

6

6

ℓ = 1

ℓ = 2

ℓ = 4

ℓ = 16

4

8

12
16

M(512, 16)

M(4, 4)

M(8, 8)

Figure 3.10: Performance vs. complexity for soft-output 8 × 8 MIMO detection schemes
using 16-QAM transmission in slow Rayleigh fading.

3.6 Soft Fixed-Complexity Sphere Decoder

A recently proposed important soft-output MIMO detection algorithm related to several de-

tectors in this dissertation is the soft fixed-complexity sphere decoder (SFSD). The SFSD,

while not a single-pass approach like the SOCA algorithm and other algorithms classified

in section 3.4, is a soft-output extension of the FSD. Unlike the LFSD which is also a

soft-output extension of the FSD, the SFSD is more similar to previously reported SCA ap-

proaches [62, 105, 94, 110, 113], with the process of smart candidate adding being referred

to as “bit-negating” and “path augmentation” [6]. Specifically, the SFSD can be thought of

as the combination of the hard-output FSD approach, used to generate the set LFSD, with

an iterative SCA type approach used to generate the set LSCA, where L = LFSD ∪ LSCA.

Unlike other SCA approaches, the SFSD typically employs FSD ordering and enumer-

ates all nodes in the first detection layer(s). When only one iteration is performed (SCA

augmentation of a single path), the SFSD approach is similar to an algorithmic realiza-

tion in [110]. With multiple iterations (SCA extended paths), SFSD performance can be

76

improved, but the performance improvements are relatively small and detection complex-

ity is substantially increased. Additionally, there exist many other fixed (or quasi-fixed)

complexity breadth-first algorithms that are related to algorithms in this chapter that we

did not treat due to their hard-output nature. Examples of these other algorithms include

[65, 52, 82, 53].

3.7 Summary

In this chapter we presented an algorithm capable of near max-log optimal error-rate per-

formance that, in contrast to prior soft-output breadth-first algorithms, possessed low and

fixed computational complexity. This is an important result because it invalidates what is

often the most relevant criticism against breadth-first approaches, i.e. that they suffer severe

performance loss when the available computational complexity is small. Additionally, the

fact that the proposed SOCA algorithm is breadth-first is an advantage because its layer-by-

layer structure means that it is possible to construct parallel architectural implementations

with low latency. Such architectural implementations for the proposed SOCA algorithm,

however, do not yet exist and are therefore an interesting area for future research.

Results in this chapter were provided for a spatially multiplexed BICM system in slow

and fast fading environments. The slow fading environment, where no time diversity was

available, proved to be far more challenging than the fast fading environment in terms of

the required computational complexity to achieve near max-log optimal performance. One

transmission scheme to combat slow fading environments not discussed in this chapter

is the use of diversity-multiplexing schemes such as algebraic space-time codes. In the

next chapter we will present an algorithm for soft-output MIMO detection of an important

algebraic space-time code known as the golden code.

77

CHAPTER 4

SOFT-OUTPUT DETECTION OF THE GOLDEN CODE

4.1 Introduction

Space-time codes are an effective means of providing a diversity gain, and potentially a

coding gain, to multiantenna communications systems [2, 89]. A class of space-time codes

that combines a diversity gain with a multiplexing gain are the algebraic space-time codes.

Algebraic space-time codes are an area of significant current research, where much of this

research focuses on the design of codes achieving the optimal diversity-multiplexing trade-

off described in [107].

An important algebraic space-time code, proposed independently in [13] and [27], is

the golden code for two transmit and two receive antennas. The golden code offers many

benefits. First, the golden code is a full-rate code, meaning that the ratio of the number of

distinct symbols transmitted to the total transmission time is one. Second, the golden code

is a full-diversity code, implying that the difference between all real codeword matrices is

full-rank (four in the case of the golden code). Third, the golden code has maximal coding

gain. Specifically, the golden code performs better than all previously reported full-rate

codes with two transmit antennas in terms of the SNR required to achieve a target error

probability [85]. For these and other reasons the golden code has been incorporated into

the 802.16e WiMAX standard [49].

Soft-output detection of the golden code is an important but computationally difficult

task. In this chapter we propose a low- and fixed- complexity soft-output detection algo-

rithm for the golden code. Prior work in this area includes a soft-output detection algorithm

[81] that has a fixed computational complexity ofΘ(q2), where q is the alphabet size, which

can be prohibitive for large alphabets.

78

Our proposed algorithm uses linear equalization to simplify the task of finding a list

of candidate values for one pair of information symbols, and then – for each pair on the

list – it uses decision-feedback equalization to find candidate values for the remaining pair

of information symbols. A simple ordering algorithm, as proposed in [66], is used that

exploits the golden code’s structure to ensure that the overall algorithm performs well.

Like [81] our detector has computational complexity O(q2) when the list length ℓ = q2.

However, for ℓ << q2, our algorithm achieves comparable performance to [81] at much

lower complexity.

4.2 Golden Code System Model

Due to the specific structure of the golden code, which we will describe momentarily, we

constrain our system model more than in previous chapters. Specifically, we consider the

transmitter shown in Fig. 4.1-a [47]. As before, the input is a vector u of i.i.d. uniform

information bits that is encoded and interleaved. Unlike previous chapters, however, the

coded bit stream is partitioned into blocks c of exactly 4ω bits, where ω = log2 q is the

number of bits per symbol. Each block is then mapped and encoded onto a vector of four

complex information symbols a = [a1, a2, a3, a4]T whose components are taken from a

QAM alphabet A of size q = |A| = 2ω and energy E/2. The golden code encodes and

transmits these four information symbols over two symbol periods from two antennas, so

that the rate of the space-time code is two symbols per signaling interval. The transmitted

codeword can be expressed as a 2 × 2 matrix:

G =

g1[1] g2[1]

g1[2] g2[2]

, (4.1)

where gi[k] denotes the symbol transmitted from antenna i ∈ {1, 2} at time k ∈ {1, 2}.

The received signal rl[k] at receive antenna l at time k is given by:

rl[k] =
2∑

i=1

gi[k]hi,l[k] + nl[k] (4.2)

79

Figure 4.1: System model with (a) MIMO transmitter and (b) MIMO receiver.

where nl[k] is the complex additive-white Gaussian noise at receive antenna l at time k,

E|nl[k]|2 = N0, and hi,l[k] is the channel coefficient between the i-th transmit antenna and

l-th receive antenna at time k.

In Fig. 4.1-b we show the MIMO receiver. The receiver has the same soft-output detec-

tion objectives as in prior chapters, albeit with the constraint of golden code transmission.

4.3 Effective Channel Matrix

The Dayal-Varanasi golden code [27] encodes one pair of information symbols v =

[a1, a2]T onto the main diagonal of G, and it encodes a second pair of information sym-

bols w = [a3, a4]T onto the off-diagonal, so that:

G =

ṽ1 0

0 ṽ2

+ φ

0 w̃1

w̃2 0

(4.3)

where:

ṽ =Mv, w̃ =Mw, M =

cos(θ) sin(θ)

− sin(θ) cos(θ)

,

θ =
1
2

tan−1(2), φ = e jπ/4. (4.4)

Substituting (4.3) and (4.4) into (4.2), the vector of received samples

80

r = [r1[1], r1[2], r2[1], r2[2]]T at a receiver with two antennas at the two time in-

stances can be written as the output of an effective four-input four-output channel

[85]:

r = Ha + n, (4.5)

where n = [n1[1], . . . n2[2]]T is the noise and H = H̄Ψ is the effective channel matrix:

H =

h11[1] 0 φh21[1] 0

0 h21[2] 0 φh11[2]

h12[1] 0 φh22[1] 0

0 h22[2] 0 φh12[2]

︸ ︷︷ ︸

H̄

t s 0 0

−s t 0 0

0 0 t s

0 0 −s t

︸ ︷︷ ︸

Ψ

, (4.6)

where s = sin(θ) and t = cos(θ). Using (4.5) as our effective channel model allows us

to perform soft-output tree-based list detection as described in chapter 2. That is to say,

we perform an ordered QR decomposition on the effective channel matrix H and use the

resultant detection tree to perform soft-output list detection.

4.4 Soft-Output Detection of the Golden Code

Finding a list of low-cost candidates, when employing the golden code, is a challenge.

This section presents a low- and fixed- computational complexity algorithm for finding

a list of information vectors for soft-output detection of the golden code. The first step

is an ordering task that determines which two of the four information symbols are to be

detected first. The second step is to find a candidate list of possible values for this first

pair of information symbols; this task is facilitated by a linear zero-forcing filter. The

final task is to find, for each candidate pair from the list, a complementary pair of values

for the remaining information symbols using decision-feedback detection. The proposed

algorithm can be viewed as an application of the Chase framework [98], except that we are

choosing a pair of information symbols to detect first, rather than just one symbol.

81

4.4.1 Ordering of the Effective Channel Matrix

We first determine the initial pair of information symbols detected, and then the order of

detection for the remaining pair of symbols. The first step in the proposed algorithm is to

determine which pair of information symbols should be detected first, and to furthermore

determine the order in which the remaining pair of symbols is to be detected. Consider the

system in (4.5), which can be rewritten as:

r = H̄x + n, (4.7)

where H̄ = HP is a permuted channel, where P is a permutation matrix, and where x = P−1a

is the permuted vector of information symbols. The ordering can be represented by the

matrix P, which approximately maximizes the SNR for the first pair of detected symbols

(x̂1, x̂2).

The pseudocode for an efficient ordering algorithm, first presented in [66] and reprinted

with the permission of the collaborating authors, is shown in Fig. 4.2. As described in

[66], the SNR for the first detected symbol is maximized by selecting the column with

largest norm to be detected first. Additionally, to maximize the SNR of the second symbol

detected, we choose the second column index k2 such that h̄1 and h̄2 (or hk1 and hk2) are as

orthogonal as possible, i.e. to minimize [66]:

δ = |h∗k1
hk2 |/(‖hk1‖‖hk2‖). (4.8)

For additional details on the ordering algorithm and inherent complexity savings due to the

symmetry of the golden code the reader is referred to [66].

4.4.2 ZF Equalization, List Enumeration, and DF Detection

Consider the system in (4.7). After a QR decomposition H̄ = QR and multiplying the

channel output by Q∗, we obtain the effective channel output y = Q∗r. Applying a linear

filter R−1 and performing a symbol slicing operation yields:

x̂ = Q
(

R−1y
)

= Q (x + ñ) , (4.9)

82

Input: H Output: P

if ‖h1‖ > ‖h2‖ then1

k1 = 12

C2 = [2, 3, 4], C3 = [4, 4, 2], C4 = [3, 2, 3]3

else4

k1 = 25

C2 = [1, 3, 4], C3 = [3, 1, 3], C4 = [4, 4, 1]6

end7

δmin = ∞8

for i from 1 to 3 do9

k2 = C2[i], k3 = C3[i], k4 = C4[i]10

δ = |h∗k1
hk2 |/(‖hk1‖‖hk2‖)11

if δ < δmin then12

δmin = δ13

P = [ek1 , ek2 , ek3 , ek4]14

end15

end16

Figure 4.2: Ordering Algorithm

where Q(·) rounds its input to the nearest element of A and ñ = R−1Q∗n. The proposed

enumeration algorithm exploits x̂1 and x̂2, ignoring the outputs x̂3 and x̂4. Specifically, we

use x̂1 to form a candidate list L1 for the symbol x1 and x̂2 to form a candidate list L2 for

x2. Then, the list L12 is formed by combining all possible symbols from the candidate lists

L1 and L2. Specifically, L12 = {(L1[m],L2[n])} ∀m ∈ {1, . . . ,
√
ℓ} and ∀n ∈ {1, . . . ,

√
ℓ},

where L1[m] (resp. L2[n]) is the m-th (resp. n-th) element of the list L1 (resp. L2).

Our enumeration algorithm for the list L1 approximates the
√
ℓ closest points to the

decision x̂1 by separating x̂1 into its real and imaginary components. We do so by first

finding the β closest points on the real axis to ℜ{x̂1} and imaginary axis to ℑ{x̂1}, respec-

tively, where β is assumed to be an odd integer and equal to ⌊ℓ1/4⌋. These β points along

the real axis and imaginary axis form a square grid of β2 candidates which form our ini-

tial approximation of L1. If
√
ℓ is larger than β2 then additional points are enumerated

beyond this grid. We propose to enumerate additional points by simply searching further

83

along the real and imaginary axis for x̂1. The list L1 is then formed via the expression:

L1 = {L1R[m] + jL1I [n]} ∀m ∈ {1, . . . ,
√
ℓ} and ∀n ∈ {1, . . .

√
ℓ}, where R[m] and I[n]

denote enumerated points along the real and imaginary axes, respectively.

The intuition behind our enumeration algorithm for the list L1 is that we seek to ap-

proximate the
√
ℓ closest points to the decision x̂1. We approximate these

√
ℓ closest points

by separating x̂1 into its real and imaginary components. We then find the β closest points

on the real axis to ℜ{x̂1} and the β closest points on the imaginary axis to ℑ{x̂1}, respec-

tively, where β = ⌊ℓ1/4⌋ and is assumed to be an odd integer. Taking all combinations

of these points yields a square grid of β2 points. If
√
ℓ is larger than β2 then additional

points are enumerated beyond the square grid. We propose to enumerate these points by

searching along the real axis for ℜ{x̂1} and the imaginary axis for ℑ{x̂1}. The list L1 is

then formed by combining all points enumerated along both the real and imaginary axes,

i.e. L1 = {LxR
1
[m]+ jLxI

1
[n]} ∀m ∈ {1, . . . ,

√
ℓ} and ∀n ∈ {1, . . .

√
ℓ}, where xR

1 [m] and xI
1[n]

denote enumerated points along the real and imaginary axes, respectively.

Fig. 4.3 depicts the list L1 for a decision x̂1 = 3 − 3 j when x̂1 is an (a) 16-QAM corner

point and (b) 64-QAM interior point and β = 3. The decision x̂1 is denoted using a gray

square and the rest of the list is denoted using solid circles. Points not in the list are de-

noted using white circles. If
√
ℓ = 11 in Fig. 4.3-a then the two additional points beyond

β2 = 9 are found by simply enumerating one additional candidate along the real and imag-

inary axes, respectively. These points are denoted using triangle markers. In Fig. 4.3-b we

enumerate two additional points along both the real and imaginary axes so that
√
ℓ = 13.

We find L2 in exactly the same way as L1. Enumerating all combinations of the
√
ℓ

elements ofL1 and
√
ℓ elements ofL2 yields a list of pairsL12 for {x̂1, x̂2} of size ℓ. Finally,

note that the entire process for enumerating L12 may be accomplished with a lookup table

to form L1 and also L2 followed by a hardware combiner to form all ℓ combinations.

84

Figure 4.3: Enumerated list when x̂1 = 3 − 3 j and β = 3 for (a) 16-QAM with
√
ℓ = 11

and (b) 64-QAM with
√
ℓ = 13.

85

For each of the ℓ candidates in L12 we observe that:

y3 − R3,1x1 − R3,2x2

y4 − R4,1x1 − R4,2x2

=

R3,3 0

R4,3 R4,4

x3

x4

+

ñ3

ñ4

. (4.10)

From this we can find ℓ vectors x = [x̂1 x̂2 x̂3 x̂4]T by simple decision feedback for each of

the ℓ pairs of (x̂1, x̂2):

x̂3 = Q
(

(y3 − R3,1 x̂1 − R3,2 x̂2)/R3,3
)

x̂4 = Q
(

(y4 − R4,1 x̂1 − R4,2 x̂2 − R4,3 x̂3)/R4,4
)

. (4.11)

A summary of the proposed algorithm is provided in Fig. 4.4. The inputs are the re-

ceived vector r, the effective channel matrix H and the list length ℓ. The output is soft-

output information for each bit of the transmitted information vector.

Input: r,H, ℓ Output: L(c j|r) ∀ j ∈ {1, . . . 4ω}
P = Ordering(H) as described in Fig. 4.21

HP = QR, y = Q∗r, β = ⌊ℓ1/4⌋2

x̂ = Q(R−1y)3

L1R = β closest points on real axis toℜ{x̂1}4

L1I = β closest points on imag axis to ℑ{x̂1}5

L1 = {ℜL1R[m] + jℑL1I [n]} ∀m ∈ {1, . . . , β} and ∀n ∈ {1, . . . β}6

if
√
ℓ > β2 then7

Alternate adding next closest candidates in row and column of x̂1 until
√
ℓ8

candidates enumerated
end9

Repeat steps 4 − 9 replacing x1 with x2 and L1 with L2 (execute only once)10

L12 = {(L1[m],L2[n])} ∀m ∈ {1, . . . ,
√
ℓ} and ∀n ∈ {1, . . . ,

√
ℓ}11

for each of the ℓ {x̂1, x̂2} in L12 do12

x̂3 = Q
(

(y3 − R3,1 x̂1 − R3,2 x̂2)/R3,3
)

13

x̂4 = Q
(

(y4 − R4,1 x̂1 − R4,2 x̂2 − R4,3 x̂3)/R4,4
)

14

L = L⋃

P[x̂1, x̂2, x̂3, x̂4]T
15

end16

Evaluate (2.11) using L ∀ j ∈ {1, . . .4ω}17

Figure 4.4: Proposed Algorithm

86

4.4.3 Quantifying Complexity

We measure computational complexity using real operations, which can be multiplies, ad-

ditions, comparisons, quantizers, and divisions. We assume complex multiplies require 4

real multiplies and 2 real additions, and that complex additions require 2 real additions.

The computational complexity of the proposed algorithm can be separated into the prepro-

cessing step, which is an ordered QR decomposition (line 1 from Fig. 4.4), and a core

processing step. The additional complexity of the ordering algorithm over a QR decompo-

sition is 48 real operations, where 3 of the operations are real divides.

The core processing begins by inverting R, multiplying R−1y and quantizing the resul-

tant vector x̂ (line 3 from Fig. 4.4). The computation of R−1 requires 104 real operations

where 4 of the operations are real divides. As R−1 is triangular, the multiplication R−1y

requires 44 real operations. Then the quantization to x̂ requires 8 real quantizers and so

line 3 requires 156 real operations for the entire information vector or 156/2 = 78 real

operations per signaling interval.

The enumeration of the list L12 (lines 4-11) can be accomplished with a lookup ta-

ble and a dedicated hardware combiner used to form all combinations of the lists for each

symbol, i.e. L12 = {(L1[m],L2[n])} ∀m ∈ {1, . . . ,
√
ℓ} and ∀n ∈ {1, . . . ,

√
ℓ}. The re-

maining steps (lines 13-17) involve decision feedback, permutation and the computation of

the soft-output information, where many of the intermediate variables used in the decision

feedback computation may be reused for computation of the soft-output information. Line

13 requires 18 real operations (2 complex multiplies, 2 complex adds and 2 real divides)

and line 14 requires 26 real operations (3 complex multiplies, 3 complex additions and 2

real divides) for a total of 44ℓ real operations per information vector.

In total lines 13 − 14 require 44ℓ real operations per information vector. Computing

the cost for each of the ℓ candidates in line 17, assuming reuse of computations between

lines 13 − 14 and line 17, requires an additional 44ℓ real operations per information vector

for a total of 44ℓ + 44ℓ = 88ℓ real operations per information vector or 88/2 · ℓ = 44ℓ

87

real operations per signaling interval. Consequently, the total number of real operations for

the core processing plus the overhead required by the ordering algorithm over that of a QR

decomposition, for one signaling interval, is 78 + 44ℓ.

4.5 Results

We now present results for the proposed algorithm. We assume the channel does not change

during the duration of an entire frame and that the channel matrix entries are drawn anew

with the transmission of each new frame. A convolutional code with code polynomial

[133 171] and constraint length 7, punctured to code rate 3/4 is employed and the informa-

tion block size (including tail bits) is 3456. We employ a max-log convolutional decoder.

Performance is measured in terms of the Eb/N0 in dB required to achieve a frame error rate

(FER) of 10−2.

Fig. 4.5 depicts performance results for a system employing 16-QAM transmission for

ℓ = 121. Also depicted is the joint maximum-likelihood (JML) detector and the K-best

detector [101] employing MMSE-SQRD preprocessing for K = 256. We observe that the

proposed algorithm with ℓ = 121 is 1.7 dB worse than the K-best detector, where the K-best

detector requires over 3 times the complexity, in terms of real operations. Also depicted in

Fig. 4.5 is the G-LORD detector [81] with parameter k = 2, i.e. full enumeration at the

first two layers which implies ℓ = 256. The proposed algorithm is 0.9 dB worse than the

G-LORD detector with ℓ = 256, but the G-LORD detector is over 80% more complex. We

also provide a curve listed as “No approx, ℓ = 121, SQRD” demonstrating the significant

impact of our proposed ordering algorithm. The curve was found by forming L12 with the

11 best decisions, relative to the received signal r, for x1 and x2, respectively.

Fig. 4.6 depicts performance results for our proposed algorithm in a system employ-

ing 64-QAM transmission for ℓ = 169 (i.e. β = 3 and ℓx1 = ℓx2 = 13). Also depicted is

the hard-output joint maximum-likelihood (JML) detector, the K-best detector [101] em-

ploying MMSE-SQRD preprocessing and K = 512, and the G-LORD detector [81] with

88

15 16 17 18 19 20 21 22
10

−2

10
−1

F
E

R

Eb/N0 [dB]

[101] K = 256
[81] k = 2

No Approx, ℓ = 121, SQRD

Proposed, Approx

JML

Figure 4.5: Soft-output golden code performance for 16-QAM.

parameter k = 2 ⇒ ℓ = 4096. We observe that the proposed algorithm with ℓ = 169 is 1.2

dB worse than the K-best detector and 0.8 dB worse than the G-LORD detector. We note

however, that the G-LORD detector is roughly 21 times more complex. Here the K-best

reference curve is only slightly better performing than the G-LORD detector and requires

more than 140 times the complexity of the proposed algorithm with ℓ = 169.

Table 4.5 depicts the Eb/N0 required to achieve a FER of 10−2 and the computational

complexity for [81], [101] and the proposed algorithm, where complexity is measured in

terms of the number of real operations performed per signaling interval. The complexity

of the SQRD is ignored for all algorithms, but for the proposed algorithm we include the

additional overhead of our ordering algorithm in the computational complexity. Table 4.5

supports the claim that the proposed algorithm has a desirable performance-complexity

trade-off. Specifically, results indicate that the proposed algorithm is particularly attractive

for 64-QAM transmission.

89

18 19 20 21 22 23 24 25 26 27
10

−2

10
−1

Kbest

Proposed

F
E

R

Eb/N0 [dB]

[81] k = 2
No Approx, ℓ = 169, SQRD

Figure 4.6: Soft-output golden code performance for 64-QAM.

16-QAM
Algorithm Prop. [81] [101]
ℓ 121 256 256
Eb/N0 [dB] for FER 10−2 20.6 19.8 18.9
Real Ops. 4696 9032 16738

64-QAM
Algorithm Prop. [81] [101]
ℓ 169 4096 512
Eb/N0 [dB] for FER 10−2 25.9 25.1 24.7
Real Ops. 6520 137440 931587

90

4.6 Summary

The golden code is an important algebraic space time code that achieves the full diversity-

multiplexing frontier of Zheng and Tse [107, 85] and is included in the 802.16e WiMAX

standard. In this chapter we proposed a low- and fixed- computational complexity soft-

output detection algorithm for an important algebraic space-time code known as the golden

code. The detector involved a preprocessing algorithm, as proposed in [66], that approx-

imately maximize the SNR for the first pair of detected information symbols. Next, we

employed linear equalization to simplify the task of finding a list of candidate values for

these first two information symbols, and then – for each pair of symbols on the list – using

decision-feedback equalization to find candidate values for the remaining pair of infor-

mation symbols. Numerical results indicated that the proposed soft-output list detection

algorithm is significantly less complex than previously reported algorithms, yet performs

comparably.

91

CHAPTER 5

LOG-LIKELIHOOD RATIO CLIPPING

5.1 Introduction

The reliability of the soft-output information produced by a MIMO detector significantly

impacts system error rate performance. An ideal soft-output detector computes the exact

a posteriori probabilities. However, as we have seen in prior chapters, practical MIMO

receivers achieving high spectral efficiencies must resort to sub-optimal detection schemes

in order to avoid the burdensome computational complexity of exact APP detection. Many

modern communication devices, such as inexpensive mobile phones, employ suboptimal

MIMO detection thereby sacrificing significant error rate performance for the sake of sav-

ing computational complexity (and thus production cost).

Suboptimal list MIMO detectors often suffer from the inability to compute exact soft-

output information for some (or even any) of the transmitted bits. However, for even small

list sizes, a reasonably precise estimate of the optimal detector’s hard-output can be deter-

mined. For each hard detected bit the sign and magnitude for the LLR can be determined.

The sign of the log-likelihood ratio can be determined with a reasonably low probability

of error and, as the list length increases, the sign of the LLR is known with a diminishing

amount of uncertainty. The LLR magnitude, however, often remains imprecise for small

list sizes. This is particularly relevant problem for list MIMO detection, where there is a

non-zero probability that counterhypotheses are missing for some of the detected bits. In

such a situation, one has to resort to estimation for the corresponding LLR value. Numer-

ous techniques have been proposed to address this issue [70] such as:

• LLR clipping [47, 28, 108]: the maximum magnitudes for LLR information is as-

sumed to be fixed to a certain predefined value. This strategy is extremely simple

92

to implement, but the achievable performance depends crucially on an appropriate

selection of the clipping level.

• Bit flipping/Chase decoding [93]: a counter-hypothesis is generated by taking the

MAP estimate, flipping the bit of interest and calculating the Euclidean distance of

the resulting hypothesis. Achieving good performance with this approach requires

high computational complexity. This is because each additional bit flipped requires

an exponential increase in computational complexity. As the detection layers are

coupled the counterhypotheses resulting from bit flipping are often of poor quality.

• Last list entry: one may use the last entry of the list (the one with largest Euclidean

distance) as a lower bound on the Euclidean distance of the counter-hypothesis. How-

ever, this bound is rather loose such that using it will cause the LLRs to be “clipped”

very aggressively, causing a significant performance loss [61].

• Path augmentation [10]: the dead-ends of the tree structure can be extended based on

the output of a linear filter and/or available a priori information. This method is also

rather complex and yields poor estimates if no a priori information is available [108].

• Worst case distance [87]: An effective technique is to add the fixed worst-case dis-

tance to an ML/MAP distance metric. Based on the results in [87] this approach

appears to perform better than [61] with similar complexity

While all of the aforementioned approaches address the problem of an unknown (or unre-

liable) LLR magnitude, LLR clipping is the simplest solution.

The selection of the clipping level has a significant impact on the achievable perfor-

mance in coded communication systems [28]. Choosing the clipping level too high induces

the decoder to assume overly high reliability for bits with missing counter-hypotheses, po-

tentially preventing decision errors occurring at these bit positions from being corrected.

Conversely, setting the clipping level too low substantially distorts the soft output for bits

93

with counter-hypotheses, also leading to a performance loss [70]. In other words, small

clipping values tend to degrade error-correction capabilities and large clipping values can

result in error propagation.

Most previous approaches for computing the LLR clipping level rely upon selecting a

fixed clipping level, usually based on an attempt to maximize the mutual information at the

detector output over the choice of the clipping level. Such fixed LLR clipping (FLC) level

schemes possess the obvious advantage that, once the FLC level has been selected, they are

easy to implement. Drawbacks of FLC schemes include an involved selection process for

the clipping level [28, 108]. Finally, and perhaps most importantly, these approaches are

limited in the error rate they can achieve.

In [72] it was shown that LLR clipping has more effect on system performance when

using suboptimal algorithms such as the M algorithm with b = ∞ (i.e. the K-best algo-

rithm [3, 101, 39]). Intuitively this makes sense because when the soft information is exact

it is unnecessary to clip what is already an optimal LLR value. Consequently, in this chap-

ter we adopt the K-best algorithm as our representative suboptimal detection algorithm.

Results show that the proposed SLC scheme outperforms even the best FLC schemes for

coded MIMO communication systems. A promising recent submission [106] provides an

approach for calculating the LLR clipping level that is similar to the SNR-aware LLR clip-

ping approach described in this chapter. More details on this work are found in the further

reading section at the end of this chapter.

In this chapter, after reviewing prior art on FLC schemes in section 5.2, we propose a

low complexity approach for computing SNR-aware LLR clipping (SLC) levels in section

5.3, based on an estimate of the bit error probability at the detector output. Specifically, for

a given channel realization and list length, we calculate the instantaneous error probability

on the different detected layers. This information is then used to predict the LLR clip-

ping level. The additional complexity of the proposed approach can be considered almost

94

negligible in coded systems. Section 5.4 presents results demonstrating the improved per-

formance of the SLC approach over FLC. Suggestions for future work and further reading

are provided in section 5.5 and a summary is provided in 5.6.

5.2 Fixed LLR Clipping Level (FLC)

For suboptimal list detectors employing fixed LLR clipping it is essential that the clipping

level, denoted Lclip, be selected carefully. If the clipping level is chosen too high, this pre-

vents decision errors occurring at some bit positions from being corrected, resulting in poor

performance. Conversely, setting the clipping level too low limits the mutual information

at the detector output, also leading to decreased performance [70].

Early FLC approaches relied on trial and error for choosing Lclip. An example of this is

[47], which set Lclip = 8, after observing good performance results for this choice. Setting

Lclip to 8 implies extreme confidence when detecting a transmitted bit to be a 0 (−8 LLR)

or a 1 (+8 LLR). In fact, Lclip = 8 can be considered to be a reasonable upper bound, as

clipping the LLRs to this level has a negligible impact on the mutual information if the

LLRs are exact i.e., obtained from an optimal detector [108].

More recent approaches for determining FLC values have relied upon maximizing the

average mutual information at the detector output for specific system configurations [28,

108]. Assuming genie knowledge of the transmitted bits ci in the code bit stream, this

mutual information can be determined from the calculated LLRs Lp(ci) using [40]:

I(c; Lp(c)) ≈ 1 − 1
NC

NC∑

n=1

log2

(

1 + exp
(

−ci · Lp(ci)
))

,

where NC ≫ 1 is the number of bits in the codeword. Using a mutual information based

approach, it was shown in [28] that for many cases, Lclip = 3 is a reasonably good choice.

This work was elaborated upon in [108] to show that the optimal clipping level depends

on the list size and modulation alphabet. This is because the probability that counter-

hypotheses are not available increases as the list size decreases. Analysis in [108] shows

that the mutual information between channel input and detector output is a suitable figure

95

of merit for optimization, and that the optimal LLR clipping level will strongly depend on

the system setup as well as the chosen detector configuration.

5.3 SNR-aware LLR Clipping (SLC)

We can extend the fixed clipping approach just described to one where Lclip is based on the

available channel state information (CSI). Consider again the definition of the LLRs from

(2.2), which can be restated as:

L(c j|r,H) := ln
Pr

[

c j = +1|r,H
]

Pr
[

c j = −1|r,H
]

= ĉ j ln
Pr

[

c j = ĉ j|r,H
]

Pr
[

c j , ĉ j|r,H
]

= ĉ j ln
Pr

[

c j = ĉ j|r,H
]

1 − Pr
[

c j = ĉ j|r,H
] (5.1)

where ĉ j is the hard output estimate of the considered bit, as obtained from the detector. In

the absence of a counter-hypothesis for this bit, the expression inside the logarithm of (5.1)

is unknown. Furthermore, the knowledge of the Euclidean distance d(â) = ‖r −Hâ‖2 and

associated p(r|â) is not sufficient to establish a precise estimate for Pr
[

c j = ĉ j|r,H
]

, as cal-

culating the normalization factor Pr(r) required to determine Pr[â|r,H] is computationally

complex.

We therefore propose to resort to an approximation of (5.1), by averaging out the influ-

ence of r. With this simplification, expression (5.1) becomes:

L(c j|r,H) ≈ ĉ j ln
Pr

[

c j = ĉ j|H
]

1 − Pr
[

c j = ĉ j|H
]

= ĉ j ln
1 − Pb(H)

Pb(H)
, (5.2)

where Pb is the bit error probability at the detector output, which needs to take into account

the CSI, the current SNR, the modulation format, and the configuration of the detector.

This predicted bit error probability will be denoted as Pb(ℓ, SNRi) in the following, where

96

SNRi is the instantaneous SNR for the ith detection layer (ith component of the transmit

signal) and given by:

SNRi =
Es

NtN0
R2

i,i, (5.3)

where Ri,i is the ith diagonal element of a lower triangular matrix R resulting from a QR-

decomposition of the channel matrix, H = QR. To model the improvement in the quality

of the detector output for larger list sizes, Pb(ℓ, S NRi) is therefore given as a function of

the list length ℓ.

This predicted error probability Pb(ℓ, SNRi) yields our SNR-aware Lclip value for bits

in the ith detection layer:

Lclip,i := ln
1 − Pb(ℓ, SNRi)

Pb(ℓ, SNRi)
≈ − ln Pb(ℓ, SNRi). (5.4)

In [112] it was proven that the optimal LLR clipping level, for BPSK transmission over

the AWGN channel and repetition codes of arbitrary rate, is of the form of the definition

(without approximation) in (5.4). In such a situation the list length is either one, in the

absence of a counterhypothesis, or two, in which case the exact LLR is known.

To illustrate the capabilities for our SLC approach, we consider the error probabil-

ities for PAM and QAM modulation. Specifically, the symbol error probability for the

maximum-likelihood detector in the case of pulse amplitude modulation (PAM) transmis-

sion over an AWGN channel with effective signal-to-noise ratio
√
ℓSNRi is given by:

Ps,PAM = 2

(

1 − 1√
q

)

Q

√

3
q − 1

√
ℓSNRi

. (5.5)

Note that since one-dimensional PAM modulation is considered in (5.5), we elect to

use
√
ℓ =

√
K to compute this expression, where K is the parameter for the representa-

tive K-best tree search detection scheme [101, 39]. Performance results support such a

selection1. Plugging Pb,QAM into (5.4) yields improved LLR values in the absence of a

counter-hypothesis, relative to FLC.

1Another option, which yielded good results was to use γℓ, the square root of γ2
ℓ

as detailed in [98]

97

Following standard QAM extensions of the PAM SER expression yields the QAM sym-

bol error rate:

Ps,QAM = 1 − (

1 − Ps,PAM
)2 (5.6)

from which the QAM bit error rate can be easily obtained as Pb,QAM ≈ Ps,QAM/L (and

equivalent for the PAM BER). Plugging these error rate expressions back into (5.4) allows

for an improved LLR clipping level, relative to fixed LLR clipping. Note that (5.4) is a

general expression capable of working with a host of modulation and detection schemes,

provided that proper treatment is given to the application of the effective SNR gain due to

an increase in the list length.

The probability density function for Lclip is shown in Fig. 5.1 for a 4 × 4 MIMO

system in i.i.d. Rayleigh fading using (a) 4-QAM and (b) 64-QAM transmission with

K = ℓ = {1, 4, 8} and K = ℓ = {1, 4, 16} [101, 39], respectively. Results shown are for

SNR values corresponding to a coded BER of 10−5 for the given list length using sorted

MMSE preprocessing [109] (cf. Fig 5.2 and Fig 5.3). The plot was obtained using Lclip

values found for over 400, 000 distinct channel realizations and the approximation in (5.4)

was used.

We now provide a brief description of the complexity aspects for the SLC approach.

Specifically, the complexity of the approach is the complexity required to compute (5.4)

for each detection layer and channel realization. While the complexity associated with

such a computation typically involves complicated calculations such as the Q(·) function

and square root operation, as in (5.6), the practical complexity of SLC can be significantly

reduced through the use of a table lookup, or approximation like the one in (5.4).

5.4 Results

We consider transmission over a spatially and temporally i.i.d. fading 4×4 MIMO channel,

using 4 and 64-QAM alphabets. The information block size (including tail bits) is 9216

bits. Detection is performed based on the real-valued system model. We employ unbiased

98

0 5 10 15
0

0.1

0.2

0.3

0 5 10 15 20 25
0

0.1

0.2

0.3

LclipLclip

(a) (b)

4-QAM 64-QAM

ℓ = 1

ℓ = 1

ℓ = 4

ℓ = 4

ℓ = 8

ℓ = 16

Figure 5.1: The pdf for Lclip for i.i.d Rayleigh fading for a 4 × 4 MIMO system using
(a) 4-QAM and (b) 64-QAM transmission and K = ℓ = {1, 4, 8} and K = ℓ = {1, 4, 16},
respectively. The maximum values for Lclip are not shown due to precision issues which
force these values to be infinite.

MMSE detection as detailed in (2.19) with all techniques. For coded transmission, we use

a setup equivalent to the one in [47]: a rate 1/2 PCCC based on (7R, 5) convolutional codes

using 8 internal iterations of logMAP decoding.

Fig. 5.2 provides a performance comparison of the proposed SLC approach and fixed-

valued LLR clipping using the simulation setup just described in the case when there are no

iterations between the detector and the decoder (i.e. only decoder iterations) and 4-QAM

transmission. All results shown are obtained using the K-best Algorithm for the case when

K = ℓ = {1, 2, 4, 8} and employ the approximation found in (5.4). In all cases, for the

same detection algorithm (i.e. same value of ℓ), our SNR-aware approach outperforms the

FLC approaches. As an example, when ℓ = 1, the SLC approach outperforms the clipping

of ±8 proposed in [47] by 0.5 dB and the clipping of ±3 prosed in [28] by 0.3 dB at a

BER of 10−5. Furthermore, the K-best for ℓ = 8 shown in Fig. 5.2 is used to demonstrate

that the SLC approach with ℓ = 4 is roughly equivalent to the performance of the higher

99

3 4 5 6 7 8

10
−4

10
−2

10
0

B
E

R

Eb/N0 [dB]

ℓ = 1ℓ = 2

ℓ = 4

ℓ = 8

SLC

FLC Lclip = 3

FLC Lclip = 8

Figure 5.2: SNR-aware LLR clipping versus fixed LLR clipping for a 4-QAM coded non-
iterative system for a 4 × 4 MIMO system under Rayleigh fading.

complexity ℓ = 8 algorithm when using FLC.

Fig. 5.3 provides the same performance comparison between the SLC approach and

fixed-valued LLR clipping, this time for the case of 64-QAM. Results are obtained for the

K-best algorithm for K = ℓ = {1, 2, 4, 16 and 64} and employ the approximation found in

(5.4). Again, in all cases, for the same detection algorithm, the SLC approach outperforms

the fixed LLR clipping approaches.

5.5 Further Reading

Recently, it is has been shown that the LLR clipping is closely related to the probability

of error at the detector output. [112] uses an optimization problem to determine the LLR

clipping level, where the clipping level should be chosen by the detector such that the prob-

ability of error at the output of the channel decoder is minimized. Results are provided for

the case of repetition codes transmitted over the AWGN channel using antipodal signal-

ing and repetition codes of arbitrary rates. Specifically, it is proven that for this setup, the

100

11 13 15 17 19
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0 [dB]

SLC

FLC Lclip = 3

FLC Lclip = 8

ℓ = 1

ℓ = 2

4

16

ℓ = 64

Figure 5.3: SNR-aware LLR clipping versus fixed LLR clipping for a 64-QAM coded
non-iterative system for a 4 × 4 MIMO system under Rayleigh fading.

optimal LLR clipping level Λ∗ is given by:

Λ∗ = ln
1 − Pe

Pe
, (5.7)

where Pe is the probability of error at the detector output.

A promising recent submission [106] provides an approach for calculating the LLR

clipping level that is similar to the SNR-aware LLR clipping approach described in this

chapter. However, [106] differs from the SLC approach in a number of key areas. First, the

iterative tree search (ITS) detector [28] is used as the representative detection algorithm for

deriving the LLR clipping level instead of K-best detector [3, 101, 39] from this chapter.

Second, [106] estimates the clipping value based on an approximation that a channel bit

equals the log ratio of the maximum probability of a correct decision for the bit to the

probability of an erroneous decision. This log ratio closely resembles (5.7) and is directly

related to the plot of mutual information found in [28] in an elegant way.

101

5.6 Summary

In this chapter, we presented a scheme for computing the log-likelihood ratio clipping level

for suboptimal MIMO list detection. This problem was framed as determining variable

LLR clipping levels conditioned on both the CSI and the list length of the detector. QAM

error rate performance over i.i.d. Rayleigh fading MIMO channels indicated that the pro-

posed SNR-aware LLR clipping approach outperformed fixed LLR clipping schemes.

An open problem is extending the optimality proof of [112] to different codes, fading

models and MIMO systems. The work in [106] is a promising start in this direction.

102

CHAPTER 6

NON-UNIFORM COMPUTATIONAL COMPLEXITY

ALLOCATION

6.1 Introduction

So far in this dissertation we have concerned ourselves with the problem of list detection in

the context of soft-output MIMO detection. In this chapter we again consider the problem

of list detection, but in the context of hard-output detectors for multiantenna orthogonal

frequency-division multiplexing (MIMO-OFDM) systems. Hard-output list detectors are

those that first find a candidate list and then select the minimum cost element from the list

to be the hard decision.

OFDM signaling is particularly useful for combatting wideband communication chan-

nels, where frequency-selective fading causes the quality of the channel to vary signifi-

cantly from one OFDM subcarrier to the next. It is common practice for MIMO-OFDM

detectors to implement the same detector at each subcarrier, in which case the overall

performance is dominated by the weakest subcarrier. We propose a receiver strategy for

MIMO-OFDM channels called nonuniform computational complexity allocation (NCCA),

whereby the receiver adapts the computational resources of the MIMO detector at each

subcarrier to match a metric of the corresponding channel quality. For concreteness, we

investigate this architecture in the special case when each subcarrier uses the B-Chase de-

tector [98] with each list length is dependent on the subcarrier SNR. The performance of

each B-Chase detector is compactly captured by the so-called list detection error probabil-

ity. We compute an exact expression and upper bound for the list detection error probability

in AWGN. We then propose an algorithm for assigning list lengths to subcarriers that aims

to minimize the maximum list detection error probability over the different subcarriers.

103

Numerical results for a 4-input 4-output Rayleigh-fading channel with 16-QAM show that

the proposed MIMO-OFDM detector outperforms a conventional detector with the same

complexity by 4.4 dB.

Orthogonal frequency-division multiplexing (OFDM) is a proven strategy for commu-

nication over frequency-selective channels, whereby information is conveyed via multiple

subcarriers that are mutually orthogonal [99, 5]. The use of OFDM transforms a frequency-

selective MIMO channel into a parallel bank of flat-fading MIMO channels, one for each

subcarrier. This transformation enables the use of a memoryless MIMO detection algorithm

(i.e., one designed for a flat-fading channel) in a frequency-selective setting by simply ap-

plying the same detection algorithm at each subcarrier.

Unlike a conventional MIMO-OFDM receiver that uses the same detection algorithm

at each subcarrier, and thus uniformly distributes computational processing across the dif-

ferent subcarriers, this paper proposes a nonuniform strategy for distributing a complexity

budget across subcarriers called nonuniform computational complexity allocation (NCCA).

The idea is to use low-complexity detectors for those subcarrier channels having high qual-

ity and high SNR, and to reserve higher-complexity detectors for those channels having low

quality and low SNR. In a sense, for a given overall complexity budget, the weaker sub-

carriers can borrow processing resources from the stronger ones. This concept is roughly

analogous to the “just enough” philosophy that underlies power control in wireless commu-

nications, where a transmitter will adjust its signal power in accordance with the path loss

to the receiver so that the received signal power is sufficient for reliable communication,

but not greater [4]. Here we translate this philosophy to processing power instead of signal

power.

Several existing detectors can be viewed as special cases of NCCA. For example, the

MIMO-OFDM detector of [54] uses the M-algorithm for detection on each subcarrier, with

the value of the M parameter chosen to match a measure of SNR for the corresponding

subcarrier. Similarly, any OFDM detector that uses a variable (i.e. not fixed) complexity

104

detector at each tone, such as a sphere decoder [92, 26], lattice-reduction-aided detector

[104, 79], or sequential decoder [3, 23], can be viewed as another instance of the NCCA

approach, because the complexity at each subcarrier is a random variable dependant on

channel conditions. In all previously reported cases, however, the complexity is assigned

independently for each subcarrier, without coordination, and as a result the total complexity

can vary with time.

The NCCA framework is streamlined when the MIMO detectors at the different sub-

carriers are all selected from the same family of detection algorithms, and when this family

is parameterized by a single parameter that trades off performance for complexity. Exam-

ples of such detector families include the M-algorithm [3], the stack algorithm [3, 23], and

the bit-level Chase algorithm [59]. For concreteness we investigate the NCCA framework

using the B-Chase family of MIMO detectors [96, 97]. Recall that the B-Chase(ℓ) detector

is a hard-output detector for memoryless MIMO channels that generates a list of ℓ tentative

decisions for one of the transmitted symbols, and implements a bank of ℓ ordered decision-

feedback detectors in parallel, one for each element of the list. The final decision vector is

the decision-feedback detector output that minimizes mean-squared error.

The overall error probability of B-Chase detection is dominated by the list detection-

error probability of the scalar list detector at the first stage, where we define a list detection

error as the event that the transmitted symbol does not appear on the decision list [17]. We

therefore use the list detection error probability as a tool for assigning list lengths to the

different subcarriers. In contrast to prior works, the list lengths allocated to each subcarrier

are optimized jointly in accordance with a fixed overall complexity budget. Initial analysis

for the list detection error probability was provided in [96], which investigated the list

detector decision regions for quadrature-amplitude modulation (QAM), and demonstrated

that increasing the list length leads to an effective gain in SNR.

The remainder of this chapter is organized as follows. Section 6.2 incorporates OFDM

into the MIMO system model. Section 6.3 computes the exact single-input single-output

105

(SISO) list detection error probability for AWGN channels and provides a minimum-

distance approximation for the list detection error probability. Section IV describes the

strategy, including an algorithm for allocating computational resources to the different sub-

carriers based on the list detection error probability. Section V presents numerical results

for a Rayleigh-fading frequency-selective MIMO channel. Section VI concludes the paper.

6.2 OFDM System Model

We once more consider a frequency-selective MIMO channel with Nt transmit antennas

and Nr receive antennas. Differing from prior chapters is the fact that transmitter utilizes J

OFDM subcarriers, so that the frequency-selective channel is transformed into J memory-

less Nt-input, Nr-output channels:

r(i) = H(i)a(i) + n(i), (6.1)

where the subcarrier index i ∈ {1, . . . J}, a = [a(i)
1 , . . . a

(i)
Nt

]T is the vector of transmitted

symbols for subcarrier i, r(i) = [r(i)
1 , . . . r

(i)
Nr

]T is the vector of received samples for subcarrier

i, H(i) is the Nr × Nt memoryless channel matrix for subcarrier i , and n(i) is the noise

vector for subcarrier i. Once more we assume that the channel inputs are chosen uniformly

and independently from the same q-ary QAM alphabet A = {±α,±3α, . . . ± (
√

q − 1)α} +
√
−1{±α,±3α, . . .±(

√
q−1)α}, where q = |A|, α =

√

3Ea/(2(q − 1)), and Ea is the alphabet

energy. In this chapter we define the SNR per bit to be Eb/N0 = E[|Hiv|2]Ea/(N0 log2(q)),

where Hiv is the element in the ith row and vth column for a given subcarrier channel matrix.

6.3 List Detection Error Probability

The purpose of this section is to quantify the performance of the B-Chase detector by eval-

uating the list detection error probability; these performance results will be used in the next

section to facilitate the allocation of computational resources to the different subcarriers.

However, because the utility of the list detection error probability may extend to other ap-

plications unrelated to distributed complexity allocation, computing this probability is an

106

interesting and relevant problem in its own right.

6.3.1 Exact Analysis

A key problem for all decision-feedback detectors on fading channels is the minimal di-

versity gain for the first symbol detected, which leads to a large probability of error for

this symbol. This larger error probability dominates the overall error-rate. The B-Chase

detector overcomes this bottleneck by considering ℓ > 1 possibilities for the first sym-

bol, implementing a separate decision-feedback detector for each of the ℓ possibilities, and

choosing the best of the resulting candidate decision vectors [96].

The B-Chase detector begins by identifying which of the Nt transmitted symbols will

be detected first. It then uses a linear filter to null (in the ZF case) or partially null (in the

unbiased MMSE case) the contributions of the Nt1 interfering symbols, yielding a scalar

r = a + n, (6.2)

where a ∈ A is the transmitted symbol of interest, and n is the combined noise and residual

interference (if any). In the following we will assume that the real and imaginary compo-

nents of n are i.i.d. N(0, σ2) random variables and independent of the transmitted symbol

a, an assumption that is strictly true only in the ZF case [77]. The SNR at this point is thus

S NR = E[|a|2]/E[|n|2] = Ea/(2σ2).

After determining the order of detection, the B-Chase detector then implements a list

detector for the first detection symbol, where a list detector is defined as a device that

accepts a scalar input r and generates an ordered list of the ℓ alphabet symbols that are

closest to r. In other words, if for each r we define (λ1, λ2, . . . λq) as a permutation of the

alphabetA = {a1, a2, . . . aq} satisfying

|r − λ1| ≤ |r − λ2| ≤ . . . ≤ |r − λq|, (6.3)

then the decision list is simply the first ℓ elements of the permutation, L = {λ1, λ2, . . . λℓ}.

In the special case when ℓ = 1, the list detector reverts to the familiar minimum distance

(maximum likelihood) detector.

107

Figure 6.1: List detector decision regions of a 4-QAM list detector when ℓ = 2.

Figure 6.2: List detector decision regions of a 4-QAM list detector when ℓ = 3.

A list detection error occurs whenever the actual transmitted symbol does not appear

on the list produced by the list detector. In other words, a list detection error occurs if a

is transmitted and a < L, which implies that a is further from the received signal than all

symbols on the list; that is [17]:

|r − λl| ≤ |r − a|, l = 1, 2, . . . ℓ. (6.4)

The performance of the B-Chase(ℓ) MIMO detector is largely determined by the probability

of a list detection error, which we denote Pℓ [98].

Let us associate with each transmitted symbol a ∈ A and for each list length ℓ ∈

{1, . . . q} a list detector decision region Rℓ(a), defined as the set of complex numbers r that

would result in the length-ℓ decision list L containing the symbol a [96], i.e. Rℓ(a) = {r :

a ∈ L}. In the special case when ℓ = 1, the list detector decision regions reduce to the

familiar minimum-distance Voronoi cells, i.e. R1(a) = {r : |r − a| < |r − x|,∀x ∈ A, x , a}

[37]; which are mutually disjoint. In the general case when ℓ > 1, the list detector decision

regions for different symbols can overlap.

108

Fig.6.1 depicts the 4-QAM list detector decision regions for each element of the al-

phabet A when ℓ = 2. Fig.6.2 depicts the 4-QAM list detector decision regions for each

element of the alphabet A when ℓ = 3. Assuming all symbols are equally likely and

exploiting the symmetry of the 4-QAM alphabet, P2 can be expressed as:

P2 = Q(
√

2α/σ) = Q(
√

2S NR). (6.5)

Furthermore, P3 can be expressed as:

P3 = P(ℜ{n} < −α)P(ℑ{n} < −α)

= Q2(α/σ) = Q2(
√

S NR). (6.6)

In particular we see that P3 < P2. It is not hard to show that, in general, Pℓ will be a

decreasing function of ℓ. In the extreme case when the list length is maximal (ℓ = q), the

decision list reduces to the entire alphabet, and therefore the list detection error probability

will be zero (Pq = 0).

In general, an exact expression for the list detection error probability in AWGN with

q-ary QAM can be found using:

Pℓ = 1 − 1
q

∑

1≤m≤q

P(am on decision list | am transmitted)

= 1 − 1
q

∑

1≤m≤q

P(am + n ∈ Rℓ(am))

= 1 − 1
2πσ2q

∑

1≤m≤q

∫ ∫

Rℓ(am)

e
−1

2σ2 |r−am |2dr. (6.7)

Unfortunately, the intricate shape of the list detection decision regions for most alphabets

and most list lengths ℓ > 1 will make this integral intractable.

6.3.2 Minimum Distance Approximation

Since computing (6.7) is usually intractable, we introduce a minimum-distance approxima-

tion to upper bound the list detection error probability. Specifically, for each a ∈ A, we

will approximate the list detector decision region Rℓ(a) by a circular disc Dℓ(a) ⊂ Rℓ(a)

109

Figure 6.3: The exact list detection decision region R2(a) for list length ℓ = 2 and 16-
QAM is a semi-infinite polygon. The approximate list detection decision region D2(a) is
the circular disc centered at a with radius d2(a).

that is centered at a. The radius dℓ(a) of this disc will be as large as possible, subject to

the constraint that the disc be a subset of the list detector decision region, i.e., subject to

the constraint Dℓ(a) ⊂ Rℓ(a). The requirement that dℓ(a) be as large as possible ensures

that our bound is as tight as possible. We may thus interpret dℓ(a) as the minimum distance

between the symbol a and the nearest boundary of its length-ℓ list detector decision region.

Fig.6.3 shows the list detection decision region R2(a) and the corresponding disc D2(a)

for a 16-QAM constellation when a = α(1 + 3 j). Here, D2(a) is the lightly shaded disc

centered at a. Its radius d2(a) causes the edge of the disc to touch but not cross the boundary

of the list detection decision region R2(a).

Because DL(a) ⊂ RL(a), replacing RL(a) by DL(a) in (6.7) results in the following upper

bound for the list detection error probability in AWGN:

PL = 1 − 1
q

∑

1≤m≤q

P(am + n ∈ Rℓ(am)) (6.8)

≤ 1 − 1
q

∑

1≤m≤q

P(am + n ∈ Dℓ(am)) (6.9)

= 1 − 1
q

∑

1≤m≤q

P(|n|2 ≤ dℓ
2(am)) (6.10)

110

ℓ 1 2, 3 4 5 6 7, 8 9, 10, 11 12 13 14, 15 16
dℓ,min α

√
2α 2α

√
5α 2.5α

√
8α

√
10α

√
338/25α

√
130/9α

√
18α ∞

Table 6.1: Global Minimum Distances for 16-QAM.

=
1
q

∑

1≤m≤q

e−dℓ
2(am)/2σ2

, (6.11)

where the last equality follows from the fact that |n|2 is an exponential random variable

with mean 2σ2. A looser bound results when we replace each dℓ(a) by the global minimum

dℓ,min = min{dℓ(a) : a ∈ A}, yielding:

Pℓ ≤ e−dℓ
2(am)/2σ2

. (6.12)

We will refer to this bound as the minimum-distance approximation for the list detection

error probability.

The global minimum distances dℓ,min to the list detection decision region for a 4-QAM

constellation for ℓ ∈ {1, 2, 3, 4} are d1,min = α, d2,min =
√

2α, d3,min =
√

2α and d4,min = ∞,

respectively [96]. From these values we can see that the minimum distance approximation

does not always yield a tight upper bound. For example, the minimum distance approxima-

tion for P3 in AWGN with 4-QAM is P3 ≤ eS NR, which differs by more than 1 dB from the

exact result Q2(
√

S NR) of (6.6). Table 1 tabulates the global minimum distance for each

possible list length when the alphabet is 16-QAM.

The list detection decision regions for QAM alphabets larger than 4-QAM are more in-

tricate than those in Fig.6.1. For example, Fig.6.4 shows the list detection decision regions

for 16-QAM and ℓ = 3 for the three unique symbol types: (a) corner, (b) inner, and (c)

edge. The associated symbol is indicated by an open circle in the figure. Fig.6.5 shows

how these 16-QAM list detection decision regions change when the list length is increased

from ℓ = 3 to ℓ = 7.

Fig.6.6 compares the actual list detection-error probability to the minimum-distance

111

!

!

!

(a) (b) (c)

Figure 6.4: List detection decision regions for 16-QAM with ℓ = 3 for (a) corner point;
(b) inner point; and (c) edge point.

!

!!

(a) (b) (c)

Figure 6.5: List detection decision regions for 16-QAM with ℓ = 3 for (a) corner point;
(b) inner point; and (c) edge point.

112

Figure 6.6: Comparing the actual list detection error probability to the minimum-distance
approximation for 16-QAM and AWGN, for list lengths ℓ = 1, ℓ = 3 and ℓ = 7.

approximation (6.12) for 16-QAM and AWGN, for ℓ = 1, ℓ = 3, and ℓ = 7. The minimum-

distance approximation results in an error of 0.6 dB at 10−4 for ℓ = 1, 1.3 dB for ℓ = 3, and

1.1 dB when ℓ = 7.

6.4 Nonuniform Computational Complexity Allocation for OFDM

A conventional OFDM detector implements the same detection algorithm on each subcar-

rier so that the computation complexity is uniformly distributed across subcarriers [98]. A

nonuniform computational complexity allocation (NCCA) OFDM detector implements a

different detector on each subcarrier, depending on the subcarrier channel quality, resulting

in a nonuniform distribution of computational complexity across subcarriers.

113

Given this framework we can think of an OFDM detector as having a total complexity

budget of B complexity units to be distributed amongst J subcarriers. Let us define:

ℓi = {1, 2, . . .q} (6.13)

as the list length assigned to the ith subcarrier detector. The lower bound of 1 and upper

bound of q are imposed by the structure of the B-Chase detector, whose list length is limited

to the range {1, 2, . . .q}. A conventional OFDM detector assigns complexity uniformly, so

that the list length is identical (ℓi = B/J) for all subcarriers. We relax this constraint and

allow a nonuniform complexity assignment, subject only to the constraints:

ℓi ∈ {1, 2, . . .q} for i ∈ {1, 2, . . . J},
∑

1≤i≤J

ℓi = B. (6.14)

Note that the values that the complexity budget B might take are more constrained for the

uniform case than for the nonuniform case. Specifically, a uniform assignment of B/J ∈

{1, 2, . . .q} units to each subcarrier would require that the complexity budget satisfy B ∈

{J, 2J, 3J, . . .qJ}. In contrast, a nonuniform yet integer-valued complexity assignment can

be made whenever B ∈ {J, J + 1, J + 2, . . . qJ}. Consequently, a nonuniform complexity

assignment is beneficial to a system designer, in contrast to a uniform assignment, because

it allows for more freedom in the selection of the overall complexity budget.

There are potentially many ways to select {ℓi} yielding performance superior to that of

conventional uniform assignment. We choose to adopt a strategy which allocates more of

the complexity budget to the subcarriers which need the most help, in terms of the list de-

tection error probability. Specifically, after initialization, we propose to allocate complexity

units one at a time to the subcarrier with the highest list detection error probability.

In Fig.6.7 we present the algorithm allocate, which summarizes our proposed strat-

egy for distributing computational resources to the different subcarriers. The inputs for the

algorithm are the complexity budget B and the channel matrices {H(1), . . .H(J)}, while the

outputs are the list lengths {ℓ1, . . . ℓJ} for the different subcarriers.

114

Input: B, {H(1), . . .H(J)}
Output: {ℓ1, . . . ℓJ}
Initialize ℓ1 = ℓ2 = . . . = ℓJ = 11

for i = 1 : J do2

ki = BChaseSelect1(H(i) ,ℓi)3

S NRi = ||hki − ĥki ||2Ea/N04

end5

for count = 1 : B − J do6

i = arg max Pℓi(S NRi)7

ℓi = ℓi + 18

ki = BChaseSelect1(H(i) ,ℓi)9

S NRi = ||hki − ĥki ||2Ea/N010

end11

Figure 6.7: An algorithm for allocating complexity with budget B amongst J
OFDM subcarriers.

The allocate function begins by initializing each list length to one, so that the re-

maining complexity budget is B − J. It then computes the instantaneous SNR values for

each tone. The allocate algorithm then loops B − J times, each time increasing the list

length on the subcarrier with the maximum list detection error probability. The algorithm

terminates once the complexity budget has been exhausted. Note that, with our assumption

that B ≤ qJ, the constraints (6.14) will always be satisfied. In practice one might cap each

list length at the value needed in order for the corresponding list detection error probability

to achieve a desired target error probability, thereby reducing power consumption.

A key parameter within the allocate algorithm is the instantaneous SNR at the input

to the B-Chase list detector on subcarrier i, denoted S NRi. For the ZF case, this SNR can

be written as S NRi = ‖hki − ĥki‖2Es/N0, where ki ∈ {1, . . .N} denotes the index of the first

symbol detected by B-Chase(ℓi) on subcarrier i, where hki denotes the kith column of H(i),

and where hki denotes the projection of the kith column of H(i) onto the subspace spanned by

the remaining columns of H(i). Each time a list length changes, the corresponding index ki

may change, in which case the corresponding S NRi must be updated. The BChaseSelect1

115

function, which takes as inputs a MIMO channel and an allocated list length Li, produces

the index ki using selection algorithm #1 of [98]. Because all list lengths are initialized to

1, the index ki found during the first for loop is the same as that found using the V-BLAST

ordering [100].

Although the above-described allocate algorithm is based on the ZF version of the B-

Chase detector, the same algorithm can be used for the MMSE case as well, with only two

modifications: First, the inputs to the allocate algorithm should be the extended channel

matrices {H(i)} instead of {H(i)}, where [45, 14]:

H(i) =

H(i)

√

N0

Es
I

, (6.15)

where I is the N×N identity matrix. Second, the SNR computation in lines 4 and 11 should

be changed to S NRi = ‖hki − ĥki‖2Es/N0 − 1, to account for the MMSE bias.

6.5 Numerical Results

We now present numerical results quantifying the performance of the proposed NCCA

detector using B-Chase detectors and the allocate algorithm over a MIMO-OFDM

Rayleigh-fading channel with 4 inputs and 4 outputs. We adopt the typical urban chan-

nel model presented in Table 5.1 of 3GPP TR 25.943 [1], which we approximated using a

16-tap model, assuming a sample rate of 5.128 MHz at the D/A and A/D converters. We

assume that 64 subcarriers are used, where 48 subcarriers contain data and 16 subcarriers

are zero. No bit loading is performed and each subcarrier carries the same QAM alphabet.

Finally, in the case of MMSE detection, all branch metrics computed during the tree search

are unbiased and the final decisions are based on the ZF minimum distance cost.

Fig.6.8(a) and Fig.6.8(b) illustrate the instantaneous SNR values as a function of fre-

quency for two typical channel realizations. The S NRi values shown are determined at

the end of the allocate algorithm. Fig.6.8(e) and Fig.6.8(f) illustrate the correspond-

ing complexity allocations {ℓi} of allocate, assuming B = 144 and 16-QAM. Observe

116

that the high-SNR subcarriers are assigned short list lengths, while the low-SNR subcarri-

ers are assigned long list lengths. This aspect is highlighted in Fig.6.8(c) and Fig.6.8(d),

which illustrate the inverse values of S NRi as determined at the end of the allocate al-

gorithm. The strong relationship between S NRi
−1 and {ℓi} implies that a lower complexity

allocate algorithm may be possible by simply scaling S NRi
−1 and quantizing using a

given complexity budget.

Figure 6.8: The instantaneous SNR values for two typical channels (a)-(b), their inverse
values (c)-(d), and the corresponding list-length allocation (e)-(f) of allocate, with an
average SNR of 8 dB, 16-QAM alphabet, and B = 144.

In Fig.6.9(a) we illustrate the average ordered SNR values (and Fig.6.9(b) their inverse

values); these results were found by sorting the instantaneous SNR values {S NRi} in in-

creasing order for each of 104 independent Rayleigh-fading channel realizations, and then

averaging the ordered results. The corresponding mean value of ℓi on each subcarrier, as-

suming a 16-QAM alphabet is also shown for four different budgets in (c) B = 96, (d)

B = 192, (e) B = 288, and (f) B = 384. Note that as the SNR value for a subcarrier

increases, the complexity assigned to that subcarrier decreases.

117

Figure 6.9: The average SNR (a) and inverse SNR (b) after ordering, averaged over 104

channel realizations, and the corresponding average list lengths for a 16-QAM alphabet
with (c) B = 96, (d) B = 192, (E) B = 288, and (f) B = 384.

In Fig.6.10 we compare the performances of several MIMO-OFDM detectors for the

same 4-input 4-output Rayleigh-fading channel with 16-QAM inputs. The upper two

curves show the performance of conventional OFDM detectors based on ZF and MMSE

versions of the B-Chase(2) algorithm, where the computational complexity is distributed

uniformly across subcarriers (ℓi = 2 for all i). The group of four curves labeled “NCCA”

shows the performance of four variations of the proposed NCCA detector, all of which have

the same complexity budget as the conventional detectors (B = 96), but distribute compu-

tational resources nonuniformly across the subcarriers. All four of the NCCA detectors use

B-Chase(ℓi) on subcarrier i, where the list lengths are allocated using the allocate algo-

rithm. The two black NCCA curves are for ZF and MMSE, assuming that the list detection

error probabilities within the allocate algorithm were computed from a table of precom-

puted values designed to emulate the exact list detection error probability. The two grey

NCCA curves are for ZF and MMSE, assuming that the list detection error probabilities

within the allocate algorithm were approximated by the minimum-distance approxima-

tion (6.12).

118

10-4

10-3

10-2

6 8 10 12

MMSE

ZF

MMSE (Min. Dist. Approx.)

ZF (Min. Dist. Approx.)

B
E
R

ZF

MMSE U
N

IF
O

R
M

ZF

MMSE

NCCA Legend

N
C
C
A

Eb/N0 (dB)

14 16 18 20

0.05

JM
L

Figure 6.10: Error probability performance for B-Chase over a 4-input 4-output frequency-
selective Rayleigh-fading channel with 16-QAM on each OFDM subcarrier. The complex-
ity budget is B = 96 for both the uniform (conventional) and nonuniform (proposed NCCA)
receivers.

From these results we can see that the NCCA MMSE B-Chase detector outperforms

the conventional OFDM MMSE B-Chase detector by 4.4 dB at 10−4, with a gap of 3.0 dB

to the joint maximum likelihood (JML) detector [26]. The NCCA ZF B-Chase detector

outperforms the conventional OFDM ZF B-Chase detector by 5.5 dB at 10−3, with a gap of

2.4 dB to JML performance. The minimum distance approximation incurs a penalty of 0.2

dB for the MMSE case and 0.1 dB the ZF case at 10−4.

In Fig.6.11 we illustrate the performance-complexity trade-off for several MIMO-

OFDM detectors by plotting the required SNR per bit versus the complexity budget B.

These results are based on a 4-input 4-output Rayleigh-fading channel with 64-QAM in-

puts. The two upper curves show the performance of conventional OFDM detectors based

on ZF and MMSE versions of the B-Chase(ℓ), for ℓ ∈ {1, . . . 12}. The two curves marked

by circles show the performance of the proposed NCCA approach. The performance of the

119

2

3

4

5

6

7

8

9

10
11

12

2

3

4

5

8
9 10 11 12

JML

0 100 200 300 400 500 600
15

17

19

21

23

R
E

Q
U

IR
E

D
 E
b
/N

0
fo

r
B
E
R

 1

0-
3
,

in
 d

B

ZF

COMPLEXITY BUDGET, B

NCCA

U
N
IF
O
R
M

M
M
SE

Z
F

M
M
S
E

Figure 6.11: Performance-complexity trade-off for B-Chase over a 4-input 4-output
frequency-selective Rayleigh fading channel with 64-QAM on each OFDM subcarrier for
various complexity budgets.

JML detector is given as reference.

The vertical distance between curves measures the SNR advantage at a fixed complex-

ity. From Fig.6.11 we can see that the NCCA detector outperforms the conventional de-

tector at all complexity budgets. For example, when B = 96, the NCCA detector with

MMSE B-Chase outperforms the conventional MMSE B-Chase detector by 3.9 dB, with a

gap of 1.8 dB to JML performance. When B = 192, the performance gain is 1.2 dB, with a

gap of 1.1 dB to JML performance. The horizontal distance between the curves measures

the complexity advantage at a fixed SNR requirement. From Fig.6.11 we see the NCCA

approach delivers significant complexity reduction. For example, the NCCA detector with

MMSE B-Chase and B = 56 achieves the same performance as the conventional detector

(with B = 144) with less than 40% of the complexity.

120

Fig.6.11 shows that the gap between ZF and MMSE is significantly smaller with NCCA

than with the conventional detector.

6.6 Conclusion

In this chapter we proposed a distributed complexity allocation strategy for OFDM detec-

tion over frequency-selective channels. Typically MIMO-OFDM receivers will implement

the same detector at each subcarrier and, when these detectors are fixed complexity detec-

tors, this represents uniform computational complexity allocation. When the same detector

is implemented on each subcarrier the overall error-rate performance is dominated by the

weakest subcarrier. Improved error detection is achieved by exploiting channel state infor-

mation to allocate a given complexity budget nonuniformly across the different subcarriers.

We proposed to allocate computational complexity nonuniformly at the receiver, an idea

we named nonuniform computational complexity allocation. Our NCCA algorithm used

a metric known as the list error probability, which is the probability that the list of the ℓ

symbols closest to the channel output does not contain the transmitted symbol, to assign

computational resources. We computed an exact expression for the list error probability in

AWGN, and provided a minimum distance approximation that serves as an upper bound

for the list error probability. Numerical results for Rayleigh fading channels show that the

proposed nonuniform MIMO-OFDM detector outperformed a conventional detector with

the same complexity by 4.4 dB.

121

CHAPTER 7

CONCLUSIONS

7.1 Summary

In this dissertation, we investigated the use of candidate lists to solve the soft-output MIMO

detection problem. We focused on solutions with low and fixed computational complexity.

The key findings and conclusions for this dissertation are summarized as follows:

• List detection is an attractive solution to the soft-output MIMO detection problem.

• The process of list detection can be constructed as that of a search through a detection

tree.

• The goal of list detectors employing a detection tree can be phrased as finding the ℓ

leaf nodes in the tree with minimum cost.

• Near max-log optimal performance can be achieved with only a small subset from

the set of all leaf nodes in a detection tree.

• Using the number of branch metric computations performed during the search of the

detection tree is a suitable measure of the computational complexity for tree-based

list MIMO detectors.

• The number of branch metric computations as a measure of computational complex-

ity leads to bounds on the computational complexity of tree-based list detectors.

• A lower bound on the computational complexity of tree-based list MIMO detec-

tion can be derived by considering a genie tree search detector: for a given list size

ℓ = |L|, this detector generates only the subset of leaf nodes from L which are actu-

ally used in the calculation of the LLRs based on the max-log approximation.

122

• Soft-output detection algorithms with low and fixed computational complexity

achieving near max-log optimal performance are feasible.

• Breadth-first algorithms were shown to be a viable approach for achieving a desirable

performance-complexity tradeoff when using tree-based detection. In particular, the

fixed computational complexity of breadth-first detection was shown to be advanta-

geous to the overall performance-complexity profile, rather than a detriment to the

system’s performance.

• The use of smart candidate adding techniques that only visit nodes in the detection

tree once (i.e. parallel search) were shown to be highly efficient at solving the soft-

output MIMO detection problem.

• The ordering of the MIMO channel matrix is an important consideration when de-

signing MIMO detection algorithms. We examined the significant impact of the de-

tection ordering on fixed computational complexity soft-output detection algorithms.

• We presented a smart ordering and candidate algorithm (SOCA) algorithm that

achieves a desirable performance-complexity profile in both slow and fast fading

scenarios. The SOCA algorithm achieves its desirable properties by using parallel

smart candidate adding and careful selection of the preprocessing algorithm.

• A framework for characterizing algorithms that only visit nodes in the detection tree

once, possess fixed computational complexity, and are breadth-first was presented.

This framework allows for the classification of many prior detection algorithms so

that their performance-complexity profiles can be compared. Additionally, the frame-

work enables the construction of new breadth-first detection algorithms through sim-

ple parameterization.

• Weakly encoded MIMO systems subject to slow fading conditions require more com-

putational complexity and higher signal-to-noise ratios to achieve the performance of

123

fast fading MIMO systems employing strong encoding algorithms. The use of space-

time codes can increase the diversity gain over MIMO systems employing spatial

multiplexing, but at the cost of increasing the effective channel dimensions.

• Soft-output detection of the golden code is an important but computationally difficult

task. We proposed a low- and fixed- complexity soft-output detector for the golden

code that used linear equalization to simplify the task of finding a list of candidate

values for one pair of information symbols, and then – for each pair on the list – it

uses decision-feedback equalization to find candidate values for the remaining pair

of information symbols.

• Selection of the LLR clipping level for soft-output MIMO detection can have a sig-

nificant impact of the performance of MIMO receivers. This is particularly true for

suboptimal breadth-first detection algorithms.

• An LLR clipping algorithm was presented that determines the LLR clipping level

based on the instantaneous SNR and list length employed for suboptimal detection

algorithms.

• For the same computational complexity budget and receiver algorithm, MIMO-

OFDM receivers that allocate computational complexity resources nonuniformly

achieve lower error rates than those that uniformly allocation computational com-

plexity.

• An effective metric for allocating computational complexity in a MIMO-OFDM re-

ceiver is the list error probability, i.e. the probability that the list of the ℓ symbols

closest to the channel output does not contain the transmitted symbol. We computed

an exact expression for the list detection error probability in AWGN, and provided

a minimum distance approximation that serves as an upper bound on the list error

probability.

124

• Our proposed nonuniform-computational complexity allocation (NCCA) algorithm,

based on assigning the computational complexity to subcarriers with the highest list

error probability first was shown to be effective in reducing the overall system error

rate performance.

7.2 Future Work and Final Remarks

This dissertation focused on the problem of soft-output multiantenna detection with an

emphasis on tree-based solutions that find a set of leaf nodes in the tree. In particular the

proposed solutions all possessed low and fixed computational complexity.

Throughout this dissertation our solutions were presented in the context of a single

user MIMO system. Extending this work to multi-user and/or cooperative MIMO systems

represents a promising avenue of future work. Additionally, investigations into the combi-

nation of spatial multiplexing with antenna beamforming appears to be a feasible, but as

yet relatively young area of study. Due to the difficulty of the detection problem for such a

system, low complexity soft-output detection algorithms are of great importance.

The SOCA algorithm from chapter 3 was shown to be a promising soft-output detec-

tion algorithm with low and fixed computational complexity for both slow and fast fading

scenarios. Architectural implementations of parallel smart candidate adding approaches,

like the SOCA algorithm, are therefore an area of practical significance. This development

work would add weight to the claim that the SOCA algorithm lends itself to a parallel

architecture with low latency.

In chapter 4 we proposed a soft-output detection algorithm for the golden code. Ex-

tending this algorithm to work with space-time codes similar to the golden code would

be a worthwhile investigation. Examples of similar space-time codes of interest include

the embedded Alamouti space-time codes [83] and the more general embedded orthogonal

space-time codes [84].

Chapter 5 proposed an approach for SNR-aware LLR clipping, albeit without proof of

125

optimality. In [112] the optimality of the approach used in this dissertation was demon-

strated for a single-input single-output system employing BPSK modulation with a repe-

tition code transmitting over an AWGN channel. An open problem is extending [112] to

higher modulation schemes, more advanced codes, fading channels and/or multiantenna

channels. Additionally, our use of the list length ℓ as a parameter for the SNR-aware clip-

ping level is intuitive, but by no means optimal. Consequently, the optimality of SNR-aware

LLR clipping remains an open problem.

Chapter 6 proposed to nonuniformly allocation computational complexity resources

within a hard-output MIMO-OFDM list detector based on the list error probability. An

obvious area where our work on nonuniform computational complexity can be extended

is to the case of soft-output MIMO detection, rather than simply hard-output detection.

Here the list error probability may not be as effective a metric for assigning computational

complexity. Consequently, a second area where the work in chapter 6 can be extended is to

consider metrics other than the list error probability to assign computational complexity.

The use of soft-output multiantenna detection has already found its way into real-world

systems such as IEEE 802.11n [48] and WiMax [49]. Future areas of implementation

include 4G cellular networks and next generation metropolitan area networks. The unre-

lenting push for increased data rates and reliability, combined with the ever decreasing cost

of hardware, ensures that MIMO technology will become a pervasive technology in future

communication systems. As a direct consequence of this fact, low computational complex-

ity algorithms solving the soft-output detection problem will remain an important area of

study as these solutions move from research to practice. Additionally, as the number of

antennas used in MIMO systems grows, as the cost of hardware and demand allows, the

exponential nature of the optimal solution implies that the problem of MIMO detection will

remain an important challenge.

126

REFERENCES

[1] 3rd Generation Partnership Project, “3GPP Technical Report 25.943, V. 6.00
(2004-12),” tech. rep., Technical Specification Group Radio Access Network, De-
ployment Aspects, Dec. 2004.

[2] Alamouti, S. M., “A simple transmit diversity technique for wireless communica-
tion,” IEEE Journal on Selected Areas in Communications, vol. 6, pp. 1451–1458,
Oct. 1998.

[3] Anderson, J. and Mohan, S., “Sequential Coding Algorithms: A Survey and Cost
Analysis,” IEEE Transactions on Communications, vol. 32, pp. 169–176, Feb. 1984.

[4] Arora, A., Krunz, M., and Muqattash, A., “Directional medium access protocol
(DMAP) with power control for wireless ad hoc networks,” in IEEE 2004 Global
Communications Conference, (Globecom 2004), Nov. 2004.

[5] Bahai, A. and Saltzberg, B., Multicarrier Digital Communications: Theory and
Applications of OFDM. Kluwer Academic, New York, 1999.

[6] Barbero, L. G., Ratnarajah, T., and Cowan, C., “A low-complexity soft-mimo de-
tector based on the fixed-complexity sphere decoder,” in IEEE International Con-
ference on acoustics, speech and signal processing (ICASSP ’08), to appear, (Las
Vegas, USA), 30.-4. Mar./Apr. 2006.

[7] Barbero, L. G. and Thompson, J. S., “A Fixed-Complexity MIMO Detector Based on
the Complex Sphere Decoder,” in IEEE Workshop on Signal Processing Advances
for Wireless Communications (SPAWC’06), (Cannes, France), July 2006.

[8] Barbero, L. G. and Thompson, J. S., “Extending a Fixed-Complexity Sphere De-
coder to Obtain Likelihood Information for Turbo-MIMO Systems,” IEEE Transac-
tions on Vehicular Technology, pp. 2804–2814, Sept. 2008.

[9] Barbero, L. G. and Thompson, J. S., “Fixing the Complexity of the Sphere Decoder
for MIMO Detection,” IEEE Transactions on Wireless Communications, vol. 7,
pp. 2131–2142, June 2008.

[10] Bäro, S., “Turbo Detection for MIMO Systems Using a List Sequential Detector:
Improved Soft Output by Path Augmentation,” in Proceedings of the ITG Conference
on Source and Channel Coding (SCC’03), 2003.

[11] Bäro, S., Hagenauer, J., and Witzke, M., “Iterative detection of MIMO transmis-
sion using a list-sequential (LISS) detector,” in IEEE International Conference on
Communications (ICC’03), vol. 4, pp. 2653 – 2657, Mar. 2003.

127

[12] Barry, J. R., Lee, E. A., and Messerschmitt, D. G., Digital Communication. Boston:
Kluwer Academic Publishers, third ed., 2004.

[13] Belfiore, J.-C., Rekaya, G., and Viterbo, E., “The Golden Code: A 2x2 full rate
Space-Time Code with Non Vanishing Determinants,” IEEE Transactions on Infor-
mation Theory, vol. 51, 2005.

[14] Böhnke, R., Wübben, D., Kühn, V., and Kammeyer, K., “Reduced complexity
MMSE detection for BLAST architectures,” in IEEE Global Communications Con-
ference, vol. 4, pp. 2258–2262, Dec. 2003.

[15] Bittner, S., Zimmermann, E., and Fettweis, G., “Low Complexity Soft Interference
Cancellation for MIMO-Systems,” in Proceedings of the IEEE Vehicular Technology
Conference (VTC’06), (Melbourne, Australia), May 2006.

[16] Bittner, S., Zimmermann, E., Rave, W., and Fettweis, G., “List sequential MIMO
detection: Noise bias term and partial path augmentation,” in IEEE International
Conference on Communicaitons (ICC’06), (Istanbul, Turkey), 11.-15 June 2006.

[17] Bocharova, I. E., Johannesson, R., Kudryashov, B. D., and Loncar, M., “An Im-
proved Bound on the List Error Probability and List Distance Properties,” IEEE
Transactions on Information Theory, vol. 54, pp. 13–32, Jan. 2008.

[18] Burg, A., Borgmann, M., Simon, C., Wenk, M., Zellweger, M., and Fichtner, W.,
“Performance tradeoffs in the VLSI implementation of the sphere decoding algo-
rithm,” in Fifth IEEE International Conference on 3G Mobile Communication Tech-
nologies, pp. 93–97, Oct. 2004.

[19] Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., and Bölcskei,
H., “VLSI Implementation of MIMO Detection using the Sphere Decoding Algo-
rithm,” IEEE Journal of Solid-State Cicuits, vol. 40, July 2005.

[20] Butler, M. and Collings, I., “A zero-forcing approximate log-likelihood receiver
for MIMO bit-interleaved coded modulation,” vol. 8, pp. 105–107, Feb. 2004.

[21] Caire, G., Taricco, G., and Biglieri, E., “Bit-interleaved coded modulation,” IEEE
Transactions on Information Theory, vol. 44, pp. 927 – 946, May 1998.

[22] Chen, S. and Zhang, T., “Low Power Soft-Output Signal Detector Design for Wire-
less MIMO Communication Systems,” in International Symposium on Low Power
Electronics and Design (ISLPED’07), Aug. 2007.

[23] Chin, W. H., “QRD Based Tree Search Data Detection for MIMO Communica-
tion Systems,” in Proceedings of the IEEE Vehicular Technology Conference, vol. 3,
(Stockholm, Sweden), pp. 1624–1627, May 2005.

[24] Choi, W. J., Cheong, K. W., and Cioffi, J. M., “Iterative Soft Interference Cancella-
tion for Multiple Antenna Systems,” in Proceedings of the IEEE Wireless Commu-
nications and Networking Conference (WCNCŠ00), vol. 1, pp. 304–309, 2000.

128

[25] Cui, T. and Tellambura, C., “An efficient generalized sphere decoder for rank-
deficient MIMO systems,” IEEE Communications Letters, vol. 9, pp. 423–425, May
2005.

[26] Damen, O., Chkeif, A., and Belfiore, J.-C., “Lattice code decoder for space-time
codes,” IEEE Communications Letters, vol. 4, pp. 161–163, May 2000.

[27] Dayal, P. and Varanasi, M. K., “An Optimal Two Transmit Antenna Space-Time
Code And Its Stacked Extensions,” IEEE Transactions on Information Theory,
vol. 51, pp. 4348–4355, Dec. 2005.

[28] de Jong, Y. L. C. and Willink, T. J., “Iterative tree search detection for MIMO wire-
less systems,” IEEE Transactions on Communications, vol. 53, pp. 930–935, June
2005.

[29] Dejonghe, A. and Vandendorpe, L., “Turbo equalization for multilevel modulation:
An eścient lowcomplexity scheme,” in Proceedings of the IEEE International Con-
ference on Communications (ICC’02), vol. 3, (New York City, USA).

[30] Dong, B., Wang, X., and Doucet, A., “A new class of MIMO demodulation algo-
rithms,” IEEE Transactions on Signal Processesing, vol. 51, pp. 2752–2763, Nov.
2003.

[31] Farhang-Boroujeny, B., Haidong, Z., and Zhenning, S., “Markov chain Monte Carlo
algorithms for CDMA and MIMO communication systems,” IEEE Transactions on
Signal Processing, vol. 54, pp. 1896–1909, May.

[32] Fincke, U. and Pohst, M., “Improved methods for calculating vectors of short length
in lattice, including a complexity analysis,” Mathematics of Computation, vol. 44,
pp. 463–471, Apr. 1985.

[33] Foschini, G. J., “Layered Space-Time Architecture for Wireless Communication in
a Fading Environment When Using Multi-Element Antennas,” Bell Laboratories
Technical Jounral, pp. 41–59, Oct. 1996.

[34] Foschini, G. J., Golden, G. D., Valenzuela, R. A., and Wolniansky, P. W., “Simpli-
fied processing for wireless communication at high spectral efficiency,” IEEE Jour-
nal on Selected Areas in Communications, vol. 17, pp. 1841–1852, Nov. 1999.

[35] Garrett, D., Davis, L., ten Brink, S., Hochwald, B., and Knagge, G., “Silicon
complexity for maximum likelihood MIMO detection using spherical decoding,”
IEEE Journal of Solid-State Circuits, vol. 39, pp. 1544–1552, Sept. 2004.

[36] Godara, L., “Applications of antenna arrays to mobile communications, Part II:
Beam-forming and direction-of-arrival considerations,” Proceedings of the IEEE,
vol. 85, p. 1195Ű1245, Aug. 1997.

[37] Goldsmith, A., Wireless Communication. Cambridge University Press, 2005.

129

[38] Guo, D. and Wang, X., “Blind detection in MIMO systems via sequential Monte
Carlo,” IEEE Journal on Selected Areas in Communications, vol. 21, pp. 453–464,
Apr. 2003.

[39] Guo, Z. and Nilsson, P., “Algorithm and implementation of the K-best sphere de-
coding for MIMO detection,” IEEE Journal on Selected Areas in Communications,
vol. 24, pp. 491–503, Mar. 2006.

[40] Hagenauer, J., “The turbo principle in mobile communications,” in Proceedings of
the International Symposium on Information Theory and its Applications (ISITA’02),
(Xi’an, China), 07.-11.Oct. 2002.

[41] Hagenauer, J. and Kuhn, C., “Turbo Equalization for Channels with High Mem-
ory using a List-Sequential (LISS) Equalizer,” in Proceedings of the International
Symposium on Turbo Codes and Related Topics (ISTCŠ03), (Brest, France), Sept.
2003.

[42] Hagenauer, J. and Kuhn, C., “The List-Sequential (LISS) algorithm and its applica-
tion,” IEEE Transactions on Communications, vol. 55, May 2007.

[43] Hagenauer, J., Robertson, P., and Papke, L., “Iterative (turbo) decoding of system-
atic convolutional codes with the MAP and SOVA algorithms,” in Proc. ITG Con-
ference on Source and Channel Coding (SCC’94), pp. 21 – 29, 1994.

[44] Hanzo, L., Woodard, J. P., and Robertson, P., “Turbo Decoding and Detection for
Wireless Applications,” Proceedings of the IEEE, vol. 95, pp. 1178 – 1200, June
2007.

[45] Hassibi, B., “An efficient square-soot algorithm for BLAST,” in IEEE Conference
on Acoustics, Speech, and Signal Processing, vol. 2, pp. 737–740, June 2000.

[46] Hermite, C., “Extraits de lettres à M. Jacobi sur différents objets de la théorie des
nombres, (in French),” J. Reine und Angewandte Math., vol. 40, p. 261Ű315, 1850.

[47] Hochwald, B. and ten Brink, S., “Achieving near-capacity on a multiple-antenna
channel,” IEEE Transactions on Communications, vol. 51, pp. 389–399, Mar. 2003.

[48] IEEE 802 Working Group 11, T. G. N., “IEEE P802.11n/D3.00, Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amend-
ment 4: Enhancements for Higher Throughput.,” tech. rep., Sept. 2007.

[49] IEEE 802 WorkingGroup 16, T. G. E., “IEEE P802.16Rev2/D2, ŞDRAFT Standard
for Local and metropolitan area networks,Ť Part 16: Air Interface for Broadband
Wireless Access Systems,” tech. rep., Dec. 2007.

[50] Jaldén, J. and Ottersten, B., “Parallel Implementation of a Soft Output Sphere De-
coder,” in Conference Record of the 39th Asilomar Conference on Signals, Systems
and Computers, pp. 581–585, Oct. 2005.

130

[51] Jaldén, J., Barbero, L. G., Ottersten, B., and Thompson, J. S., “Full Diversity De-
tection in MIMO Systems with a Fixed-Complexity Sphere Decoder,” in IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP’07),
(Honolulu, Hawaii, USA), Apr. 2007.

[52] Jeon, K., Kim, H., and Park, H., “An Efficient QRD-M Algorithm Using Partial
Decision Feedback Detection,” in 40th Asilomar Conference on Signals, Systems,
and Computers, Oct. 2006.

[53] Kim, B.-S. and Choi, K., “SNR Measurement Free Adaptive K-Best Algorithm for
MIMO Systems,” in IEEE Wireless Communications and Networking Conference
(WCNC’08), pp. 628–633, Apr. 2008.

[54] Kim, K. J., Yue, J., Iltis, R., and Gibson, J., “A QRD-M/Kalman filter-based detec-
tion and channel estimation algorithm for MIMO-OFDM systems,” IEEE Transac-
tions on Wireless Communications, vol. 4, p. 710Ű720, Mar. 2005.

[55] Knuth, D. E., The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley Professional, 2 ed., 1998.

[56] Korkine, A. and Zolotareff, G., “Sur les formes quadratiques (in French),” Math.
Annalen, vol. 6, p. 366Ű389, 1873.

[57] Lenstra, A. K., Lenstra, H. W., and Lovász, L., “Factoring Polynomials with Ra-
tional Coefficients,” Math. Ann., vol. 261, pp. 515–534, 1982.

[58] Li, Y. and Luo, Z.-Q., “Parallel detection for V-BLAST system,” in Proc. IEEE In-
ternational Conference on Communications (ICC’02), vol. 1, (New York, NY USA),
p. 340Ű344, Apr. 2002.

[59] Love, D. J., Hosur, S., Batra, A., and Jr., R. W. H., “Space-Time Chase Decoding,”
IEEE Transactions on Wireless Communications, vol. 4, pp. 2035–2039, Sept. 2005.

[60] Luo, J., Pattipati, K., P.Willett, and Levchuk, G., “Optimal grouping for a group
decision feedback detector in synchronous CDMA communications,” IEEE Trans-
actions on Communications, vol. 51, pp. 341–346, Mar. 2003.

[61] Marsch, P., “On the complexity of efficient detection algorithms for multiple an-
tenna systems,” diploma thesis, TU Dresden, Nov. 2004.

[62] Marsch, P., Zimmermann, E., and Fettweis, G., “Smart Candidate Adding: A new
Low-Complexity Approach towards Near-Capacity MIMO Detection,” in 13th Euro-
pean Signal Processing Conference (EUSIPCO’05), (Antalya, Turkey), 04.-08. Sept.
2005.

[63] Mennenga, B. and Fettweis, G., “Search Sequence Determination for Tree Search
based Detection Algorithms,” in IEEE Sarnoff Symposium, Mar. 2009.

131

[64] Mennenga, B., Matus, E., and Fettweis, G., “Vectorization of the sphere detection
algorithm,” in IEEE International Symposium on Circuits and Systems, pp. 2806 –
2809, May 2009.

[65] Milliner, D. L. and Barry, J. R., “An Adaptive M-Algorithm for Detection of
Multiple-Input Multiple-Output Channels,” in IEEE Signal Processing Advances in
Wireless Communications, (SPAWC’07), (Helsinki, Finland), 17.-20. June 2007.

[66] Milliner, D. L., Sinnokrot, M. O., and Barry, J. R., “A Soft-Output Detector for the
Golden Code,” in IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC’09), Sept. 2009.

[67] Milliner, D. L., Zimmermann, E., Barry, J. R., and Fettweis, G., “A Fixed-
Complexity Smart Candidate Adding Algorithm for Soft-Output MIMO Detection,”
IEEE Journal of Selected Topics in Signal Processing. submitted.

[68] Milliner, D. L., Zimmermann, E., Barry, J. R., and Fettweis, G., “A Framework for
Fixed Complexity Single-Stage Breadth-First Detection,” in 10th International Sym-
posium on Spread Spectrum Techniques and Applications (ISSSTA’08), (Bologna,
Italy), 25.-28. Aug. 2008.

[69] Milliner, D. L., Zimmermann, E., Barry, J. R., and Fettweis, G., “Computational
Complexity Bounds for List MIMO Detection,” in The 11th International Sympo-
sium on Wireless Personal Multimedia Communications (WPMC08), (Lapland, Fin-
land), 8.-11. Sept. 2008.

[70] Milliner, D. L., Zimmermann, E., Fettweis, G., and Barry, J. R., “Channel State
Information Based LLR Clipping for List MIMO Detection,” in IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’08),
15-18. Sept. 2008.

[71] Mohan, S. and Anderson, J., “Computationally Optimal Metric-First Code Tree
Search Algorithms,” IEEE Transactions on Communicaitons, vol. 32, pp. 710–717,
June 1984.

[72] Myllylä, M., Antikainen, J., Juntti, M., and Cavallaro, J. R., “The effect of LLR
clipping to the complexity of list sphere detector algorithms,” in Forty-First Asilomar
Conference on Signals, Systems and Computers, pp. 1559–1563, 2007.

[73] Nekuii, M. and Davidson, T. N., “List-based soft demodulation of MIMO QPSK via
semidefinite relaxation,” in IEEE 8th Workshop on Signal Processing Advances in
Wireless Communications, pp. 1–5, June 2007.

[74] Robertson, P., Villebrun, E., and Hoeher, P., “A comparison of optimal and sub-
optimal MAP decoding algorithms operating in the log domain,” in IEEE Interna-
tional Conference on Communications (ICC’95), vol. 2, (Seattle, USA), pp. 1009–
1013, June 1995.

132

[75] S. Chen, T. Zhang, Y. X., “Breadth-first tree search MIMO signal detector design
and VLSI implementation,” in IEEE MILCOM 2005, vol. 3, pp. 1470–1476, Oct.
2005.

[76] Schnorr, C. P. and Euchner, M., “Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems,” in Mathematical Programming, vol. 66,
pp. 181–199, Aug. 1994.

[77] Seethaler, D., Artés, H., and Hlawatsch, F., “Dynamic nulling-and-canceling for
efficient near-ML decoding of MIMO systems,” IEEE Transactions on Signal Pro-
cessing, vol. 54, pp. 4741–4752, Dec. 2006.

[78] Seethaler, D., Matz, G., and Hlawatsch, F., “Efficient Soft Demodulation in
MIMO-OFDM Systems with BICM and Constant Modulus Alphabets,” in IEEE
International Conference on Acoustics, Speech and Signal Processing, vol. 4, May
2006.

[79] Seethaler, D., Matz, G., and Hlawatsch, F., “Low-complexity MIMO data detection
using SeysenŠs lattice reduction algorithm,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, (ICASSP ’07), Apr. 2007.

[80] Shariat-Yazdi, R. and Kwasniewski, T., “A multi-mode sphere detector architec-
ture for WLAN applications,” in IEEE International SOC Conference, pp. 155–158,
Sept. 2008.

[81] Shen, C., Fitz, M., and Siti, M., “Generalized Soft-Output Layered Orthogonal Lat-
tice Detector for Golden Code,” in IEEE Wireless Communications and Networking
Conference, (WCNC’07), pp. 525–529, Mar. 2007.

[82] Shin, W., Kim, H., Son, M., and Park, H., “An improved LLR computation for
QRM-MLD in coded MIMO systems,” in IEEE Vehicular Technology Conference
(VTC2007 Fall), (Baltimore, Maryland, USA), Sept. 2007.

[83] Sinnokrot, M., Barry, J. R., and Madisetti, V., “Embedded Alamouti Space-Time
Codes for High Rate and Low Decoding Complexity,” in Asilomar Conference on
Signals, Systems, and Computers, (Asilomar 2008), Oct. 2008.

[84] Sinnokrot, M., Barry, J. R., and Madisetti, V., “Embedded Orthogonal Space-Time
Codes for High Rate and Low Decoding Complexity,” in IEEE Global Communica-
tions Conference (Globecom 2009), Nov. 2009.

[85] Sinnokrot, M. O. and Barry, J. R., “Fast Maximum-Likelihood Decoding of the
Golden Code,” IEEE Transactions on Information Theory, Nov. 2008. submitted.

[86] Steingrimsson, B., Luo, Z., and Wong, K., “Soft quasi-maximum likelihood detec-
tion for multipleantenna wireless channels,” IEEE Transactions on Signal Process-
ing, vol. 51, pp. 2710–2718, Nov. 2003.

133

[87] Studer, C., Burg, A., and Bölcskei, H., “Soft-output sphere decoding: Algorithms
and VLSI implementation,” IEEE Journal on Selected Areas in Communications,
vol. 26, pp. 290–300, Feb. 2008.

[88] Su, K. and Wassel, I. J., “Efficient MIMO Detection by Successive Projection,” in
IEEE International Symposium on Information Theory, Sept. 2005.

[89] Tarokh, V., Seshadri, N., and Calderbank, A. R., “Space-Time Codes for High
Data Rate Wireless Communication: Performance Criterion and Code Construc-
tion,” IEEE Transactions on Information Theory, vol. 44, pp. 744–765, Mar. 1998.

[90] ten Brink, S., Kramer, G., and Ashikhmin, A., “Design of low-density parity-
check codes for modulation and detection,” IEEE Transactions on Communications,
vol. 52, pp. 670–678, Apr. 2004.

[91] Varanasi, M. K., “Group detection for synchronous Gaussian code-division
multiple-access channels,” IEEE Transactions on Information Theory, vol. 41,
p. 1083Ű1096, July 1995.

[92] Viterbo, E. and Boutros, J., “A universal lattice code decoder for fading channels,”
IEEE Transactions on Information Theory, vol. 45, pp. 1639–1642, July 1999.

[93] Wang, R. and Giannakis, G., “Approaching MIMO channel capacity with reduced-
complexity soft sphere decoding,” in Proceedings of the IEEE Wireless Communica-
tions and Networking Conference (WCNC’04), vol. 3, pp. 1620–1625, 21.-25. Mar.
2004.

[94] Wang, R. and Giannakis, G., “Approaching MIMO channel capacity with Soft De-
tection Based on Hard Sphere Decoding,” IEEE Transactions on Communications,
vol. 54, pp. 587–590, Apr. 2006.

[95] Waters, D. W., Signal Detection Strategies and Algorithms for Multiple-Input
Multiple-Output Channels. PhD in Electrical and Computer Engineering, Georgia
Institute of Technology, Nov. 2005.

[96] Waters, D. W. and Barry, J. R., “The Chase Family of Detection Algorithms for
MIMO Channels,” in International Global Communications Conference (Globe-
com’04), vol. 4, pp. 2635–2639, 29.-3. Nov./Dec. 2004.

[97] Waters, D. W. and Barry, J. R., “The Sorted-QR Chase Detector for Multiple-
Input Multiple-Output Channels,” in IEEE Wireless Communications and Network-
ing Conference 2005, (WCNC’05), (New Orleans, Louisiana, USA), pp. 538–543,
13.-17.Mar. 2005.

[98] Waters, D. W. and Barry, J. R., “The Chase family of Detection Algorithms for
MIMO Channels,” IEEE Transactions on Signal Processing, vol. 56, pp. 739–747,
Feb. 2008.

134

[99] Weinstein, S. B. and Ebert, P. M., “Data transmission by frequency division mul-
tiplexing using the discrete Fourier transform,” IEEE Transactions on Communica-
tions, vol. COM-19, pp. 628–634, Oct. 1971.

[100] Wolniansky, P., Foschini, G., Golden, G., and Valenzuela, R., “V-BLAST: an archi-
tecture for realizing very high data rates over the rich-scattering wireless channel,”
in URSI ISSSE, pp. 295–300, Sept. 1998.

[101] Wong, K. W., Tsui, C. Y., Cheng, R. S. K., and Mow, W. H., “A VLSI architecture
of a K-best lattice decoding algorithm for MIMO channels,” in IEEE International
Symposium on Circuits and Systems (ISCAS’02), vol. 3, pp. 273–276, 2002.

[102] Wübben, D., Böhnke, R., Kühn, V., and Kammeyer, K. D., “Efficient algorithm for
decoding layered space-time codes,” Electronic Letters, vol. 37, pp. 1348–1350, Oct.
2001.

[103] Wübben, D., Böhnke, R., Kühn, V., and Kammeyer, K. D., “MMSE extension of
V-BLAST based on sorted QR decomposition,” in Proceedings of the IEEE Semian-
nual Vehicular Technology Conference (VTC2003-Fall), (Orlando, USA), Oct. 2003.

[104] Wübben, D., Böhnke, R., Kühn, V., and Kammeyer, K. D., “Near-maximum-
likelihood detection of MIMO systems using MMSE-based lattice-reduction,” in
IEEE Conference on Communications, vol. 2, pp. 798–802, June 2004.

[105] Yee, M. S., “Max-log-MAP sphere decoder,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 3,
pp. 1013–1016, 18.-23. Mar. 2005.

[106] Zheng, J., Bai, B., and Li, Y., “Clipping value estimate for iterative tree search de-
tection,” Journal of Commuications and Networks, 2009. submitted.

[107] Zheng, L. and Tse, D., “Diversity and Multiplexing: A Fundamental Tradeo in
Multiple-Antenna Channels,” IEEE Transactions on Information Theory, vol. 49,
pp. 1073–1096, May 2003.

[108] Zimmermann, E., Complexity Aspects in Near-Capacity MIMO Detection-Decoding.
PhD thesis, Technische Universität Dresden, Aug. 2007.

[109] Zimmermann, E. and Fettweis, G., “Unbiased MMSE Tree Search MIMO Detec-
tion,” in International Symposium on Wireless Personal Multimedia Communica-
tions (WPMC’06), (San Diego, USA), 17.-20. Sept. 2006.

[110] Zimmermann, E. and Fettweis, G., “Generalized Smart Candidate Adding for
Tree Search Based MIMO Detection,” in ITG/IEEE Workshop on Smart Antennas
(WSA’07), (Vienna, Austria), Feb. 2007.

[111] Zimmermann, E. and Fettweis, G., “On the Efficiency of the Sequential Detector for
Solving Soft-Output Detection Problems,” IEEE Communications Letters, vol. 12,
pp. 840–842, Nov. 2008.

135

[112] Zimmermann, E., Milliner, D. L., Barry, J. R., and Fettweis, G., “Optimal LLR
Clipping Levels for Mixed Hard/Soft Output Detection, to appear,” in IEEE 2008
Global Communications Conference, (Globecom 2008), (New Orleans), Nov. 2008.

[113] Zimmermann, E., Milliner, D. L., Fettweis, G., and Barry, J. R., “A parallel smart
candidate adding algorithm for soft-output MIMO detection,” in Proc. 7th Interna-
tional ITG Conference on Source and Channel Coding (SCC’08), (Ulm, Germany),
Jan. 2008.

136

