
BLIND MULTIUSER DETECTION

BASED ON SECOND-ORDER STATISTICS

A Dissertation

Presented to

The Academic Faculty

by

Richard Todd Causey

In Partial Fullfillment

of the Requirements for the Degree of

Doctor of Philosophy in Elecrical Engineering

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia

July 30, 1999

Copyright  1999 by Richard Todd Causey

NI•AIGR

O
E

G•
E

H
T

•
F

O •
L A E S •

S T I T U T E
• O

F
•

T
E

C
H

N
O

LOGY•

8 581

NA D
PR O G R ESS S ER V I C E



BLIND MULTIUSER DETECTION

BASED ON SECOND-ORDER STATISTICS

Approved:

_____________________________________

Professor John R. Barry, Chairman

Professor Douglas B. Williams

Professor Mary Ann Ingram

Date Approved by Chairman: _____________

_____________________________________

_____________________________________



ii

To my wife Gina.



iii

Acknowledgments

I would first of all like to thankmy advisorProfessorJohnBarry for his invaluable

guidancethroughoutthis journey. I amsovery proudto have hadtheopportunityto work

with such an outstanding researcher and teacher.

I am also grateful to thosewho served on my defensecommittee:ProfessorsMary

Ann Ingram,DouglasWilliams, StevenMcLaughlin,andCarl Spruill. I especiallyappre-

ciatetheeffortsof ProfessorsIngramandWilliams whoagreedto undertake theadditional

taskof readingthis thesis.I would like to thankthosewho served in othercapacitiesas

well, either on my proposalor qualifying committees:ProfessorsStephenB. Wicker,

Mark Smith, and John Limb. A special thanks goes to Professor Dale Ray.

I would like to acknowledgethe Centerfor Researchin Applied SignalProcessing,

Hewlett-PackardLabs,andthe Schoolof ElectricalandComputerEngineeringfor their

financial support of this research.

I would like to thankmy friendsandcolleaguesin theCommunicationTheoryGroup:

Anuj Batra, Alex Yeh, Hyuncheol Park, Renato Lopes, and Abdallah Alahmari.

I would like to thank Dr. Jerry Moore for inspiring me with his example.

I am eternallygrateful to my motherand fatherfor the love and supportthey have

given me throughout my life.

Finally, I would like to expressmy love andappreciationto my wife Gina. Shehas

sacrificedmuchfor me.Herencouragementkeptmemoving forward.I thankGodfor her.

It is to Gina that I dedicate this thesis, because it would not exist without her smile.



iv

Table of Contents

List of Figures viii

Summary xii

1 INTRODUCTION ........................................................................................1

2 BACKGROUND .........................................................................................9

2.1 Mathematical Preliminaries 10

2.1.1 A Review of MIMO System Theory 10

2.1.2 Linear Detectability — Discrete-Time Channels 12

2.1.3 Derivation of the Discrete-Time Channel Model 17

2.1.4 The Generalized Nyquist Criterion 19

2.1.5 Linear Detectability — Continuous-Time Channels 20

2.1.6 Performance Measures for Multiuser Detectors 22

2.2 A Survey of Related Prior Work 24

2.2.1 Classical Blind Equalization 24

2.2.2 Blind Equalization of Cyclostationary Sequences 28

2.2.3 Blind Multiuser Detection 31

3 SUBSPACE METHODS .............................................................................35

3.1 Signal and Noise Subspaces 36

3.2 An Adaptive Signal-Noise Subspace Separator 42

3.3 Adaptive Singular-Value Decomposition 47

3.4 MMSE Detection 52

3.5 Zero-Forcing Detection 56

3.6 Channel Diagonalization 58



v

3.7 Chapter Summary 63

Appendix 3.1: Derivation of the MMSE Linear Multiuser Detector 66

Appendix 3.2: On the Convergence of (3-25) and (3-20) 68

4 THE WHITEN-ROTATE DETECTOR .........................................................71

4.1 Whiten-Rotate Detection 72

4.2 A Project-First Architecture 76

4.3 Blind Adaptive Implementations 79

4.3.1 An Adaptive Whitener 79

4.3.2 An Adaptive Rotator 81

4.4 Experimental Results 83

4.5 Chapter Summary 89

Appendix 4.1: Proof of Lemma 4-1 91

Appendix 4.2: Proof of Lemma 4-2  92

Appendix 4.3: Proof of Lemma 4-3 93

Appendix 4.4: Proof of Theorem 4-2 95

Appendix 4.5: A Whiten-Rotate Detector for Noiseless Channels 96

5 LINEAR PREDICTION .............................................................................98

5.1 Equivalent Channel Models 99

5.1.1 An Autoregressive Channel Model 100

5.1.2 An ARMA Channel Model 103

5.1.3 An Autoprogressive Model 104

5.2 Minimum-Phase Channels 106

5.3 Necessary and Sufficient Conditions 109

5.4 Temporal Linear Prediction 112

5.4.1 One-Step Prediction 113

5.4.2 Multiple-Step Prediction 114



vi

5.4.3 Backward Prediction 115

5.5 Multiuser Detection Using Linear Prediction 117

5.5.1 The Forward LP Detector 117

5.5.2 The Forward-Backward LP Detector 133

5.6 Blind Adaptive Implementations 143

5.7 Experimental Results 147

5.8 Chapter Summary 154

Appendix 5.1: Proof of Theorem 5-2 and Corollary 5-2.1 156

Appendix 5.2: Proof of Theorem 5-3 and Corollary 5-3.1 157

Appendix 5.3: Proof of Theorems 5-8, 5-10, and Corollaries 158

Appendix 5.4: Derivation of Lemma 5-4 161

Appendix 5.5: Proof of Lemma 5-5 162

Appendix 5.6: Proof of Theorem 5-9 164

Appendix 5.7: Proof of Theorem 5-11 166

Appendix 5.8: A Backward LP Detector 168

6 STACKED DETECTORS .........................................................................171

6.1 A Memoryless Channel Model 172

6.2 The Stacked MMSE Detector 174

6.3 The Stacked Zero-Forcing Detector 177

6.4 The Stacked Whiten-Rotate Detector 179

6.5 Signal and Noise Subspaces 190

6.6 Channel Diagonalization and Lossless Precoding 193

6.7 Adaptive Implementations 196

6.7.1 An Adaptive Stacked MMSE or ZF Detector 196

6.7.2 An Adaptive Stacked WR Detector 198

6.7.3 An Adaptive Subspace Separator 199

6.7.4 Selection of the Detector Outputs 200



vii

6.8 Experimental Results 201

6.9 Chapter Summary 205

Appendix 6.1: An Algorithm for Resolving the Permutation K 209

7 CONCLUSIONS AND FUTURE WORK ....................................................213

7.1 Conclusions 213

7.2 Future Research 216

7.2.1 SVD Convergence 217

7.2.2 Blind Estimation of the LP Index 218

7.2.3 Alternative LP-Based Architectures 221

7.2.4 Fading Channels 222

7.2.5 Correlation Matching 222

BIBLIOGRAPHY ....................................................................................224

VITA ....................................................................................................239



viii

1-1 A wireless multiuser communication system and discrete-time multiple-

input multiple-output (MIMO) channel model. 4

2-1 A successive cancellation detector for Example 2-1. 14

2-2 (a) Originalp × n continuous-time channel and oversampling receiver

front end; (b) equivalentm × n baud-rate discrete-time channel model. 18

2-3 The Bussgang structure for blind equalization. 25

2-4 Donoho’s minimum-entropy concept. 27

2-5 Equivalent FIR channel models: (a) an upsampled SISO channel, (b) a

SIMO channel, (c) a filterbank. 29

3-1 Equivalent models: (a) a tall channel with a signal-space projector used

as the receiver front end, and (b) an equivalent square channel. 42

3-2 An adaptive signal-noise subspace separator. 44

3-3 Convergence of the subspace separator: energy in the rows of the

separator-channel cascadekH versus timek. 46

3-4 Adaptive estimation of singular values: (a) the diagonal elements

of ; (b) eigenvalue estimates from (3-29). 51

3-5 A fully blind, adaptive implementation of the minimum-MSE multiuser

detector. 54

3-6 The blind adaptive MMSE detector of Experiment 3-3: (a) an MSE

learning curve for user 1; (ons from the last trial, baud 4000 to 5000. 57

Θ̂

Ûk
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Summary

Multiuserdetectionis theprocessof recoveringinformationfrom mutuallyinterfering

usersof a sharedcommunicationchannel.Typical applicationsincludewirelessnetworks,

bundledcables,andmultitrackmagneticrecordingsystems.A multiuserdetectorexploits

the structureof the multiuser interferencein order to improve systemperformanceor

capacity. Becauseuserssharingthe channelusually operateautonomously, it is often

desirablefor a multiuserdetectorto function blindly, with no a priori knowledgeof the

channelnor any transmittercooperation.This thesisaddressestheproblemof blind mul-

tiuser detection.

Theresearchfocuseson tall channels,thosehaving moreoutputsthaninputs,because

suchchannelsare identifiableup to a memorylessunitary matrix from the second-order

statisticsof their output.Tall channelsarisein a wide variety of applications,including

multisensorreceiversandcode-division multiple access.This researchdevelopsadaptive

detectorsbasedon linearpredictionandsubspacedecomposition,second-ordertechniques

offering significantadvantagesover higher-order approaches.Theseadvantagesinclude

fast,reliableconvergence,low computationalcomplexity, andinherentcompatibilitywith

shaped constellations having near-Gaussian distributions.

We first addressthe specialcaseof memorylesschannels.We first proposea novel

adaptive signal-noisesubspaceseparatorcanbe usedasthe front endof any receiver to

reducethecomplexity of subsequentprocessing.We extendthetechniqueto performsin-

gular-valuedecompositions(SVDs)adaptively, andproposeblind implementationsof the

minimum-mean-square-error(MMSE) andzero-forcing(ZF) detectorsbasedon theadap-
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tive SVD. We alsoproposea canonicalwhiten-rotate(WR) detectoroffering near-MMSE

performance.Theadaptive implementationis basedonspatialpredictionandhasvery low

complexity. For single-usermultichannelapplications,we proposean adaptive channel-

diagonalization algorithm that facilitates transmission approaching capacity.

For channelswith memory, weproposea family of detectorsbasedonspatio-temporal

prediction. These detectorscan be viewed as a generalizationof the whiten-rotate

detector;they first useoneor moretemporalpredictorsto virtually eliminatethechannel

memory, andthenapplyspatialalgorithmsto recover thetransmittedsignals.Thesedetec-

tors demonstratelike no othersthe specialstructureof tall channels,and experimental

results confirm the stated benefits of blind detection based on second-order statistics.

We alsoproposefamily of so-calledstackeddetectorsfor channelswith memory. By

stackinga sufficient numberof receiver observations,thesedetectorseffectively convert a

tall FIR channelinto a tall memorylessblock-Toeplitz channel.The adaptive algorithms

for subspaceseparation,singular-value decomposition,spatial prediction,and channel

diagonalizationarethenreadilyextendedto tall FIR channels.We definestackedversions

of theMMSE, ZF, andWR detectors,which effectively implementmultiple lower-dimen-

sionaldetectorsfor all usersat all delays,therebyoptimizing thedelayof eachuser. The

adaptive implementationswe presentare robust to their estimateof the signalsubspace

dimension.Moreover, they neednot know the numberof usersor even the sizesof their

signalalphabets.Thestackedchannelmodelalsoleadsdirectly to aninformation-lossless

space-timeprecodingtechniqueof finite complexity, which can be usedto completely

eliminate interference in the receiver without noise enhancement.
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C H A P T E R 1

I N T R O D U C T I O N

OMMUNICATION systemsin which multiple userssharea commonchannelor

transmissionmediumareknown asmultiuser or multiple-accesssystems.Wireless

cellularnetworksareperhapsthebestexample,wheremany mobileuserscommunicateto

a basestationthrougha commontransmissionmedium,theair. Computersconnectedto a

local-areanetwork are anothergood example.In moderncable television systems,the

upstreamcommunication,from the set-topboxes to the headend,is multiple accessin

nature.In recentyears,systemssuchas thesehave becomea significantandexpanding

part of the global telecommunicationsinfrastructure.Consequently, multiusercommuni-

cation theory has become an active area of research with growing importance.

Reliable multiuser communicationpresentsa key new challenge:mitigation of

multiuser interference(MUI). In addition to the impairmentsthat plague single-user

point-to-point systems,such as intersymbol interference (ISI) and additive noise,

multiuser systemsmust also contendwith interferenceamong the userssharing the

channel.The conventionalapproachto the problemof MUI is to coordinatethe trans-

mitterssoasto avoid interference[1]. For example,frequency-division andtime-division

multiple access(FDMA and TDMA) are protocols that confine eachtransmitterto a

uniquebandof frequenciesor to a uniqueslot of time. Code-division multiple access

C
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(CDMA) is a techniquethatassignsto eachusera uniquespreadingcode,chosenfrom a

setof orthogonalcodes.All of thesetechniquesseekto eliminateMUI by orthogonalizing

thetransmittedsignals.Thehopeis thatconventionalstrategiescanthenbeappliedin the

receiver (or receivers) to detect each user independently.

Multiuser interference,however, can never be perfectly eliminated,only reduced,

andconsequently, theperformanceof conventionaldetectionstrategiessuffers.In CDMA

systemssuch as IS-95 [2], the spreadingcodesare only approximatelyorthogonal.

Therefore,significantMUI canremainwhenthereceivedsignalpower of onetransmitter

is muchgreaterthanthatof another;this is known asthenear-fareffect [3]. Power-control

algorithmshave hadlimited successin combattingtheproblem;nevertheless,theperfor-

manceof CDMA systemsare usually limited by MUI, not noise. Even for perfectly

orthogonalcodes,lack of transmittersynchronizationor thepresenceof multipathpropa-

gation can destroy orthogonalityat the receiver. Similar problemsexist for multiuser

systems,wirelessor otherwise,employing frequency or time-division techniquesbecause

of imperfectionsin bandpassfilters or systemtiming. In practice,thesesystemsmust

inevitably wastea portionof thebandwidthresourcein theform of guardbandsor guard

times in order to keepadjacentchannelinterferenceto acceptablelevels. The degreeto

which multiuser interferencecan be toleratedultimately impacts systemcapacity by

governingcell sizes,plansfor frequency andtime-slotallocation,or choiceof spreading

codes [4].

Even if the imperfections in implementationcould be dismissed,interference

avoidanceis not always desirablebecauseit doesnot always make the bestuseof the

bandwidthresource.In this sense,attemptsto avoid MUI are somewhat reminiscentof
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early attemptsto avoid ISI in single-userchannelsby simply reducingthe rateof trans-

mission.Clearly, scenariosexist for which interferenceavoidanceis suboptimalin terms

of capacity.

Example 1-1. Echo Cancellation. Consider a pair of 2-wire voicebanddata

modems.Prior to the 1980’s, frequency-division duplexing was used to avoid

interferencebetweenthe two transmitters.In contrast,the V.32 [5] standardallows

both transmittersto usethe samefrequency band,and specifiesthat the resulting

interferencebemitigatedwith echocancellation.Theresultis adoublingof capacity.

Example 1-2. Space-Division Multiple Access. As anotherexample,consideran

indoor wirelessnetwork with one antennain eachroom of a building with 100

rooms.Supposethatall 100antennasaretied to a supercomputerin thecellar. The

collection of antennascan be viewed as one big super-array. Considerupstream

communicationfrom the100portablecomputersto thesupercomputer. Supposethat

everyantennacanheareveryportable,at leastto somedegree.Thereareavarietyof

waysto avoid interference(e.g., TDMA, FDMA, eachwith 100 slots).However, a

betteridea,in termsof capacity, is to have eachportabletalk at will andin theentire

frequency band,andto usemultiuserdetectionat the supercomputerto resolve the

differentsignals.Themultiuserdetectorin this scenarioin effect implementsa form

of space-division multiple access,but no attemptis madeto completelyeliminate

multiuser interference.

This researchaddressesthe problem of multiuser detection in the presenceof

multiuserinterference,intersymbolinterference,andadditive noise.Theproblemis illus-
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tratedin Fig. 1-1, in whicha receiverwith oneor moreantennasobservesseveraldigitally

modulatedsignalstransmittedat the samenominalbaudrateby independentusers.We

emphasizeagain that the wirelesssystemof Fig. 1-1 is only oneexample.Many others

exist with analogousimpairments,such as bundled cables with crosstalk [6,7] or

multi-track magnetic recording systemswith inter-track interference[8]. A generic

multiuser communication system is described by a multiple-input multiple-output

(MIMO) basebandchannelmodel, in which the receiver observes the following m × 1

vector sequence:

rk = H0xk + H1xk–1 + … + HMxk–M + nk, (1-1)

wherexk is ann × 1 vectorof finite-alphabetsymbolsequencestransmittedby n indepen-

dentusers,whereH(z) = H0 + H1z–1 + … + HMz–M is anm × n channeltransferfunction

with memoryM, andwherenk is noise.Thedimensionm of theobservationdependson

thenumberof sensorsp andthenumberof samplesperbaudq accordingto m = qp. The

multiuserdetectionproblem[9-11] is to determineoneor moreof thecomponentsof xk

p

1
2

n

…

⇔ H(z)

AWGN

n × 1 m × n m × 1

xk rk

Figure 1-1. A wireless multiuser communication system and discrete-time

multiple-input multiple-output (MIMO) channel model.
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from the observation rk. In other words, the problem is to determinethe transmitted

sequence of one or more users.

For single-usersystems,the transmittercanoften assistwith the detectiontaskby

sendingan initial training sequence,which canbe usedby the receiver to equalizeor to

identify thechannelprior to receiving unknown data.However, for multiusersystems,the

useof training sequencesis lesspracticaland often impossible.Transmittersgenerally

operateindependentlyandasynchronously. They may be unawareof eachotheror even

unawareof the receiver in question.Consequently, it is desirablefor a multiuserdetector

to function blindly, without the cooperationof the transmitters.We assumethat the

receiver hasno prior knowledgeof thechannel,andthat it hasonly statisticalknowledge

of xk; for example,it mayknow themodulationschemeof eachuser. Theblind multiuser

detectionproblem is thus a generalizationof the blind equalizationproblem [12], for

which the receiver observation is also described by (1-1) but with m = 1 andn = 1.

The blind multiuserdetectionproblemwe addressdiffers from that addressedby

someof the CDMA-specific literature[13,14] in which knowledgeof the desireduser’s

spreadingcodeis assumed.In the context of CDMA systems,the model H(z) of (1-1)

captures the effects of the spreadingcodes, asynchronoustransmission,multipath

dispersion,transmitterandreceiver antennaarraypatterns,andthe phaseof the sampler

timing. For the special caseof synchronousCDMA, chip-ratesamplingwith perfect

timing, a single transmitter antenna,a single receiver antenna,and no multipath

dispersion,H(z) reducesto a memorylessmatrix H0 whosei-th columnis the spreading

codeof useri. In this case,knowing a spreadingcodeis equivalentto knowing a column

of H0. In general,however, thereceiver doesnot know the i-th columnof H(z), even if it
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knows the i-th spreadingcode,becauseof thedistortioncausedby themultipath,antenna

patterns,andsamplingphase.Moreover, we do not wish to limit considerationto CDMA

systems.Therefore,our researchemphasizesfully blind detectorsthat do not rely on

knowledge ofH(z) in any way.

With neither training nor any channelknowledge, a fully blind detectorhas no

meansto distinguishdesiredusersfrom interferingusers;hence,it hasno choicebut to

recover thesymbolstransmittedby all of theinterferingusers,andto allow a higher-layer

protocoldeterminewho is who.Consequently, thedetectorsweproposerecover theentire

vectorxk.

This researchfocuseson tall channels,thosehaving moreoutputsm thaninputsn,

and on adaptive linear detection algorithms that exploit primarily the second-order

statistics (SOS) of the observation rk. With mild assumptions,tall channelscan be

identified or equalized up to a memorylessunitary ambiguity by using only the

second-orderstatistics of the channel output [15]. Restricting consideration to

second-ordertechniquesis desirablefor several reasons.Second-orderalgorithmsare

usually more data-efficient [16,17] than higher-order methods,meaning that batch

techniquesrequirelessdatato achieveagivenlevel of accuracy, andthatadaptiveschemes

converge faster. Second-orderalgorithmsdo not suffer from problemsof ill-convergence

that plague many classical methodsusing non-convex cost functions. Furthermore,

second-orderalgorithmsare lesssensitive to the channelinput distribution andare thus

innately compatiblewith communicationsystemsusing shapedconstellationshaving

near-Gaussiandistributions. The special propertiesof tall channelslead naturally to
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adaptive blind detectionalgorithms with relatively low complexity and fast, reliable

convergence.

This researchalsoinherentlyaddressescertainspecialcasesof theblind single-user

detectionproblem,whichcanbecasteitherasasimplificationor asa reformulationof the

more generalmultiuserproblem.Blind single-userdetection(equalization)has impor-

tancein multipoint or broadcastchannelsor in any applicationwheretransmittercooper-

ation is impracticalor impossible,e.g. satellite,cabletelevision (hybrid fiber-coax[18]),

andeavesdroppingsystems.Oversampling,a techniquealreadywidely usedbecauseof its

numerousotheradvantages[19-21], preservesthecyclostationarity[22] inherentto most

communicationsignalsandproducesthe tall channelrequiredby second-orderdetection

algorithms.Oversampledsingle-usersystemsaremodeledby (1-1) with m > 1 andn = 1;

theinputsequencexk is scalarvalued.Moreover, certainmultichannelsystemscanalsobe

modeledby (1-1) by treatingthe input to eachsubchannelasa virtual user. For example,

discretemultitone(DMT) modulation[23,24], alsocalledorthogonalfrequency-division

multiplexing (OFDM) [25,26] in certainwirelessapplications,is a techniquethatdivides

theavailablebandwidthinto multiple subchannelsandmakesall subchannelsavailableto

a singleuser.9 By treatingeachcomponentof xk asa virtual user, thesesystemsareeasily

modeledby (1-1).Single-userwirelesssystemsthattransmitwith dualpolarization[30] or

multiple antennas,e.g. Bell Labs LayeredSpaceTime (BLAST) [31], can be similarly

modeledby definingvirtual users.Becausewe castthesesingleandmultiuserproblems

9. See also the American standard for asymmetrical digital subscriber lines (ADSL) [27], which
specifies DMT, and the European standards for digital audio and video broadcasting (DAB [28]
and DVB [29]), which specify OFDM.
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into a common framework, the concepts and algorithms we develop can be applied to any

of them.

The remainder of the thesis is organized as follows. In chapter 2, we review linear

MIMO system theory and survey prior related work in blind equalization and multiuser

detection. Chapters 3 and 4 deal with the special case of memoryless channels. In

chapter 3, we present new detectors based on adaptive singular-value decomposition.

These include blind implementations of the minimum-mean-square-error (MMSE) and

zero-forcing (ZF) detectors as well as a blind channel diagonalization algorithm. We also

present a technique for adaptive separation of the signal and noise subspaces that can be

used in the front end of any multiuser detector to reduce the complexity of subsequent

processing without any information loss. In chapter 4, we present a canonical

whiten-rotate structure for multiuser detection with near-MMSE performance. The

adaptive implementation is based on spatial linear prediction. Chapters 5 and 6 pertain to

channels with memory. In chapter 5, we discuss at length the special properties of tall

channels, and we present detectors based on spatio-temporal linear prediction that exploit

these properties. In chapter 6, we use a time-to-space mapping procedure to generalize the

detectors and concepts of chapters 3 and 4 to channels with memory. We summarize the

key contributions of this research and present ideas for future work in chapter 7.
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C H A P T E R 2

B A C K G R O U N D

ULTIUSER DETECTION strategies can be broadly classified into two

groups:linearandnonlinear. Althoughnonlinearmethodscanperformbetterin

termsof their probabilityof symbolerror, linearmethodsareusuallylower in complexity

andmoreamenableto blind implementation.Lineardetection,however, is notalwayspos-

sible.For a discrete-timechannelsuchas(1-1),we saythattheinput xk is linearly detect-

ableif andonly if thereexists a stablelinear n × m filter C(z) thateffectively invertsthe

channel:C(z)H(z) = I. Thefirst half of thischapter, section2.1,reviewskey conceptsfrom

the theoryof linear MIMO systemsandmultiusercommunicationsincluding the condi-

tionsrequiredfor theexistenceof a lineardetector. Weexpressthis lineardetectabilitycri-

terionfirst in section2.1.2in termsof thediscrete-timemodelH(z) of (1-1). Then,using

the Nyquist criterion generalizedto MIMO systems,we show in section2.1.5 that the

detectabilitycriterion translatesinto a minimum bandwidthrequirementfor the under-

lying continuous-timechannel.We review important performancemeasuresincluding

asymptotic multiuser efficiency and near-far resistance in section2.1.6.

Thesecondhalf of thischapter, section2.2,is asurvey of relatedprior work in blind

equalizationandmultiuserdetection.In section2.2.1,we review theclassicalmethodsfor

blind channelidentificationandequalization,which assumea single-inputsingle-output

M
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(SISO)channelwith a stationaryinput. In section2.2.2,we survey a newer classof blind

equalizationalgorithmsbasedon second-ordercyclostationarystatistics.We concludethe

chapterwith a survey of the literatureaddressingthe generalproblemof blind multiuser

detection, also known as source separation.

2.1 Mathematical Preliminaries

2.1.1 A Review of MIMO System Theory

Most of themathematicaltoolsof linearsystemtheory, developedin thecontext of

SISOsystems[32,33], extendeasilyto MIMO systems.The impulseresponsematrix Hk

of a linear time-invariant (LTI) discrete-timeMIMO systemis a matrix of impulse

responseswhose(i, j)-th elementhk
(i , j) is the responseat the i-th outputto a Kronecker

delta δk at the j-th input. Equivalently, we can interpret Hk as a matrix-valued dis-

crete-timesequence.The impulse responseHk completely describesan LTI MIMO

systemin the sensethat knowledgeof Hk is sufficient to determinethe responseof the

system to any given input:

yk = Hk–j xj. (2-1)

A systemis said to be finite impulseresponse(FIR) if its impulseresponsematrix has

finite extent;otherwiseit is calledinfinite impulseresponse(IIR). An LTI systemis saidto

becausalor anti-causalif Hk = 0 for all negative k or all positive k, respectively. We add

thequalifierstrictly (causalor anti-causal)if H0 is alsozero.Thechannelmodelof (1-1) is

FIR and both stableand causal.The z-transformof Hk can be interpretedeither as a

j ∞–=

∞

∑
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matrix-valuedfunctionof z, or asa matrix of z-transformsasdefinedin traditionalSISO

system theory:

H(z) = Hkz� k. (2-2)

We canusetheimpulseresponseHk or its z-transformH(z) to establishthestability

of a LTI MIMO system.A systemis said to be bounded-input bounded-output (BIBO)

stable if and only if the outputyk is bounded for all bounded inputsxk:

|xk
(j)| < ∞ ∀ j,k ⇒ |yk

(i)| < ∞ ∀ i,k. (2-3)

It follows that an LTI MIMO systemis stable if and only if all elementalimpulse

responseshk
(i , j) arestable.Applying resultsfrom SISOsystemtheory, weconcludethata

discrete-timeLTI MIMO systemis stableif andonly if all componentsequenceshk
(i , j) of

its impulse response are absolutely summable:

|hk
(i , j)| < ∞ ∀ i,j. (2-4)

In thez-domain,anLTI systemis stableif andonly if noneof thecomponenttransforms

H(i , j)(z ) have poleson theunit circle, or equivalently, if andonly if H(z ) convergesuni-

formly on the unit circle; that is, the following summation converges for |z| = 1:

Hkz–k
1 < ∞, (2-5)

where‘ ⋅ 1’ denotesthematrix 1-norm(thesumof themodulusof all matrix elements).

This equivalencefollows from theobservation that (2-5), evaluatedon theunit circle z =

e jθ, is identical to (2-4).

k ∞–=

∞

∑

k ∞–=

∞

∑

k ∞–=

∞

∑



12

2.1.2 Linear Detectability — Discrete-Time Channels

Recallthat if a SISOchannelH(z) hasno zeroson theunit circle, thenthereexistsa

stableinverse(having no poleson theunit circle). We saythatsucha channelis equaliz-

able,andwe call its inversea zero-forcing(ZF) equalizerCZF(z) becauseit zerosall ISI:

CZF(z)H(z) = 1. For a MIMO channel,an analogousfilter, zeroingall ISI and MUI, is

called a zero-forcing multiuserdetector.

Definition 2-1. For theMIMO channelof (1-1),azero-forcing detector is ann × m

stable LTI filter C(z) satisfyingC(z)H(z) = I.

In the context of CDMA, a zero-forcingdetectoris sometimesreferredto asa decorre-

lating detector[10]. The conceptof equalizabilityfor SISOchannelsthusgeneralizesto

lineardetectability for MIMO channels.

Definition 2-2. For thechannelof (1-1), the input xk is saidto be linearly detect-

able if and only if a zero-forcing detector exists.

Therankof achannelH(z) on theunit circledetermineswhetheror not lineardetec-

tion of the channel input is possible.

Theorem2-1. For thechannelof (1-1),theinputxk is linearlydetectableif andonly

if H(z) has rankn for all z on the unit circle:|z| = 1.

Proof: If rank[H(z)] = n for all z on theunit circle then[H*(1/z*)H(z)]�

�

is stable,

and a zero-forcing filter is given by

CZF(z) = H†(z) ≡ [H*(1/z*)H(z)]�

�

H*(1/z*). (2-6)
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(Addingany n × m filter V(z) in theleft null spaceof H(z) to H†(z) producesanother

ZF detector.) If rank[H(z0)] < n for some z0 on the unit circle, then

rank[C(z0)H(z0)] < n, and henceC(z0)H(z0) ≠ I, for any stableC(z). ❏

Thelineardetectabilitycriterionof Theorem2-2 couldbeexpressedin termsof the

zeros,ratherthanthe rank, of H(z) on the unit circle, if zerosweredefinedaspointsof

rankdeficiency. (Similarly polescouldbedefinedin termsof thezerosof the left inverse

or pseudoinverse channel.)Although the suggesteddefinitions would strengthenthe

analogybetweenequalizabilityand detectability, we resist formally defining zerosand

polesof a MIMO systembecausethereis no universallyacceptedconvention,andulti-

mately, suchdefinitionsareunnecessaryfor this thesis.Interestedreadersarereferredto

Kailath [34] and references therein [35-37].

Wenow considerthreeexamplechannelsthatcontrastlinearandnonlineardetection

methods.

Example 2-1.  A Nonlinear Detector. Consider the following 2× 2 channel:

H(z) = . (2-7)

For squarechannels,thepointsof rankdeficiency aregivenby thezerosof thedeter-

minant. In this case,det[H(z)] = 3 � 3z�

�

is zero at z = ±1. Therefore,no

zero-forcingdetectorexists.Nevertheless,nonlineardetectionmethodsmaystill be

applicable.The nonlineardetectorof Fig. 2-1 is one viable option under certain

assumptions. Using the notation of (1-1), the receiver observation is

3 z 1–

3z 1– 1
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rk = xk + xk �

�  + nk. (2-8)

If theusersarequadraturephase-shiftkeyed(QPSK)with unity power, andthenoise

varianceσ2 is sufficiently small, then the first usercan be detectedfrom =

3 + + nk
(1) (thefirst componentof rk) by treatingthecontribution from

the seconduser like additive noise; i.e., the detectorscales and then

makes a decision:

 = , (2-9)

wheredec( ⋅ ) denotesadecisiondevice.Assumingthedecisionis correct,thesecond

user can be detected from  by cancelling interference from the first:

 = d(  – 3 ). (2-10)

1 3⁄ 3

�

rk
1( )

rk
2( )

x̂k
1( )

x̂k
2( )

Figure 2-1. A successive cancellation detector for Example 2-1.

z �

�

3 0
0 1

0 1
3 0

rk
1( )

xk
1( ) xk 1–

2( )

xk 1–
2( ) rk

1( )

x̂k
1( ) dec rk

1( ) 3⁄( )

rk
2( )

x̂k
2( ) rk

2( ) x̂k 1–
1( )
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The nonlineardetectorof Fig. 2-1 usessuccessive cancellation[38-40]. The tech-

niquehasseveralshortcomings,themostimmediatelyobviousof which is thatif thedeci-

sionin (2-9) is incorrect,thenit is highly probablethattheonein (2-10)is aswell. It treats

the usersasymmetricallyor unequally. Blind implementationis difficult becausethe

detectorarchitectureis highly dependenton thechannelandits inputconstellations.There

areof courseothernonlineartechniques,including multistagedetection[41,42] (a sym-

metric versionof successive cancellation),decision-feedbackdetection[30,43-46], and

maximum-likelihoodsequencedetection[47], eachwith varyingtradeoffs in performance

andcomplexity. If the conditionsof Theorem2-2 aresatisfied,however, straightforward

linear methods can be used.

Example 2-2.  A Linear Detector. Consider another 2× 2 channel:

H(z) = . (2-11)

On theunit circle, thedeterminantdet[H(z)] = 2 + z�

�

is nonzeroandthechannelis

full rank. Hence, a zero-forcing detector exists and is given by

CZF(z) = H �

�

(z) = . (2-12)

A bankof slicersstill follows CZF(z), but thedecisionfor any particularuserin no

way impactsthat for any otheruser. For a noiselesschannel,the detectorperfectly

recovers the channel input. Observe thatCZF(z) is IIR and anti-causal:

 = �  + �  + … . (2-13)

2 z 1–

1– 1

1

1 2z 1–
+

---------------------- 1 2z 1–
–

1 1

1

1 2z 1–
+

---------------------- 1
2
--- 1

4
---z 1

8
---z2 1

16
------z3
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Nevertheless,thereexists a delay D (an integer) such that z–DCZF(z) is approxi-

mately FIR and causal.

As the previous exampledemonstrates,Theorem2-2 promisesonly that if H(z) is

full columnrank on the unit circle, thena linear zero-forcingdetectorCZF(z) exists. It

doesnotsuggestthatthedetectoris FIR, norevencausal.ThefactthatanFIR channelhas

anIIR inverseshouldnot besurprising;it is alwaysthecasefor SISOchannels(assuming

an inverseexists).However, asillustratedby the following example,it is not alwaysthe

case for MIMO channels.

Example 2-3.  An FIR Linear Detector. Consider a 3× 2 channel:

H(z) = . (2-14)

This channel has a zero-forcing detector given by

CZF(z) = . (2-15)

It is easyto verify that indeedCZF(z)H(z) = I. Remarkably, both the channelH(z)

and the detectorCZF(z) are FIR!

We seein chapter5 thatalmostall tall FIR channelshave causalFIR inverses,which is a

directconsequenceof thefactthatthey arefull rankeverywhere, not juston theunit circle.

This property greatly simplifies blind implementation of multiuser detectors.

z 1– 1– 3z 1–
–

1 z 1–
– 1– z 1–

+

z 1– 1–

1
6
--- 3– 2z 1–

– 3z 2–
+ 6 12z 1– 9z 2–

+ + 3– 5z 1– 6z 2–
+ +

3– z 2–
+ 6z 1– 3z 2–

+ 3– 3z 1– 2z 2–
–+
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2.1.3 Derivation of the Discrete-Time Channel Model

So far we have consideredonly discrete-timesignalsandsystems.The underlying

physicalchannelin mostcommunicationsystems,however, is continuous-timein nature.

Nevertheless,the discrete-timemodel of (1-1) is adequateif the underlying contin-

uous-timechannelis stableandbandlimited,with additivewhiteGaussiannoise(AWGN).

Let H(t) bea p × n continuous-time impulse response matrix. (The (i ,j)-th element

H(i , j)(t) is theresponseat the i-th outputto a Dirac deltaδ(t) at the j-th input.)Thecon-

tinuous-timeobservationat thereceivercanbeexpressedin termsof theimpulseresponse

matrix as

r(t) =  + n(t), (2-16)

wheren(t) is white Gaussian noise.

TheFourier transform of H(t) is a matrix of transforms given by

H( f ) = . (2-17)

WeassumethatthecomponentsH(i, j)( f ) of H( f ) arebandlimitedto |f | ≤ W, andthatthe

two-sided noise power spectral density (PSD) = N0I.

Fig. 2-2(a), takenfrom [48], illustratesonepossiblereceiver front endwhich convertsthe

continuous-timemodel to the discrete-timemodel of Fig. 2-2(b) while preservingall

signalinformation.This front endconsistsof a bankof idealanti-aliasinglow-passfilters,

eachwith cutoff frequency , followedby asamplerwith rateq/T. To preserve informa-

H t kT–( )xk
k ∞–=

∞

∑

H t( )e j2πft– td
∞–

∞

∫

E n t( )n∗ t τ–( )[ ]e j2πfτ– τd
∞–

∞
∫

q
2T
--------
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tion, the cut-off frequency must be greaterthan the bandwidthW, so q ≥ 2WT. The

smallest value ofq that ensures the sampling rate is an integer multiple of the baud rate is

q = . (2-18)

Hence,thereareq samplesperbaud,andeachsampleis a p × 1 vector. At eachbaudtime

k, aserial-to-parallel(S ⁄ P)converterstacksq differentp × 1 vectors,asfollows,to form a

new vector:

rk = , (2-19)

H( f )
xk

AWGN

(a)

(b)

Figure 2-2. [48] (a) Original p × n continuous-time channel and oversampling

receiver front end; (b) equivalent m × n baud-rate discrete-time channel model.

H(z)
xk

AWGN

rk

m × n

p × n

LPF
Bank

r(t)

p × p

Wcut =

rk

rate
q ⁄ T

S ⁄ P

q = 2WT

⇔

q
2T
--------

q
2T
--------

2WT

r kT( )
r k 1 q⁄–( )T( )

r k q 1–( ) q⁄–( )T( )

…
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of dimensionm × 1, where

m = qp. (2-20)

No information-preservingfront end can producea baud-rateoutput sequencewith

smallerdimension.Thisbaud-rateoutputrk canbemodeledastheoutputof anm × n dis-

crete-timechannel,shown in Fig. 2-2(b).Following [48], we canexpressH(z) asa folded

spectrum:

H(z) = ( f – ), (2-21)

where ( f ) is formed by stacking phase-shifted versions ofH( f ):

( f ) = . (2-22)

TheFIR approximationof (1-1) is reasonablefor sufficiently largememoryM. Thenoise

of the discrete-timemodel is also white and Gaussian,with PSD E[nknk–l
*] =

σ2I, where σ2 = N0q ⁄ T. This result follows from the ideal Nyquist property of the

anti-aliasing filterbank.

2.1.4 The Generalized Nyquist Criterion

ThefamiliarNyquistcriterionfor pulseor quadratureamplitudemodulated(PAM or

QAM) signalswasgeneralizedto vector-valuedsignalsby Shnidman[49]. Let x(t) denote

a vector-valued QAM signal:

1
T
----

k ∞–=

∞

∑ H̃ k
T
----

H̃

H̃

H f( )

e j2πf T q⁄– H f( )

e j2πf T q 1–( ) q⁄– H f( )

…

l ∞–=

∞∑
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x(t) = P( t � kT)xk, (2-23)

wherexk is ann × 1 vectorof symbolsequences,whereP(t) is ann × n pulseshape(an

impulseresponsematrix), andwhereT is thebaudperiod.ThegeneralizedNyquistcrite-

rion statesthatsamplesof x(t), takenat thebaudrate,reproducexk without intersymbol

or multiuserinterference,i.e. x(kT) = xk, if andonly theFouriertransformof thesampled

pulse shape aliases to the identity.

Definition 2-3. [49,50] A pulseshapeP(t) is saidto be Nyquist, or to satisfy the

generalized Nyquist criterion, if and only if

P(kT) = δkI n ⇔ P( f � ) = I n, (2-24)

whereP( f ) is the Fourier transform ofP(t).

2.1.5 Linear Detectability — Continuous-Time Channels

Recall that a single scalar-valuedQAM signal requiresa minimum bandwidthof

W0 = to avoid ISI [51]. Falconeret al. [52] generalizedthis result to n users.For a

1 × n channel,linear detectionof all usersis possibleonly if the signalbandwidthW of

eachexceedsW0 by a factorof n. More generally, for a p × n channel(a receiver with p

antennas),linear detectionrequiresthat the bandwidthof eachsignal exceedsW0 by a

factor ofn ⁄ p.

For a continuous-timeMIMO system,suchasthat illustratedin Fig. 2-2, we define

linear detectability as follows.

k ∞–=

∞

∑

1
T
----

k ∞–=

∞

∑ k
T
----

1
2T
--------
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Definition 2-4. For the p × n continuous-timechannelH( f ) of (2-16), the input xk

is saidto be linearly detectableif andonly if thereexistsann × p stablelinearfilter

G( f ) suchthatP( f ) = G( f )H( f ) satisfiesthegeneralizedNyquistcriterionof (2-24).

In otherwords,thechannelcanbeeffectively invertedby thecascadeof a linearfilter and

a baudratesampler. Thefollowing result,dueto Falconeret al. [52], statesnecessaryand

sufficient conditions for linear detection of the channel input.

Theorem 2-2. [52] SupposeH( f ) of (2-16) is a p × n matrix whoseelementshave

bandwidthW. The following conditions are necessary for linear detection ofxk:

n ≤ nmax = p , (2-25)

W ≥ Wmin = W0. (2-26)

Moreover, if H( f ) is full rank for|f| ≤ W, then (2-25) is also sufficient.

Proof: [52] Thenumberof nonzerotermsin thesummationof (2-24)with P( f ) =

G( f )H( f ) is at least , so (2-24) is a systemof n2 equationsand at least

pn unknowns, given by G( f � k ⁄ T) for eachk. Theremustbe at leastas

many unknownsasequations,which impliesthenecessityof (2-25).Simplealgebra

thenyields(2-26).If H( f ) is full rankfor |f| ≤ W, thentheequationsrepresentedby

(2-24) are linearly independent, which implies the sufficiency of (2-25).❏

The linear detectabilitycriterion of Theorem2-2 translatesinto a minimum band-

width requirementfor the underlyingcontinuous-timechannel.Considerthe following

specialcases.For a receiver with only oneantennaor sensor, thenumberof usersthatcan

W W0⁄

n
p
----

2WT

2WT
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be linearly detectedis roughly equalto the bandwidthexpansionW ⁄ W0, a well-known

result in the spread-spectrumcommunity. Multiplying the numberof antennasat the

receiver by p divides the requiredbandwidthexpansionby the samefactor. In systems

with lessthan100%excessbandwidth(W < 2W0), themaximumnumberof usersthatcan

belinearly detectedis equalto thenumberof sensorsp. This agreeswith thewell-known

arrayprocessingprinciple that an arrayof p antennascanrejectp � 1 narrowbandinter-

ferers.Finally, linearmultiuserdetectionusingonly a singlesensoris impossiblefor sys-

temswith lessthan100%excessbandwidth.For example,we cannoteavesdropon the

conversation between the two V.32 modems in Example 1-1 via linear means.

2.1.6 Performance Measures for Multiuser Detectors

Therearemany criteria thatcanbeusedto measuretheperformanceof a multiuser

detector. Arguably, thebestof thesemeasuretheprobabilityof someerrorevent,e.g., the

probability of symbol error for the i-th userPr{ k
(i) ≠ xk

(i)}, the probability of symbol

error for any userPr{ k ≠ xk}, theprobabilityof bit error for useri, etc.However, asfor

SISOcommunicationsystems,we oftenlook for moremathematicallytractable,although

lessprecise,measuresof performance.The primary figure of merit usedthroughoutthis

thesisis mean-squareerror (MSE). The correspondingbenchmarkdetectoris the min-

imum-mean-square-error(MMSE) detector. (SeeDefinitions 3-1 and 6-1.) The MMSE

detectoris analogousto the MMSE equalizerfor SISO channels;it is a compromise

between interference (both ISI and MUI) and noise.

Verdúandcolleagues[11,53] developedseveral measuresof performancefor mul-

tiuser detectorsin the context of CDMA systems.The measuresthey developed are

intendedbothto gaugetheability of adetectorto rejectinterferersandalsoto characterize

x̂

x̂
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its robustnessto the near-far problem,a major concernin wirelessCDMA systems.The

measures are closely related to the probability of symbol error for the user in question.

The presenceof interfering userscan serve only to increasethe probability of

symbolerrorfor thedesireduser. Wecanattemptto quantifythiseffectasfollows.For the

channelH(z) of (1-1), let Pi denotethepower of useri asmeasuredat thereceiver. For a

givendetectorC(z), let SER(σ) = Pr{ k
(i) ≠ xk

(i)} denotethesymbolerror ratefor useri

correspondingto thenoisevarianceσ2. Following [53], wedefinetheeffective power ρi of

useri astheenergy requiredto achieve SER(σ), assumingthesamebackgroundnoiseσ2,

but assuming that none of the interfering users are present.

Definition 2-5. [53] Themultiuser efficiency for useri is theratio of theeffective

power to the actual power: ρi /Pi.

Thereciprocalof themultiuserefficiency canbeinterpretedasa power penaltydueto the

presence of the interferers. The multiuser efficiency in negligible noise is also of interest.

Definition 2-6. [53] Theasymptoticmultiuser efficiency(AME) is thelimit of the

multiuser efficiency as the noise power goes to zero:

ηi = ρi /Pi. (2-27)

Theworst-caseAME, takenover all possibleinterferencepower profiles,character-

izes a detector’s robustness to the near-far problem.

x̂

σ+ 0→
lim
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Definition 2-7. [53] Thenear-far resistancefor useri of a detectorC(z) relative to

a channelH( z) is the worst-caseAME relative to all channelsH(z)A, whereA =

diag( Aj) with Aj ≥ 0 ∀ j ≠ i andAi = 1:

ηi = ηi. (2-28)

Many of the detectorswe develop in subsequentchaptersare shown to be optimally

near-far resistant for all users,meaningthat for any channelH(z), no other multiuser

detector has a better near-far resistance.

2.2 A Survey of Related Prior Work

2.2.1 Classical Blind Equalization

Weusethetermclassical to describeany blind equalizationor channelidentification

algorithmdesignedfor aSISOchannelwith astationaryinput,suchas(1-1)with m = n =

1. Classicalalgorithmssharethe characteristicthat they all usenonlinearprocessingto

exploit thehigher-orderstatistics(HOS)of theobservation.HOSareneededto extractthe

phaseinformation of the channel.SOSalonecannotdistinguishbetweenthe channels

a + bz�

�

andb + az �

�

, for example.As a consequence,blind identificationof a (possibly

non-minimum-phase)channelwith a stationaryinput requiresthat thechannelinput have

non-Gaussian statistics [12], a well-known result.

The most popular blind equalizationalgorithms are the Bussgang10 algorithms

[55,56], which use the structure of Fig. 2-3. This structure is similar to the deci-

10. In equilibrium, the equalizer output yk is a Bussgang process, satisfying E[ ykg*(yk)] =

E[ ykyk
*] [54].

inf
A
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sion-directedequalizer[57] exceptthatagenericnonlinearityg( ⋅ ) is usedin lieu of acon-

ventionaldecisiondevice.Nonlinearprocessingthusarisesin thecomputationof theerror

usedto updatethe equalizercoefficients: ek = g( yk) � yk. The least-mean-square(LMS)

algorithm[58,59] is popularbecauseof its simplicity. Thedecision-directedequalizeris in

fact an example of a Bussgang algorithm, but it is poorly suited for initialization or

recovery because the decisions are generally unreliable prior to convergence [55].

The first blind equalization algorithm designedexpressly for initialization or

recoverywasproposedby Sato[60] for PAM systems.It usesthestructureof Fig. 2-3with

a scaledsignum function as its nonlinearity: g( yk) = γ sgn( yk), where the scalefactor

γ = is basedon a priori statisticalknowledgeof xk. Satolater extendedthe algo-

rithm to QAM systems [61].

Godard[62] observedthatfor QAM constellations,ISI cannotproducephasedistor-

tion without also producing amplitude distortion. Hence, he proposedan algorithm

designedto eliminate amplitudedistortion by minimizing the following cost function:

J( yk) = (|yk|p � Rp) p, whereRp = for somepositive integer p. Treichlerand

Agee[63] independentlyproposedtheconstant-modulusalgorithm(CMA), a specialcase

Figure 2-3. The Bussgang structure for blind equalization.
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of theGodardalgorithmwith p = 2. CMA wasdesignedoriginally to restore(at theequal-

izer output)the constant-moduluspropertyof PSK constellations,but it works for QAM

constellationsaswell, in light of Godard’sobservationregardingISI. Godard/CMAcanbe

cast into the Bussgang framework of Fig.2-3 by proper choice of the nonlinearityg( ⋅ ).

Shalvi and Weinstein[64] observed that the fourth-ordercumulant[65] c4( yk) =

E[|yk|4] � 2E2[|yk|2] � |E[ yk
2]|2 of the equalizeroutputyk is boundedby that of the

channelinput:|c4( yk)| ≤ |c4( xk)|. They proposedthat|c4( yk)| bemaximizedsubjectto

a power constraint: E[|yk|2] = E[|xk|2]. This algorithm can also be cast into the

Bussgangframework by a properchoiceof nonlinearity— an interestingexercisein this

casebecauseit clearlydemonstratesthattheuseof anonlinearityg( ⋅ ) is animplicit useof

higher-order statistics.

Bussgangalgorithmshave severaldrawbacks.Many areknown to suffer from prob-

lemsof ill-convergence;that is, thecoefficientsmayconverge to a suboptimallocal min-

imum becausethe cost function is often a non-convex function of the equalizer

coefficients[66,67]. Moreover, convergenceis often slow. Many heuristicmethodshave

beendevelopedto combattheseproblems.To dealwith ill-convergence,Godard[62] sug-

gesteda tap-initializationprocedure,and Foschini [68] suggestedan algorithm to track

andcenterthe primary tap. To speedconvergence,BenvenisteandGoursat[69,70] pro-

posedanalgorithmusinga weightedsumof thecomplex-Sato[61] anddecision-directed

errors.PicchiandPrati [71] suggesteda “stop-and-go”algorithmthatupdatesonly when

theerroris reliable.Nikias andcolleaguesproposedCRIMNO [72,73], which usesa non-

linearity with memory to exploit knowledge of symbol sequence correlations.
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Alternatives to the Bussgangtechniquesarenot aspopularin the communications

context becauseof their inherentcomplexity. Methodsinvolving theexplicit estimationof

higher-ordercumulants[74-76] or their polyspectra[77,78] generallyhave reliableand

fastconvergence,but they arenumericallycomplex andthereforeusuallyimpractical.The

maximum-likelihood channel-estimationalgorithms of Seshadri[79] and Ghosh and

Weber[80] arealsoprohibitively complex. Methodsbasedon neuralnetworkshave been

proposedby WongandFine[81] andChenandChen[82], but they reportedlysuffer from

convergence problems.

Thefundamentalshortcomingof theclassicalapproachto blind equalizationis per-

hapsbestexpressedby Donoho’s minimum-entropy concept[83], illustratedin Fig. 2-4.

Donohointroducedtheideaof contrastfunctionsto quantifytheGaussianityof adistribu-

tion. If thesamplesof thechannelinput xk arestationary, independent,andnon-Gaussian,

then,from thecentrallimit theorem[84], thechanneloutputrk is in a sensemoreGaus-

sianthanxk. Thetaskof ablind equalizeris thusto drive its outputdistributionaway from

Gaussian.This interpretationhasimmediateimplications:blind equalizationof channels

with Gaussianinputsis impossible,andblind equalizationof channelswith near-Gaussian

Channel Equalizerxk yk
rk

Increases
Gaussianity

Figure 2-4. Donoho’s minimum-entropy concept [83].

Stationary, i.i.d.
Decreases

GaussianityNon-Gaussian
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inputsis difficult. Robustblind equalizationrequiresthatthechannelinput distribution be

far from Gaussian.But, it is well known that Gaussianinputsarenecessaryto approach

Shannoncapacity. Hence, in the classical setting, achieving channel capacity and pro-

viding for robust blind equalization are competing interests. Capacitymustbesacrificedto

facilitate equalizationby the use of either suboptimal transmit shaping or training

sequences.

2.2.2 Blind Equalization of Cyclostationary Sequences

The underlyingassumptionof the classicalapproachesto blind equalizationis that

the channelinput is stationary. Fortunately, however, most communicationsignalsare

cyclostationary. Second-orderstatisticscan be sufficient for identifying even non-min-

imum-phasechannelswhentheinput is cyclostationary. Gardner[16] wasperhapsthefirst

to understandthis; he proposeda channelidentificationmethodexploiting the cyclosta-

tionarynatureof PAM signals.Although the techniquedoesrequiretransmittercoopera-

tion in the form of a pilot tone, no replica of this signal is needed in the receiver.

Tong,Xu, andKailath (TXK) [17] proposedthefirst truly blind channelidentifica-

tion algorithmbasedon second-orderstatistics.As illustratedin Fig. 2-5,a SISOchannel

with cyclostationaryinput can be modeledas a single-input multiple-output (SIMO)

channelwith a stationaryinput, asin (1-1) with m > 1 andn = 1. Exploiting this equiva-

lence,theTXK algorithmdefinesastackedobservationvectorRk
T = [ rk

T … rk � N+1
T] and

then estimatesits autocorrelationΦl = E[RkRk � l
*] at lags l = 0 and l = 1. The channel

H(z) canbeuniquelydeterminedfrom theseestimatesupto anarbitrarycomplex scalarejθ

provided that N is sufficiently large and that the correlation estimatesare full rank.

Althoughnumericallycomplex, requiringtwo singular-valuedecompositions(SVDs),the
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Figure 2-5. Equivalent FIR channel models: (a) an upsampled SISO channel,

(b) a SIMO channel, (c) a filterbank.
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TXK algorithmwasthefirst to demonstratethe feasibility of second-orderblind channel

identificationin a generalcontext. In subsequentwork, Tonget al. [85,86] establishedthe

necessaryandsufficient conditionsfor thesecond-orderidentifiability of SIMO channels.

Usingtheframework of TXK, Moulineset al. [87,88] proposedachannelidentifica-

tion algorithmsimilar to thewell-known MUSIC algorithm[89] thatexploits theorthogo-

nality of thesignalandnoisesubspacesof Φ0. Thealgorithmrequiresonly a singleSVD,

andhence,is lesscomplex thanTXK. However, like TXK, it requiresan estimateof the

channelorder, andis reportedlysensitive to inaccuracies[90-92] in this estimate.Liu and

Xu [93] independently developed a similar subspace-based algorithm.

Slock andcolleagues[94-96] interpretedan oversampledSISOchannelasa filter-

bank, illustratedin Fig. 2-5(c). He showed that the condition requiredfor second-order

identifiability can be expressedin termsof the zerosof the filterbank subchannels:the

channelis identifiableif andonly if thesubchannelshavenocommonzeros.Thiscriterion

is the sameas that requiredfor the existenceof a perfect-reconstructionFIR filterbank

[97]. The implication is that the outputof an FIR SIMO channelsimultaneouslyhasnot

only amoving-average(MA) nature,but alsoafinitely parameterizedautoregressive (AR)

nature.Slock was the first to suggestthe useof linear prediction to equalizea SIMO

channel.

Abed-Meraim [90,91] developed the prediction-errorblind identification (PEBI)

algorithm,alsoreferredto in theliteratureasthelinearpredictive algorithm(LPA). It is a

batch-orientedalgorithmthat first computesa prediction-errorfilter, and thencorrelates

the predictionerror to the receiver observation to determineH(z). The methodis report-

edly morerobustto over-estimationof thechannelorderthaneitherTXK or thesubspace
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approachof Moulines.However, it is still rathercomplex, requiringa pseudoinverse.Fur-

thermore, its performance reportedly suffers when the channel has weak precursors [92].

Ding [92] developedtheouter-product-decompositionalgorithm(OPDA) to identify

the channel.OPDA and LPA are reportedlysimilarly robust to over-estimationof the

channelorder, but OPDA performsbetterthanLPA whenchannelprecursorsaresmall.

OPDA requires two SVDs.

All of the precedingSOS-basedapproachesseekto identify the channel,with the

understandingthatoncethechannelis identified,equalizerscanthenbecomputedor max-

imum-likelihood sequencedetectioncan be performedusing the Viterbi algorithm. If

equalizationis the desiredgoal, a secondcomputationis thereforeneeded.In contrast,

Giannakisand Halford [98] have describedmethodsfor directly computingequalizers,

bothMMSE andZF, from theobservedchanneloutputs.Thezero-delayMMSE equalizer

is computedfrom abatchestimateof Φ0. TheMMSE equalizerfor delaysotherthanzero,

aswell asthezero-forcingequalizer, requiresanestimateof thenoiselessautocorrelation,

so the noisesubspacemustbe estimatedfirst. Computationof the zero-forcingequalizer

requires one pseudoinverse; computationof the MMSE equalizer for general delay

requirestwo. GiannakisandHalford have alsodescribedpromisingadaptive implementa-

tions of thesedirect methods.However, convergenceof thesealgorithmsappearsto be

sensitive to the initial equalizer estimate.

2.2.3 Blind Multiuser Detection

Therearemany diversebodiesof literaturethathave relevanceto thegeneralblind

multiuser detectionproblem. In some contexts, partial knowledge of the channel is

assumed.Theproblemis greatlysimplifiedwhenthereceiverhaspartialor full knowledge
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of the channel.In array processing[99], knowledge of the array geometry is often

assumed;e.g., the generalizedsidelobecanceler[100], MUSIC [89], andESPRIT[101].

In direct-sequenceCDMA systems,knowledgeof the spreadingsequenceof the desired

useris assumed,e.g., theminimum-output-energy (MOE) detectorof Honiget al. [13] and

the subspace-baseddetectorof Wang and Poor [14]. All of thesealgorithms exploit

channel knowledge in some way, and are thus only partially blind.

Thefully blind multiuserdetectionproblemis sometimescalledblind sourcesepara-

tion.11 Mirroring classicalsolutionsto the single-userproblem,many early blind algo-

rithms for multiuser detection or channel identification were based on explicit

computationof higher-orderstatistics.Cardosoproposedalgorithms[102-104]for identi-

fication of memorylessMIMO channelsbasedon higher-order cumulants.Giannakis

[105], Swami [106], andTugnait [107] proposedsimilar cumulant-basedalgorithmsfor

channelswith memory. Comon[108,109] generalizedthe idea of contrastfunctionsto

MIMO channels.He showed that, under the assumptionthat the channel inputs are

non-Gaussianandstatisticallyindependent,thedetectoroutputsareseparatedif andonly

if they arealsostatisticallyindependent.Linearminimizationof thestatisticaldependence

betweendetectoroutputcomponentsis known asindependentcomponentanalysis(ICA),

but theideareally is equivalentto Donoho’s ideaof minimizing Gaussianity. Moreauand

Pesquet[110] alsoproposeda channelidentificationalgorithmbasedon generalizedcon-

trasts.Thesealgorithms,like their counterpartsfor SISO channels,are impractical for

many applicationsbecauseof their high computationalcomplexity; they requirebatch

11. Channels, either with or without memory, are sometimes called mixtures, either convolutive
or instantaneous, respectively.
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estimatesof higher-orderstatistics.Furthermore,many datasamplesareneededto pro-

duce accurate estimates.

Severaladaptive algorithmsresemblingtheclassicalBussgangalgorithmshave also

beenproposedfor blind multiuserdetection.Theseincludeextensionsof CMA to themul-

tiuserproblem.For example,pointwiseCMA [111,112] is an extensionthat appliesthe

CMA cost function to each component of the equalizer output: Jpw(yk) =

(|yk
(i)|2 � Ri)

2, whereRi = , andwherexk
(i) andyk

(i) denotethei-th com-

ponentof thechannelinput andequalizeroutput,respectively. VectorCMA [112] applies

the CMA cost to the entire equalizeroutput vector: Jv(yk) = ( yk
2 � R) 2, whereR =

. Combination CMA [112,113] uses a weighted sum of the pointwise and

vector-CMA costs.DecorrelatingCMA [114,115]addsa termto thepointwise-CMAcost

to penalizecorrelationsamongequalizeroutputcomponentsat nonzerolags(in aneffort

to eliminatespuriouslocal minima).TheseCMA extensionshave lower complexity than

theaforementionedbatchmethods,but they cansuffer convergenceproblems.Otheradap-

tivealgorithms,proposedfor memorylessor unitarychannels,includeEASI [116] (equiv-

ariantadaptivesourceseparationvia independence),which is basedonacontrastfunction,

and MPLL [117], a multidimensional extension of a decision-directed phase-locked loop.

Another classof blind algorithms,basedon the seminalwork of Gorokhov, Lou-

baton,andMoulines[15], hasrecentlybeendevelopedfor strictly tall channels.Gorokhov

andcolleagues[15] extendedthework of Tong[17] to show thatSOScanbesufficient to

identify a tall MIMO channelup to a memorylessunitaryambiguity. Theresidualunitary

matrix U canbe interpretedasa generalizationof the complex scalare jθ left unresolved

by theoriginal TXK algorithm.In [15], Gorokhov et al. alsoextendedthework of Slock

i 1=

n∑ E xk
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E xk
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[94] to show thattheoutputof anidentifiabletall channelsimultaneouslyhasbothanMA

andanAR nature.ThePEBI algorithm[91] of Abed-Meraimwasthengeneralized,anda

similar weighted-least-squares(WLS) algorithm[15,118] wasproposedfor blind MIMO

channelidentification.Although HOS, and thus non-Gaussianchannelinputs, are still

requiredto identify U (or ejθ for SIMO channels),this is generallyamucheasiertaskthan

identifyingH(z). Thisstatisticallydecoupledapproachreducestheneedfor HOSto amin-

imum. Any of the HOS-basedmethods,in particular, thosedesignedfor memorylessor

unitarychannels,canbeappliedto identify U. For example,Icart andGautier[119] pro-

posedcombiningPEBI [91] with JADE [103] (joint approximatediagonalizationof eigen-

matrices).Throughoutthecourseof our research,we adoptasour own this philosophy of

maximal exploitation of SOS; however, our emphasisis theblind detectionof thechannel

input xk ratherthantheidentificationof thechannel,andour solutionsareadaptive rather

than batch-oriented.
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C H A P T E R 3

S U B S PA C E M E T H O D S

HIS CHAPTER EXPLORESso-calledsubspacemethodsfor blind multiuser

detection.The receiver observation lies in a vector spaceknown as the receive

space.Subspacemethodsarethosewhich decomposethe receive spaceinto two or more

smaller orthogonalsubspaces,and then exploit their orthogonality. Examplesinclude

MUSIC [89], perhapsthe best-known subspacealgorithm,and the CDMA detectorsof

WangandPoor [14] andothers[120]. Thesealgorithmsareonly partially blind in that

they assumeknowledgeof thearraymanifoldor of thedesireduser’s spreadingcode.The

subspacealgorithmsof Moulines[87-88]andLiu [93], in contrast,arefully blind, but like

MUSIC, they arebatchorientedandhave relatively high complexity. In keepingwith our

philosophy, the subspacemethodswe presentare adaptive, low complexity, and fully

blind.

We limit considerationin this chapterto memorylesschannels.A full understanding

of the subspaceideasin this context canprovide valuableintuition for the morecompli-

catedcase.Moreover, thememorylesscasemeritsstudyin its own right becauseanumber

of real-world applicationsaremodeledasmemorylesssystems,e.g., synchronousCDMA

or arrayprocessingin environmentswithout multipath.We extendtheconceptsandalgo-

rithms presented in this chapter to channels with memory in chapter6.

T
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In thefollowing section,we briefly review thesingular-valuedecomposition(SVD)

and its relationshipto the signal and noise subspaces.In section3.2, we describea

low-complexity algorithmfor blindly andadaptively separatingthesignalsubspacefrom

the noise subspace.This subspaceseparator, as we call it, requiresneither batch pro-

cessingnor explicit singular-valueor eigendecompositions.It canbeusedin thefront end

of any receiver without lossof signalinformation.Thus,any blind multiuserdetectorcan

then be implementedin the reduced-dimensionalsignal space,with a commensurate

reductionin complexity. Reducingthenumberof receiver parametersoften increasesthe

speedof convergenceaswell. In section3.3,we generalizethesubspaceseparationtech-

niqueto performanSVD of thechannel,again adaptively andwithout batchprocessing.

Numericalresultsdemonstratefastconvergenceandgoodperformance.In section3.4,we

presentfully blind implementationsof the minimum-mean-square-error(MMSE) and

zero-forcing(ZF) multiuserdetectorsbasedon the adaptive SVD algorithm. In section

3.4, we presenta channel diagonalizationalgorithm, which facilitates transmission

approaching channel capacity in single-user multi-channel applications.

3.1 Signal and Noise Subspaces

We begin by reviewing the singular-value decomposition(SVD) of the channel

matrix and its relationshipto the signal and noise subspaces.Considera memoryless

channel, for which the model of (1-1) reduces to

rk = Hxk + nk, (3-1)

whereH is anm × n memorylesschannelmatrix. In a narrowbandm-sensorlinear-array

application,thecolumnsof H representthesteeringvectorsfor then users,andin a syn-
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chronous-CDMAapplication,with m chipsperbaud,thecolumnsof H representthesig-

naturesequencesof then users.As in (1-1),xk is a vectorof symbolsequencessentby n

independent,finite-alphabettransmitters,rk is the correspondingreceiver observation

sequenceof dimensionm, andnk is noise.For thememorylessmodelof (3-1),weassume

thatH hasrankn, which implies that thechannelis eithersquareor tall (m ≥ n). We fur-

ther assumethat the signal and noise are independent,zero mean, and satisfy12

E[xkxk
*] = I andE[nknk

*] = σ2I, with σ > 0.

Theobservationvectorrk hasdimensionm; therefore,the receive spaceis m, the

setof m-dimensionalcomplex vectors.However, becauseH hasrank n, the signal term

Hxk is restricted to ann-dimensional subspace ofm, referred to as the signal subspace.

Definition 3-1. For any memorylesschannelmatrix H (3-1), thesignal subspaceS

is the range or column span ofH, and thenoise subspaceN is left null space ofH:

S = range(H) = { s : s = Hx, x ∈ n } (3-2)

N = null(H*) = { n : H*n = 0, n ∈ m }. (3-3)

Thesesubspacesareorthogonalcomplements,N = S⊥, meaningthattheirunionis m, but

their intersectionis empty:S ∪ N = m, andS ∩ N = ∅. The signalsubspaceis closely

tied to the singular-value decomposition ofH.

Theorem 3-1. [121] For any complex m × n matrix H with rank n, thereexists a

singular-value decomposition(SVD) of the form:

H = USV* (3-4)

12. No assumption is made regarding source correlation at nonzero lags E[xkxk � l
*], l ≠ 0.

C

C

C

C

C
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= siuivi
*, (3-5)

whereU = [u1 … um] and V = [v1 … vn] are (m × m and n × n) unitary matrices,

S = is m × n, and = diag(s1 … sn) is a uniquen × n diagonalmatrix with real

and positive ordereddiagonalcomponentss1 ≥ … ≥ sn > 0, referredto as the sin-

gular values of H.

AlthoughS in (3-4) is unique,theunitarymatricesU andV arenot unique.If H =

USV* is avalid SVD thensois (UT)S(V )* for any unitarymatricesT and satisfying

TS * = S. It can be shown that TS * = S if and only if commuteswith and

T = , whereQ is any unitary matrix of dimensionm � n. A diagonal is one

example,but neednot be diagonalif the singularvaluesarenot distinct. An explicit

description of the SVD ambiguity is provided by the following lemma.

Lemma 3-1. SVD Ambiguity. Let H be an m × n matrix with rank n and SVD

H = USV*. Let d ≤ n denotethenumberof distinctsingularvaluessothats1 > s2 >

… > sd > 0, andlet µi denotethemultiplicity of si for i ∈ {1, …, d}. Any otherSVD

H = S * is related toUSV* as follows:

 = U , (3-6)

 = V , (3-7)

whereQ is a unitary matrix of dimensionm � n, andwhere is a block-diagonal

and unitary matrix of dimensionn × n:
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 = . (3-8)

The blocksTi are unitary submatrices of dimensionµi × µi.

Proof: Because is block-diagonalandthe submatricesof areproportionalto

the identity,  commutes with :

 =  = . (3-9)

It follows that

S *= U S *V* = US *V* = USV*. (3-10)

Conversely, if (3-8)doesnothold then and donotcommute,and S * cannot

equalUSV*. ❏

In termsof anSVD H = USV*, thesignalsubspaceis spannedby thefirst n columns

of U. Observe from (3-4) that

Hx = sjujvj
*x = ajuj, (3-11)

wherethescalaraj satisfiesaj = sjvj
*x. Thus,thefirst n columns[u1 … un] of U form a

basisfor thesignalsubspace.Consequently, thelastm � n columns[un + 1 … um] form a
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basisfor thenoisesubspace.So,althoughanSVD is not unique,thesignalandnoisesub-

spaces are uniquely determined by the left factorU from any SVD.

Lemma 3-2. For any memorylesschannelmatrix H (3-1) with an SVD given by

H = USV*, thesignalandnoisesubspacescanbeexpressedin termsof thecolumns

of U = [ u1 … um] as follows:

S = span{ u1 … un } (3-12)

N = span{ un+1 … um }. (3-13)

Becausethesignalspaceis only n-dimensional,we canconfinethesignalportionof

the receiver observation to n components.In otherwords,we candefinea new vectoryk

according to

yk =  = Θrk, (3-14)

whereΘ is unitary, suchthatwk, thelastm � n componentsof yk, containsno signalcon-

tributions.All signalcontributionsareconfinedto k, the first n componentsof yk. We

interpret k asa projectionof rk onto the signalsubspace,andwk asa projectionof rk

onto thenoisesubspace.Thesequence k providessufficient statisticsfor recovering the

channelinput; wk is irrelevant.Thus,we saythat Θ separates the subspaces. In general,

we define a subspace-separation matrix as follows:

Definition 3-2. For the m × n memorylesschannelH of (3-1), an m × m unitary

matrix Θ is a subspace-separationmatrix if andonly if thelastm � n rows of ΘH

are identically zero.

r̃k

wk

r̃

r̃

r̃
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Lemma3-2 suggestsone obvious solution: Θ = U*. In general,a subspace-separation

matrix is related toU* as follows.

Lemma 3-3. For thememorylesschannelH of (3-1),a unitarysubspace-separation

matrix must be of the form:

Θ = U*, (3-15)

whereUS andUN arearbitraryunitary matricesof dimensionn andm � n respec-

tively, andU is a left factor of any valid channel SVDH = USV*.

Proof: The last m � n rows of ΘH = ΘUSV* must be zero. The SVD theorem

impliesthatthelastm � n rows of SV* arealreadyzero,soweneedonly ensurethat

ΘU passesnoneof theenergy from thefirst n inputsto thelastm � n outputs.Hence,

ΘU must be block diagonal and unitary, implying (3-15).❏

Observe that ifΘ satisfies (3-15), then (3-14) reduces to

= ΘHxk + Θnk

= xk + Θnk, (3-16)

wherewe have introducedan n × n matrix = US V* with rank n. Theselast m � n

componentscanbe usedto estimatethe noisevariance,if desired,or simply discarded,

therebyproducinga squarechannel,as shown in Fig. 3-1 (b), with a reducedreceiver

observation:

US 0
0 UN

r̃k

wk

H̃
0

H̃ S̃
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k = xk + k, (3-17)

whereE[ k k
*] = σ2I. Because k is sufficient for estimatingxk, any multiuserdetector,

blind or otherwise,canbe appliedto this new channel without compromisingperfor-

mance.

3.2 An Adaptive Signal-Noise Subspace Separator

We now presentanalgorithmfor adaptively implementingthesubspaceseparatorΘ

of (3-15).Our approachis basedon thefollowing observation:on theonehand,thenoise

energy in thelastm � n componentsof yk = Θrk is thesamefor any unitarymatrix Θ, but

r̃ H̃ ñ

ñ ñ r̃

H̃

Figure 3-1. Equivalent models: (a) a tall channel with a signal-space projector

used as the receiver front end, and (b) an equivalent square channel.
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on theotherhand,thesignalenergy in thelastm � n componentsof yk is minimizedonly

whenΘ satisfies(3-15). Thuswe canreformulatethe subspaceseparationprobleminto

thatof finding a unitarymatrix Θ thatminimizestheenergy in thelastm � n components

of its output. We seek a unitary matrix that minimizes the following cost function:

E[ Gyk
� yk

2] (3-18)

where

G = . (3-19)

In other words, we seek to rotaterk by a matrixΘ such thatyk = Θrk is close toGyk.

In a mannersimilar to thatusedby multidimensionalPLL of [117], we canadaptan

estimate ofΘ iteratively by accumulating unitary matrices that partially rotateGyk to yk:

k + 1 = R λ(Gyk→ yk)* k. (3-20)

Following [117], we define a rotation from x to y as a unitary matrix R satisfying

R = andR z = z for all z orthogonalto span{x, y } (thetwo-dimensionalsubspace

spanned byx andy). A closed-form expression forR is given by

R (x → y) = I + , (3-21)

where p is the normalizedinner product,p = , and where { u, v} is a basisfor

span{x, y }: u =  and13v = . A partial rotationR λ is then defined as

13. For the case when x and y are colinear (|p|= 1), we take v = 0 in (3-21).

In 0
0 0

Θ̂ Θ̂

x
x---------- y

y---------

u, v

|p|� 1

p � 1
u*

v*

1 � |p|2
� p

|p|

1 � |p|2

x∗y
x y--------------------

x
x---------- z z⁄ pu–

1 p 2
–

-------------------------------
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R λ(x → y) = R (x → λy + (1 � λ)x). (3-22)

In otherwords,a partial rotationR λ from x to y is a rotationR from x to a an interme-

diatevectorλy + (1 � λ)x lying betweenx andy. The simplerecursionof (3-20) with G

definedby (3-19) definesour proposedadaptive subspaceseparator. A block diagramof

the adaptive separatoris shown in Fig. 3-2. The block labeledG takes the placeof the

decisiondevice14 in theconventionalMPLL. ThevectorGyk caninterpretedasa projec-

tion onto an estimateof the signalspaceS. Only valid subspaceseparatorsΘ, satisfying

(3-15), minimize the projection error.

The recursionof (3-20) requiresthe multiplication of two m × m matricesat each

iteration.Thecomplexity canbereducedevenfurtherby manipulating(3-20)into thefol-

lowing form:

14. Observe that the structure of the adaptive subspace separator resembles that of the classical
Bussgang algorithms, except that G of (3-19) is linear, rather than nonlinear.

Figure 3-2. An adaptive signal-noise subspace separator.

k

Rotation
Detector

rk

λ

yk

G

Θ̂
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k + 1 = k + R λ(Gyk→ yk)* � I k. (3-23)

Observe thattherank-two matrix within thesquarebracketsis thesumof four outerprod-

ucts; therefore,this realizationof the algorithm requiresthe multiplication of only a

rank-two matrix with anm × m matrix,andis thuslesscomplex than(3-20)whenm > 2.

We remarkthatunlike many of thesubspaceestimationor trackingalgorithms[122-125],

the recursionof (3-20) or (3-23) provides a preciselyorthonormalestimateof both the

signalandnoisesubspacesat eachiteration.We demonstrateconvergenceof theadaptive

subspace separator of (3-23) by the following example.

Experiment 3-1. Consider a memorylesssystem(3-1) with m = 10 sensorsand

n = 2 users.According to (3-16), in order to show that (3-23) convergesto a sub-

spaceseparator, we needonly demonstratethat the last m � n rows of the sepa-

rator-channelcascade kH convergeto zero.Fig. 3-3 shows theenergy in eachrow

of kH asa functionof time k, averagedover 100randomlyselectedchannels.For

eachtrial, theelementshj,i of thechannelmatrix areselectedindependentlyfrom a

zero-mean,unit-variance,complex Gaussiandistribution, andthenscaledsuchthat

theSNR i = | hj,i | 2 / σ2 of eachuseri is fixedat 27 dB. (Theloop gain is λ =

0.1(2� k/300) in (3-23).)We seethat theenergy in eachof thelasteightrows of kH

converges quickly to levels of –40 dB or less.

Experiment3-1 certainly doesnot prove convergence.Nevertheless,we make the

following conjecture.

Θ̂ Θ̂ Θ̂

Θ̂

Θ̂

j 1=

m∑
Θ̂
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Figure 3-3. Convergence of the subspace separator: energy in the rows of

the separator-channel cascade kH versus time k.Θ̂
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Conjecture 3-1. Therecursionof (3-20)and(3-23)with G definedby (3-19)con-

verges to a valid subspace-separationmatrix as definedby (3-15) for sufficiently

small loop gain λ.

Heuristic supportof this conjectureis offered in Appendix3-2, andmore experimental

resultsregardingthesubspaceseparatorcanbefoundin chapter4, whereit is usedin the

front end of a blind multiuser detector.

3.3 Adaptive Singular-Value Decomposition

Consideragain the m-sensorn-usersystemof (3-1). Accordingto Conjecture3-1,

the algorithm of (3-20) with G definedby (3-19) converges to a subspaceseparator

Θ = U*, asdefinedby Lemma3-3. The block-diagonalambiguitycanbe prob-

lematicfor someapplications,whereanestimateof U* itself is preferredor required.We

now proposea simplemodificationto thesubspace-separationalgorithmthatproducesan

estimateof U*, without any ambiguityotherthanthatdescribedby Lemma3-1. In other

words,we forceUS to betheidentity. (TheotherambiguityUN canbeabsorbedaspartof

U*, in light of Lemma3-1.)OnceU is estimated,it is easyto estimateS andV, leadingto

an adaptive SVD algorithm.

Recall from (3-19) that the first n diagonalelementsof G, correspondingto the

signalsubspace,areall one,andthe last m − n diagonalelements,correspondingto the

noisesubspace,areall zero.Thestructureof G in effect forcestherecursionof (3-20) to

decomposethe receive spaceinto a “large energy” signalsubspaceanda “small energy”

noisesubspace.But we neednot have only two subspaces.For example,if the singular

valuesaredistinct, then the n-dimensionalsignal subspaceS = span{ u1 … un } canbe

US 0
0 UN
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furtherdecomposedinto n one-dimensionalsubspacesSi = span{ ui} ∀ i ∈ {1, …, n}. We

candistinguishamongthesesmallersubspaceson thebasisof thesignalenergy si
2 within

each.In general,the signal subspaceS can be decomposedinto d ≤ n subspacesSi of

dimension µi ∀ i ∈ {1, …, d}, where d is the number of distinct singular values

s1 > s2 > … > sd, andwhereµi is the multiplicity of si. In otherwords,whereasthe sub-

spaceseparatorΘ of (3-15)decomposesthereceive spaceinto two subspaces,onesignal

andonenoise,the factorU* decomposesthe receive spaceinto d+1 subspaces,d signal

andonenoise;we call this a complete subspace decomposition. By modifying the diag-

onalelementsof G, we canperforma completesubspacedecompositionandestimateU*

or U directly. Specifically, wedefineG suchthatthefirst n elementsarestrictly decreasing

and strictly greater than the remainingm − n elements:

G = diag( g1 … gm)

g1 > g2 > … > gn > gj ≥ 0 ∀ j ∈ { n+1 … m}. (3-24)

The estimate ofU is then updated according to

k + 1 = kR λ(Gyk → yk)

= k + k R λ(Gyk → yk
�

� I , (3-25)

whereyk = k
*rk. Theblockdiagramof thisadaptiverotatoris identicalto Fig. 3-2except

that k
* replaces k, andG is defined by (3-24) rather than (3-19).

A demonstrationof theconvergenceof (3-25)is givenin Experiment3-2 laterin this

section,andagain,althoughthis experimentis not a proof,we statethefollowing conjec-

ture.

Û Û

Û Û

Û

Û Θ̂
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Conjecture 3-2. The recursionof (3-25) with G definedby (3-24) convergesto a

left factorU in a valid channel SVDH = USV* for sufficiently small loop gain λ.

Conjecture3-2doesnotsuggestthat(3-25)convergesto auniquesolution,but ratheronly

to a U correspondingto oneof many possiblesingular-valuedecompositionsH = USV*.

See Appendix 3-2 for more discussion regarding convergence.

Invoking Conjecture3-2, the rotatoroutputconvergesto yk = U*rk, which canbe

written as

yk =  = xk + U*nk, (3-26)

where = V*. The autocorrelation ofyk is then given by

Φy = SS* + σ2I. (3-27)

Therefore, the energy in thei-th component ofyk is

 = E[|yk
(i)|2] = . (3-28)

Theseenergiesarein fact theeigenvaluesof Φr = E[rkrk
*] = HH* + σ2I. Thefollowing

algorithmcanbeusedfor calculatingthesingularvaluesof thechannelH. At eachtimek,

form an estimate of the energy in the i-th componentyk
(i) of yk, using a simple

first-order recursion:

 = α + (1 � α)|yk
(i)|2, (3-29)

r̃k
wk

H̃
0

H̃ S̃

εk
i( )





 si

2 + σ2 i ∈ {1, …, n}

σ2 i ∈ { n+1, …, m}

ε̂k
i( )

ε̂k
i( ) ε̂k 1–

i( )
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where0 < α < 1 is a smoothingfactor. Then,estimatethesingularvaluessi of H andthe

noise energy σ2 as follows:

 = , (3-30)

i(k) = ( � )1 ⁄ 2. (3-31)

In summary, theadaptiveSVD algorithmis describedby (3-25)and(3-29)through(3-31).

We now demonstrate the algorithm with a computer experiment.

Experiment 3-2. Considera 4-userQPSKsystemwith 10 sensors,modeledby a

randomlygeneratedchannelH of dimension10 × 4, with noisevarianceσ2 = 0.01.

Let G be diagonalwith linearly decreasingelements:G = diag(1, 8⁄9, …, 1⁄9, 0).

We estimateU accordingto (3-25)with λ = 2.2� k/500. We demonstrateconvergence

of (3-25) in Fig. 3-4(a), where we plot the diagonalelementsof

versustime k. We can interpretthesediagonalelementsas the true energy in the

componentsof yk = rk. We expect that as approachesU, the matrix

shouldapproachSS* + σ2I. Fig. 3-4(a) verifies that this is indeedthe

case.We demonstrateconvergenceof (3-29) in Fig. 3-4(b),wherewe plot the

estimates = E[|yk
(i)|2] versustime with α = 1 – 0.05/(1 + k/90). We seethat

thesimplealgorithmis ableto accuratelyestimatethesingularvaluesin only a few

hundred iterations.

Theblind adaptive SVD describedin this sectionis usedasa building block in theblind

implementations of the MMSE and the ZF detectors of the following sections.

σ̂k
2 1

m n–
---------------

i n 1+=

m

∑ ε̂k
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ŝ ε̂k
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Ûk
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Figure 3-4. Adaptive estimation of singular values: (a) the diagonal elements

of ; (b) eigenvalue estimates from (3-29).Ûk
*ΦrÛk
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3.4 MMSE Detection

Consideragain the memorylessmultiusercommunicationsystemrk = Hxk + nk of

(3-1).A linearmultiuserdetectorprocessesthereceiver observationwith ann × m matrix

C, producingzk = Crk. The resultingMSE for useri is MSEi = E[|zk
(i)

� xk
(i)|2]. The

“best” linear detector is generally consideredto be the minimum-mean-square-error

(MMSE) detector; that is, the detector that minimizes the MSE for each user.

Definition 3-3. Theminimum-MSE detector CMMSE for thechannelof (3-1) is the

n × m matrix C that minimizes the MSE sumE[||Crk
� xk ||2].

Expressionsfor theMMSE detectorhave beenderived in [126] and[127]. Thefollowing

lemmaexpressesthe MMSE detectorin termsof the memorylessmodelof (3-1). It also

suggests an implementation procedure.

Lemma 3-4. For channelH of (3-1) with σ2 > 0, the MMSE detectorcan be

expressed in three equivalent ways:

CMMSE = H*(HH* + σ2I) �

�

(3-32)

= (H*H + σ2I)�

�

H* (3-33)

= VDU*, (3-34)

whereV andU areunitary factorsof a channelSVD H = USV*, andwhereD =

S*(SS* + σ2I) �

�

is a positive diagonalgain matrix of dimensionn × m. TheMMSE

detector is unique.

Proof: See Appendix 3-1.
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Note that D canbe decomposedinto the form D = [ 0 ], where = ( 2 + σ2I)�

�

is

diagonal.

The lastequivalence(3-34)suggestsa realizationof theMMSE detectorconsisting

of the cascadeof threefilters: first, the unitary U*, second,the diagonalD, andlast, the

unitary V. In section3.3 we have alreadypresenteda blind methodthat implementsthe

first filter U*. Furthermore,we have alsopresenteda blind methodfor estimatingthesin-

gularvaluesS andnoisepower σ2; see(3-29) through(3-31).Thus,thesecondfilter D =

S*(SS* + σ2I) �

�

can also be implemented blindly.

A blind implementationof theentireMMSE detectoris now apparent;its block dia-

gramis shown in Fig. 3-5.Thedetectoris basedon a rotate-scale-rotate architecture.The

first stepis to rotatetheobservationwith anm × m unitaryfilter k adaptedaccordingto

(3-25).The secondstepis to scalethe outputof k by the diagonaln × m matrix k =

k
*( k k

* + I)�

�

, where k and areestimatesof S andσ2 adaptedaccordingto

(3-29) through(3-31). The final stepis to rotatethe outputof k by an estimateof the

n × n unitary matrix V. Although the SVD in (3-34) is not unique,oncethe front-end

rotator k convergesto a particular U, thecorrespondingfactorV is uniquely specified.

(To seethis substituteCMMSE
* for H in Lemma3-1.) Once hasalsoconvergedprop-

erly, its output is wk = DU*rk. Hence,of all unitary matrices , only = V minimizes

theMSEsumE[ wk
� xk

2]. But theproblemof finding thebestunitarymatrix to min-

imize thisMSEsumis preciselytheproblemfor which theMPLL wasdesigned.Thenwe

can estimateV according to the MPLL recursion [117]:

D̃ D̃ S̃ S̃

Û

Û D̂

Ŝ Ŝ Ŝ σ̂k
2 Ŝ σ̂k

2

D̂

Û

D̂

V̂ V̂

V̂
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Û
k*

y k

R
ot

at
io

n
D

et
ec

to
r

w
k

R
ot

at
io

n
D

et
ec

to
r

z k
x k

V̂
k

G

x̂ k

F
ig

u
re

 3
-5

.
A

 fu
lly

 b
lin

d,
 a

da
pt

iv
e 

im
pl

em
en

ta
tio

n 
of

 th
e 

m
in

im
um

-M
S

E
 m

ul
tiu

se
r 

de
te

ct
or

.



55

k+1 = R λ( k → zk)* k

= k + R λ( k → zk)*− I k, (3-35)

wherezk = kwk, andwhere k = dec(zk) is a decisionvector. Eachcomponent k
(i) of

k is quantizedindependentlysuchthat k
(i) = deci( yk

(i)) is thepoint in theconstellation

of useri closest toyk
(i).

Becauseof the ambiguitiesinherentin any fully blind detectionalgorithm,(3-35)

maynot convergeto V exactly. Identicallydistributedusersarestatisticallyindistinguish-

able,sothey arearbitrarily labeledat theoutputof any fully blind detector. Moreover, the

constellationof eachuser has rotational symmetriesthat cannotbe blindly resolved.

Rotatingany squareQAM constellationby an integer multiple of 90°, for example,does

not changeits statistics.In practice,theseambiguitiesareof little consequence,because

they canberesolvedby othermeans.15 Therefore,it is generallysatisfactoryif k = Kxk,

whereK = KPKR is then × n productof a permutationmatrix KP anda diagonalunitary

matrix KR = diag( ), andwheretheanglesθi aredeterminedby therotationalsymme-

tries of constellationi. If all userstransmit16-QAM, for example,thenK is a complex

permutationmatrix, i.e. a matrix with exactly onenonzeroelementfrom {±1, ± j} perrow

and per column. The following simulationexperimentsupportsthe conjecturethat the

MPLL converges to

= KV. (3-36)

It also demonstrates convergence of the entire blind MMSE detector.

15. For example, differential encoding renders absolute phase irrelevant.

V̂ x̂ V̂

V̂ x̂ V̂

V̂ x̂ x̂

x̂ x̂

x̂

e
jθi

V̂
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Experiment 3-3. Considera 10-elementlinearantennaarraywith half-wavelength

spacing,with two independentQPSK transmittersincident at anglesθ1 = 0˚ and

θ2 = 20̊ , asmeasuredfrom thebroadside.For thisarrangement,thechannelmodelis

given by (3-1) with H10 × 2 = VB, whereVi,l = exp{ j ( i � 1)sin(θl) } [99], and

B = diag(B1 B2), and where Bi
2 is the received power of the i-th user. We set

SNR1 = 10dB andSNR2 = 30dB, so that thesignal-to-interferenceratio for user1

is SIR1 = –20dB. Fig. 3-6(a)shows a plot of theMSE for user1 versustime for the

proposedblind MMSE detectorof Fig. 3-5,averagedover 100input andnoisereal-

izations.(The effect of the ambiguouspermutationis removed for eachtrial.) The

ideal minimum-MSEbenchmarkis shown for comparison.Fig. 3-6(b) shows the

constellationsfrom time4000to time5000of thelasttrial. Weseethattheproposed

algorithmapproachesthe performanceof the minimum-MSEdetector, even in the

presenceof severenear-far interference,without theneedfor a trainingsequenceand

without knowledgeof eitherthechannelH or useof transmittertrainingsequences.

(Thereceiver parametersare = 0.5(2� k ⁄ 1000) in (3-25), = 0.5 ⁄ (1 + k ⁄ 800) in

(3-35), andα = 0.95 in (3-29).)

3.5 Zero-Forcing Detection

TheMMSE linearmultiuserdetectordoesnot completelyeliminatemultiuserinter-

ference,but ratherfinds thebestcompromisebetweeninterferenceandnoise;it is analo-

gous to the MMSE linear equalizer in the single-usercontext, which finds the best

compromisebetweenintersymbolinterferenceandnoise.Completeeliminationof mul-

tiuser (or intersymbol)interferenceis generallynot a good idea becauseit can lead to

1
10

---------- π
λ
---

λ1 λ2
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excessive noiseenhancement.It canbeargued,however, that in somecontexts, complete

eliminationof multiuserinterferenceis desirable,regardlessof noiseenhancement.Sucha

detector is called a zero-forcing detector.

Definition 3-4. For thechannelH of (3-1),azero-forcing detectorCZF is ann × m

matrix satisfyingCH = I.

The form of a zero-forcing detector is given by the following lemma.

Lemma 3-5. For the channelH of (3-1), the ZF detectorcanbe expressedin two

equivalent ways:

CZF = H† + N, (3-37)

= VS†U* + N, (3-38)

whereV andU areunitary factorsof an SVD H = USV*, S† = [ −1 0], andN*∈

null(H*). If m > n, then the ZF detector is not unique.

If we take N to be0, we canblindly implementa (minimum-norm)ZF detectorusingthe

rotate-scale-rotatearchitectureof the previous section.We needonly to replacethe esti-

mateof D with thatof S†. We canestimateS using(3-29) through(3-31) just asbefore,

and then invert the singular values to formS†.

3.6 Channel Diagonalization

As wediscussedin chapter1, therearesomesingle-userapplicationsthatcanbecast

into a multiuserframework. We now changeour focussomewhat andaddressonesuch

S̃
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application.Considera single-usermultichannelcommunicationsystemconsistingof one

transmitterwith n antennas,and one receiver with m antennas.An exampleof sucha

systemis the BLAST [31] systemof Bell Labs.If the signalbandwidthis muchsmaller

thanthe channelbandwidth,the transferfunction from transmitterto receiver for sucha

systemis memoryless.Theobservationis givenby rk = Hxk + nk of (3-1),but thecompo-

nentsof xk now correspondto symbolstransmittedby then antennas,ratherthann users.

Strictly speaking,this is not a multiuserproblem,althoughit canbecastinto a multiuser

framework by treatingthe input to eachtransmitterantennaasa virtual user. However,

there are important differences:unlike a true multiuser problem, the virtual usersare

co-locatedand thus do not competefor bandwidth.Moreover, they are not necessarily

independent and can in fact easily cooperate.

With the total power, averagedover all transmitantennas,constrainedaccordingto

E[|xk
(i)|2] ≤ P, we addressthequestionof how to achieve Shannoncapacity. Bran-

denburg and Wyner [128] showed that capacitycan be approachedby using a channel

diagonalizationprocedure.If thechannelmatrixH wereknown, its SVD H = USV* could

beusedto designbotha transmitterprecoder V andareceiver front-end filter U* suchthat

the overall system is diagonal:

S = U*HV. (3-39)

This systemis illustratedin Fig. 3-7. Becausethe unitary filters are invertible, they are

informationpreserving.Thecapacityof theresultingdiagonalchannelS is thusidentical

to that of the original channelH. However, becausethe subchannelsarenow decoupled,

the transmittercan intelligently (accordingto the well-known water-pouring procedure

[50]) distribute power and information among them.

i 1=

n∑
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An adaptive implementationof the channeldiagonalizationalgorithm is shown in

Fig. 3-8.Let * and (bothunitary)denoteanadaptivereceiver front-endfilter andtrans-

mitter precoder, respectively, andlet wk denotethe precoderinput, so that the vectorof

symbolstransmittedat time k is xk = kwk. Without lossof generality, we take thetrans-

mitter power constraintto beP = n. We alsoassumethatprior to theconvergenceof these

filters, thepower is equallydistributedamongall transmitterantennas,andthat thesym-

bolsareuncorrelatedacrossantennassothatE[wkwk
*] = I. As in section3.3,we canuse

the recursionof (3-25) to update *. Becausethe precoder is always unitary, the

AWGN

(b)

Figure 3-7. Equivalent models: (a) a memoryless MIMO channel with

precoder and front-end rotation filter, and (b) decoupled scalar channels.
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second-orderstatisticsof wk andxk areidentical.Therefore,the front-endfilter * con-

verges to a valid U*, without regard to the precoder initialization or transient behavior.

According to Conjecture3-2, the front-endfilter * convergesto a particularU*,

and the output of the front-end filter is given by

yk = SV*
kwk + k, (3-40)

whereV is unique,andwhere k = k
*nk andnk have identicalsecond-orderstatistics.

Theoutputyk canbefedbackto thetransmitterwhereit canbeusedto adapttheprecoder.

Clearly, if = V, thenyk = Swk + k. In particular, k = Jyk is anoisyestimateof wk =

JSwk, whereJ = [I 0]. So, the transmitter seeks a rotation that mapsk to a vector:

k = wk. (3-41)

Becausethe transmitterhasaccessto wk, the singularvaluescanbe estimated,even for

square channels, by averaging as follows:

i(k+1) = α i(k) + (1 � α) Re( yk
(i)/wk

(i)), (3-42)

wherei = 1 … n, andwhere0 < α < 1 is a smoothingfactor. In practice,however, estima-

tion of is not necessaryfor diagonalization;just as in the receiver, any n × n positive

diagonalmatrix with strictly decreasingelements,e.g. = JGJT, canbeusedin placeof

. Theestimateof V is updatedby accumulatingamatrix thatpartially rotates k to k:

k + 1 = kR λ( k → k)

= k + k R λ( k → k
�

� I . (3-43)

Û

Û

V̂ ñ

ñ Û

V̂ ñ ỹ S̃

ỹ

w̃ S̃

ŝ ŝ

S̃

G̃

S̃ ỹ ŵ

V̂ V̂ ỹ w̃

V̂ V̂ ỹ w̃
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Observe that k and k in (3-43)play therolesof Gyk andyk, respectively, in (3-25);that

is, we accumulatepartial rotationsfrom k to k in (3-43),but from Gyk to yk in (3-25).

This role reversalis a consequenceof thefactthat k prefiltersthechannel,whereas k
*

postfilters it.

To measurethe effectivenessof this algorithm, we introduce a diagonalization

metric defined as follows:

ζk = J k
*H k

� , (3-44)

where‘ ⋅ ’ indicatesa Frobeniusnorm. The metric is in effect the squareddistance

betweenJ k
*H k and . For perfectdiagonalization,themetric is zero.The following

experiment demonstrates convergence of the algorithm.

Experiment 3-4. We considerrandomly(Gaussian)generatedchannelsof dimen-

sion10 × 4. All 4 transmittersuseQPSK.We conduct50 trials,adaptively diagonal-

izing eachchannelaccordingto theproposedalgorithm(with λ1 = 0.5(1 + (k/700)2)

in (3-25)andλ2 = 0.5(1 + (k/800)2) in (3-43)).Fig. 3-9 shows theensembleaverage

of the diagonalizationmetric ζk versustime k. We see that the metric quickly

approaches –30 dB.

3.7 Chapter Summary

We have proposedto adapta unitary matrix Q for operationon an observation rk

according to the following recursion:

Qk + 1 = R λ(GQkrk → Qkrk)*Qk, (3-45)

ỹ w̃

ỹ w̃

V̂ Û

Û V̂ S̃ F
2

F
2

Û V̂ S̃
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Figure 3-9. Convergence of the diagonalization algorithm: diagonalization

metric ζk versus time k.
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whereR λ(x → y) is aunitarymatrix thatrotatesafractionλ of thewayfrom to , as

definedby (3-21) and(3-22).WhenG is definedby (3-19), then (3-45) implementsthe

adaptive signal-noisesubspaceseparatorof section3.2, and Qk ≡ k converges to a

matrix Θ of the form given by (3-15). After convergence,the first n componentsof

yk = Qkrk representtheprojectionof rk onto thesignalspace,andthe lastm � n compo-

nentsof yk representtheprojectionof rk ontothenoisesubspace.Thismeansthatonly the

first n componentsof yk containsignalenergy, andtheremainingcomponentscanbedis-

cardedwithout lossof information.Thissubspaceseparatoris usedin thenext chapterasa

meansfor simultaneouslyreducingcomplexity and speedingconvergenceof the subse-

quent detector stages.

In contrast,whenG is definedby (3-24),then(3-45) implementsthetotal subspace

decompositionof section3.3; the rotatorQk ≡ k
* convergesto a valid U*, whereH =

USV* is a channelSVD. The singularvaluesS can then be easily estimatedfrom the

energy of thecomponentsof yk. Usingthisalgorithm,wehaveproposedfully blind imple-

mentationsof the minimum-MSE and zero-forcinglinear multiuser detectors,offering

goodperformance,low complexity, andfastconvergence.In arelatedapplication,wehave

also proposed a means to adaptively diagonalize a memoryless channel.

x
x---------- y

y---------

Θ̂

Û
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APPENDIX 3-1: DERIVATION OF

THE MMSE LINEAR MULTIUSER DETECTOR

Applying an n × m memorylessdetectorC to the outputof the channeldefinedby

(3-1) produces the MSE sumJ(C) = E[ Crk
� xk

2], which can be expressed as

J(C) = tr[(CH � I)(CH � I)* +σ2CC*] (3-46)

= tr[(CΦC*
� CH � H*C*+ I], (3-47)

whereΦ = HH*+ σ2I. Since J is quadratic inC, we can complete the square:

J(C) = tr[(C � H*Φ� 1)Φ(C � H*Φ� 1)* + I �  H*Φ� 1H]. (3-48)

For σ2 > 0, Φ is positivedefinite,soΦ�

�

exists.TheC thatminimizesJ is givenby (3-32):

CMMSE  = H*(HH* + σ2I)�

�

, (3-49)

and the correspondingminimum-MSE sum is Jmin = tr[Im
� H*Φ� 1H]. Applying the

matrix inversion lemma,16 we obtain

CMMSE = H*[σ� 2Im
� σ� 2H(σ� 2H*H+ In)� 1H*σ� 2] (3-50)

= [σ� 2H*
� σ� 2H*H(σ� 2H*H+ In)� 1H*σ� 2]. (3-51)

Right-factoring(σ� 2H*H+ In)� 1H*σ� 2 yields

CMMSE = [(σ� 2H*H+ In) � σ� 2H*H](σ� 2H*H+ In)� 1H*σ� 2, (3-52)

which simplifies to (3-33):

CMMSE = (H*H + σ2In)� 1H*. (3-53)

16. (A� 1 + BCD)�
�

 = A � AB(DAB + C�
�

)�
�

DA.
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An alternative expression for the minimum-MSE sum is then given by

Jmin = tr[I � H*Φ� 1H] (3-54)

= tr[I � (H*H + σ2In)� 1H*H] (3-55)

= tr[(H*H + σ2In)� 1(H*H + σ2In)� 1H*H] (3-56)

= σ2tr(H*H+σ2In)� 1. (3-57)

Observe that (3-33) or (3-53) also holds for σ2 = 0; it reduces to the minimum-norm

zero-forcing detector:

CZF = (H*H)� 1H* ≡ H† . ❏ (3-58)
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APPENDIX 3-2: ON THE CONVERGENCE OF (3-25) AND (3-20)

In this appendixwe presentpartial heuristic evidence that the recursion k + 1

= kR λ(Gyk → yk) of (3-25), whereG is definedby (3-24), converges to a valid left

factorU of a channelSVD H = USV*. Viewing therecursion k + 1 = R λ(Gyk → yk)* k

of (3-20),whereG is definedby (3-19),asa specialcaseof (3-25),we alsoarguethat it

converges to a valid signal-noisesubspace-separationmatrix Θ of the form given by

(3-15).

Thepartial rotationR λ definedby (3-20)and(3-21) is a functionof thenormalized

innerproductp = , wherez = λGy + (1 – λ)y (wherewe have suppressedthesub-

scriptsk). Weconsiderfirst thecasewhenλ = 1, sothatz = Gy, andp = . Observe

thatbecauseG is real,p is real;p canbeinterpretedsimplyasp = cos(θ), thecosineof the

angleθ betweenGy andy. Certainlyif p is identically1, thenR = I, andtherecursionof

(3-25)or (3-20)stops.We arguethat theserecursionsseekto minimizeθ, or equivalently

to maximizep. We furtherpostulatethatif theexpectedinnerproduct(unnormalized)of y

andGy definedby β = E( y*Gy) is maximized,thentheserecursionsstoponaverage.This

argumentin factappliesfor any loop gain 0 < λ < 1, becausemaximizingE( y*z), where

z = λGy + (1 – λ)y, is equivalentto maximizingE( y*Gy). This follows from theobserva-

tion thatE( y*z) = λE( y*Gy) + (1 � λ)E[ y 2], andE[ y 2] is independent of or .

We now show that for therecursionof (3-25),theexpectedinnerproductβ is maxi-

mizedonly by valid left factorsU in achannelSVD, andthatfor therecursionof (3-20),β

is maximizedby valid subspaceseparatorssatisfying(3-15).Wedenotethefront-endrota-

Û

Û

Θ̂ Θ̂

y∗z
y z-------------------

y∗Gy
y Gy-------------------------

Û Θ̂
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tion genericallyasQ, whetherintendedasan estimateof Θ or U*. The outputy of the

rotator can then be concisely expressed as

y = QUSV*x + Qn. (3-59)

Observe thattheunitarymatricesV* andQ havenoeffecton thesecond-orderstatisticsof

x andn. Hence, we can further simplify (3-59) as

y = TS  + , (3-60)

whereT = QU, = V*x, and = Qn. Theexpectedinnerproductof Gy andy canthen

be expressed as follows:

E( y*Gy) = E tr[ (GTS  + G )(TS  + )*] (3-61)

= tr(GTDT* + σ2G), (3-62)

where D = SS*, and where we have usedthe independenceof the signal and noise.

Becausethenoisetermis irrelevant,it sufficesto maximizetr(GTDT*). Wecanshow that

this termis upperbounded:tr(GTDT*) ≤ tr(GD). Equivalently, we canshow that thefol-

lowing cost function is non-negative:

J(T) = tr(GD
�

� tr(GTDT*) ≥ 0. (3-63)

Let gi anddj denotethei-th andj-th diagonalelementof G andD, respectively, andlet ti, j

denote the(i,j)-th element ofT so that

J = � . (3-64)

With some algebraic manipulation, we can expressJ as

J = � . (3-65)

x̃ ñ

x̃ ñ

x̃ ñ x̃ ñ

gidi
i

∑ gid j ti j,
2

j
∑

i
∑

gidi 1 ti i,
2

–( )
i

∑ gid j ti j,
2

j i≠
∑

i
∑
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Substituting 1�
�
ti , i|

2 =  produces

J = � (3-66)

= � (3-67)

= . (3-68)

Theinnersummationcanbeexpressedastwo summations,onefor j > i, theotherfor j < i,

as follows:

J = . (3-69)

Exploiting the fact that |ti , j|
2 = |tj , i|

2 andreversingthe rolesof i and j in the second

double summation produces

J = (3-70)

J = . (3-71)

Observe that |ti , j|
2 ≥ 0, di

� dj ≥ 0, andgi
� gj ≥ 0 ∀ j > i for G definedaccordingto

either(3-19) or (3-24). It follows that J(T) ≥ 0 with equalityif andonly if |ti , j|
2 = 0 ∀

(i , j) correspondingto distinctelementsdi ≠ dj anddistinctelementsgi ≠ gj. If di = dj or gi

= gj, thenthecorrespondingterm|ti , j|
2 is unconstrained;it cannotcontributeto thecost.

Therefore,if G satisfies(3-24), then T has the form of an SVD ambiguity, given by

Lemma3-1,and is a valid U. Similarly, if G satisfies(3-19),thenT hastheform of a

subspace-separator ambiguity, given by Lemma 3-3, and  is a valid Θ. ❏

ti j,
2

j i≠∑

gidi ti j,
2

j i≠
∑ 

 
i

∑ gid j ti j,
2

j i≠
∑

i
∑

gidi ti j,
2

j i≠
∑

i
∑ gid j ti j,

2

j i≠
∑

i
∑

gi di d j–( ) ti j,
2

j i≠
∑

i
∑

gi di d j–( ) ti j,
2 gi di d j–( ) ti j,

2

j i<
∑

i
∑+

j i>
∑

i
∑

gi di d j–( ) ti j,
2 g j di d j–( ) ti j,

2

j i>
∑

i
∑–

j i>
∑

i
∑

gi g j–( ) di d j–( ) ti j,
2

j i>
∑

i
∑

Û
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C H A P T E R 4

T H E W H I T E N - R O T A T E
D E T E C TO R

USEFUL STRATEGY for blind multiuser detection is to decomposethe

probleminto two smallertasks:whitening androtation. Whitening,in thecontext

of (3-1), is simply transformingthereceiverobservationvectorinto onewhosecovariance

is the identity. Thus,the whiteningstepexploits only second-orderstatistics,and it can

easilybe implementedblindly. Therotationstepcanbe implementedby a unitarymatrix

chosento restoresomehigher-order statisticalpropertyof the channelinput. It is well

known that the whiten-rotatestructurecan perfectly invert a noiselesschannel[129].

Batchtechniquesbasedon theideawereproposedin [108,130,131],andanadaptivealgo-

rithm for noiseless channels was presented in [116].

Following the whiten-rotatestrategy, andagain restrictingattentionto memoryless

channels(3-1),wedefineacanonical whiten-rotate detector, whichminimizestheMSEof

all usersamongdetectorsin its class.In section4.1,we describethebasicstructureof the

detectorand analyzeits performanceand properties.We show that the whiten-rotate

detectoris informationlosslessandoptimally near-far resistantwith performanceclosely

approximatingthat of the MMSE detector. In section4.2, we definean alternative struc-

turefor thedetectorbasedon subspaceprojection.In section4.3,we detailadaptive blind

A
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implementationsof thesestructuresusingspatiallinearpredictionandthesubspace-sepa-

rationalgorithmof chapter3. Theimplementationswe describeoffer a goodcompromise

between complexity and convergence speed. We include simulation results for a

linear-antenna-arraysystem and a synchronousCDMA system. We generalizethe

whiten-rotatedetectorpresentedhereto channelswith memory in chapter6. (Much of

chapter4 appears also in [132,133].)

4.1 Whiten-Rotate Detection

In thecontext of thesystemof (3-1),ann × m matrixC is saidto beawhitener if the

autocorrelationof zk = Crk is theidentitymatrix,CΦrC* = I, whereΦr = HH* + σ2I. We

define the whiten-rotate (WR) detector as the whitener with minimal MSE.

Definition 4-1. Thecanonicalwhiten-rotatedetectorCWR for thechannelof (3-1)

is then × m whitener that minimizes the MSE sumE[ Crk
� xk

2].

Any shortwhitenerC of dimensionn × m canbeexpressedasthefirst n rows of a

larger whitener B of dimension m × m; in particular, we can write C = JB, where

J = [In 0] is an n × m truncationmatrix, and whereBΦrB* = Im. Recall that, for any

givenm × m whiteningmatrix W, every otherwhiteningmatrix B canbeexpressedin the

form B = QW for somem × m unitarymatrix Q [121]. Thus,givenany particularm × m

whiteningmatrix W, we canexpressevery n × m whitenerasC = JQW for someunitary

matrix Q. This suggestsa three-stageimplementationof the whiten-rotatedetector, as

depicted in Fig.4-1.
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Observe from (3-32) that the MMSE detectorcan be expressedas CMMSE =

H*W*W = (WH)*W, whereweusetheidentityW*W = Φr
�

�

for any whitenerW. Thus,the

MMSE detectorcould be implementedby following a whitenerW by the n × m filter

(WH)*. However, by its definition thewhiten-rotatedetectormustfollow a whitenerby a

matrix of theform JQ. It canbeshown that,ratherthan(WH)*, thebestsuchfilter (mini-

mizing total MSE) is the uniqueso-calledpolar factorof (WH)* [134], which is simply

(WH)* with its singular values replaced by unity:

JQ = JT * *, (4-1)

where and are(m × m andn × n) unitary factorsin anSVD of WH = *. Note

thatQ satisfies (4-1) if and only if it is of the form:

Q = *, (4-2)

whereVN is an arbitraryunitary matrix of dimensionm � n. The rotatorQ of (4-2) per-

formstwo tasks.First, it playstheroleof thesubspaceseparatorof chapter3 by removing

all signalenergy from thelastm � n componentsof its output.Second,it alsoprovidesthe

rk
xk H

Figure 4-1. The structure of the whiten-rotate detector as applied to a

memoryless multiuser channel.
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bestunitaryseparationof userswithin thesignalspace.In otherwords,Q separatessignal

from noise, and signal from signal.

The following lemma summarizes the form of the whiten-rotate detector.

Lemma 4-1. The whiten-rotatedetectorof Definition 4-1 is unique,and it canbe

expressed in three equivalent ways:

CWR = JQW (4-3)

= VJ(SS* + σ2I) −1/2U* (4-4)

= V( 2 + σ2I) −1/2JU*. (4-5)

In (4-3), W is any m × m whitener(satisfyingWΦrW* = I), Q satisfies(4-2), and

J = [I 0]. In (4-4) and (4-5),H = USV* is an SVD,and = JS.

Proof: See Appendix 4-1.

Using this lemma, we derive several properties of the whiten-rotate detector.

Property 4-1. The whiten-rotate detector is information lossless.

This follows from (4-5) by observingthatJU* discardsno signalenergy, andthatbothV

and( 2 + σ2I) �

� � �

 are invertible.

Property 4-2. The whiten-rotatedetectorapproachesthe zero-forcing(or decorre-

lating) detector in the limit as the noise energy goes to zero:

WR = V −1JU* = VS†U* = H†. (4-6)

S̃

S̃

S̃

C
σ 0+→
lim S̃
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Property 4-3. The whiten-rotate detector is optimally near-far resistant [53].

Optimal near-far resistance is inherited from the zero-forcing detector.

Lemma 4-2. The MSE for the i-th userof the whiten-rotatedetectorandMMSE

detector, respectively, can be expressed as

MSEi
WR = 2vi

*[I − ( 2 + σ2I) −1/2 ]vi , (4-7)

MSEi
MMSE = σ2vi

*( 2 + σ2I)−1vi , (4-8)

wherevi is thei-th column ofV*.

Proof: See Appendix 4-2.

Using this lemma, we arrive at the following property of the whiten-rotate detector.

Property 4-4. TheMSEof thewhiten-rotatedetectorapproachesthatof theMMSE

detector in the limit as the noise energy goes to zero:

 = 1. (4-9)

Proof: Theproof follows from (4-7) and(4-8) anda straightforwardapplicationof

l’H pital’s rule.

In the following experiment,we use(4-7) and(4-8) to comparethe theoreticalper-

formance of the whiten-rotate detector to that of the MMSE detector.

S̃ S̃

S̃

σ 0+→
lim

MSEi
WR

MSEi
MMSE

-------------------------------

ô
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Experiment 4-1. Givena receiver with m = 10 sensors,we considertwo cases:n =

2 usersand10 users.In Fig. 4-2, we plot MSE1 versusSNR1 = | hj,1 | 2 ⁄σ2,

averagedover 1000channelsof dimension10 × n. Thecoefficientsof eachchannel

areselectedindependentlyfrom a zero-mean,unit-variance,complex Gaussiandis-

tribution, and then the channelcolumnsarescaledso that all odd-numberedusers

have energy 10 dB below thatof even-numberedusers.Thecurvesfor the two-user

caseshow that even for a low SNR1 of −10dB, user1 incursonly a modest2-dB

MSE penaltyfor usingthe WR detectorinsteadof the MMSE detector. Moreover,

for SNR1 > 10dB, the performancedifferencebetweenthe WR andMMSE detec-

tors is negligible. For theten-usercase,theperformanceof bothdetectorsdegrades;

however, theperformancedifferencebetweenthetwo detectorswidensonly slightly.

ThepreviousexperimentsuggeststhattheMSEperformanceof thewhiten-rotatedetector

is nearto thatof theMMSE detector, especiallyfor very tall channels(m >> n) andhigh

signal-to-noise ratios.

4.2 A Project-First Architecture

We canusethesubspaceseparatorof chapter3 to defineanalternative structurefor

thewhiten-rotatedetector. It is oftendesirableto separatesubspacesbeforewhitening,i.e.

at the receiver front end,by immediatelyprojectingthe m-dimensionalreceiver observa-

tion ontothen-dimensionalsignalspaceusinga unitarymatrix Θ. Theadvantagesof this

project-firstarchitecturearetwo: first, it allowsall subsequentsignalprocessingto operate

in n dimensionsrather than m, which reducesthe receiver complexity; and second,it

j 1=

m∑
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Figure 4-2. A comparison of the whiten-rotate detector with the minimum-MSE

detector: SNR versus MSE.
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reducesthe numberof receiver parameters,which often leadsto fasterreceiver conver-

gence.

Recallthatfor thechannelof (3-1),a unitarysubspace-separatingmatrix mustbeof

theform Θ = U*, whereUS andUN arearbitraryunitarymatricesof dimensionn

andm � n respectively, andwhereU is the left factorof a channelSVD H = USV*. Fol-

lowing asubspaceseparatorby a truncationmatrix J = [I 0] producesthesquarechannel

of Fig.3-1(b) with reduced observation:

k = xk + k, (4-10)

where k = JΘrk, = US V*, andE[ k k
*] = σ2I. Then componentsof thenew obser-

vationvector k form asetof sufficientstatisticsfor estimatingxk. Thus,thewhiten-rotate

detectorof section4.1 canbe appliedto this new channelwithout compromisingperfor-

mance.

Theorem 4-1. The cascadeconsistingof a signal-subspaceprojectorJΘ followed

by a whiten-rotatedetector WR designedfor the reducedchannel = JQH pre-

cisely implements the WR detectorCWR designed for the original channelH.

Proof: Theproof appliesto theMMSE (3-34)andZF (3-38)detectorsaswell asto

the WR detector(4-5), since all can be expressedin terms of a channelSVD

H = USV* as C = VDJU*, where D = ( 2 + σ2I) �

�
⁄ 2 for the WR detector,

D = *( 2 + σ2I)�

�

for the MMSE detector, andD = S† for the ZF detector. We

needto show that the cascadeof JΘ and an n × n detector designedfor the

reducedchannel is equivalentto thesametypeof detectordesignedfor theorig-

US 0
0 UN

r̃ H̃ ñ

r̃ H̃ S̃ ñ ñ

r̃

C̃ H̃

S̃

S̃ S̃

C̃

H̃
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inal channelH. In otherwords,we needto show that JΘ = C. But basedon the

SVD = US V* of the reduced channel, we have = VDUS
*, so that

JΘ = VDUS
*J U* = VDJU*= C. ❏

4.3 Blind Adaptive Implementations

In this sectionwe describeadaptive algorithmsfor blind implementationof the

whiten-rotatordetector. The adaptive whiteneris basedon spatiallinear prediction,and

the adaptive rotator is based on a simple modification of the MPLL algorithm.

4.3.1 An Adaptive Whitener

A simpleway to whitenis to useadaptive linearprediction.Supposewewish to pre-

dict the i-th componentrk
(i) of rk usinga linear combinationof the “preceding”compo-

nentsrk
(1) … rk

(i � 1), yielding an estimate:

k = Prk, (4-11)

where P is a strictly lower-triangularmatrix of predictioncoefficients. The prediction

error is ek = (I � P)rk. Thebestpredictorin the least-mean-squaresense,i.e. minimizing

E[ ek
2], is closelylinkedto theCholesky factorizationof thecovariancematrixΦr of rk.

Lemma 4-3. Generalized Cholesky Factorization. A Hermitian matrix Φ of

dimensionm × m and rankn ≤ m can be factored in either of two ways:

Φ = GG*, (4-12)

= MD2M*, (4-13)

C̃

H̃ S̃ C̃

C̃ US 0
0 UN

r̂
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whereG = MD is a uniquem × m lower-triangularmatrix with real, non-negative

diagonalelements,whereD = diag(G), andwhereM is lower triangularwith ones

on themaindiagonal(monic).Thematrix M is uniqueif andonly if thefirst m � 1

rows ofΦ are linearly independent.

Proof: See Appendix 4-3.

Theorem 4-2. Linear Prediction. Let r bea randomm × 1 vectorwith covariance

matrix Φ = E[ rr*], andlet e = (I � P)r denotetheerrorof a linearpredictor, where

P is strictly lower triangular. TheP that minimizesE[ e 2] is

P = I �  M �

�

, (4-14)

whereM is any valid monic factorin thegeneralizedCholesky factorization(4-13)

of Φ. Thepredictoris uniqueif andonly if M is unique,or equivalently, if andonly if

the firstm � 1 rows ofΦ are linearly independent.

Proof: See Appendix 4-4.

As longasthenoisevarianceis nonzero,thecovarianceΦr = HH* + σ2I is full rank

andtheCholesky factorization(4-13)andcorrespondingpredictor(4-14)arebothunique.

(SeeAppendix4-5 for a discussionof the noiselesscase.)In practice,the estimateof P,

denoted , can be adapted according to the least-mean-square algorithm:

k + 1 = ( k + µpekrk
*) ⊗ L, (4-15)

whereek = rk
�

krk is thepredictionerror, whereµp is a stepsize,where‘⊗’ denotesa

component-wise(Schuror Hadamard)product,andwhereL is a mask,with onesbelow

P̂

P̂ P̂

P̂
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the main diagonalandzeroselsewhere,that constrains to be strictly lower triangular.

We remarkthat,because(4-15) is derived from a quadraticcostfunction,convergenceto

(4-14) is guaranteed for a sufficiently small step sizeµp.

After convergesto (4-14), the covarianceof the resultingerror ek = (I � P)rk is

diagonal:Φe = D2. Therefore,a diagonalgain matrix A = D�

�

converts the prediction

error ek into the white signalvk = Aek with covariancematrix Φv = I. This gain matrix

can be implementedadaptively by a bank of independentscalarautomaticgain-control

(AGC) loops,designedto force the energy at eachoutputto unity. We proposea simple

first-order loop for adapting each component of an estimate= diag( , …, ):

= | � µa(|vk
(i)|2 � 1)|, (4-16)

wherevk
(i) is the i-th componentof vk = kek. In summary, theproposedadaptive whit-

ener is k= k(I �
k), where and are adaptedaccordingto (4-15) and (4-16),

respectively.

4.3.2 An Adaptive Rotator

Recall the structure of the whiten-rotate detector of Fig. 4-1: C = JQW. Let

vk = krk denotethewhiteneroutputwith adaptedaccordingto theprevioussection.

It remainsto specifyanadaptive algorithmto estimateQ of (4-2).Let therotator bean

estimateof Q, andlet yk = kvk denotethecorrespondingrotatoroutput.We canmodify

theMPLL to adaptively implementQ. We needonly modify thedecisiondevice. Let k

denote anaugmented decision vector:

k = yk. (4-17)

P̂

P̂

Â Â
1( )

Â
m( )

Âk 1+
i( )

Âk
i( )

Â

Ŵ Â P̂ P̂ Â

Ŵ Ŵ

Q̂

Q̂

x̂

x̂ dec( ) 0
0 0
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For i ≤ n, k
(i) = deci( yk

(i)) is thepoint in theconstellationof useri closestto yk
(i), but for

i > n, k
(i) is set to zero.In effect, the decisionvector k is definedasis therewerem

userswith the last m � n of thesetransmittingall zeros.The rotator k can then be

adapted according to the recursion:

k+1 = R λ( k → yk)* k

= k+ R λ( k → yk)*− I k. (4-18)

The modified MPLL is illustrated in Fig.4-3.

As we discussedin section3.4 of thepreviouschapter, thereareunavoidableambi-

guitiesthatcannotberesolvedby any fully blind algorithm.Empiricalevidencesupports

the conjecture that the rotator converges to

 = , (4-19)

x̂

x̂ x̂

Q̂

Q̂ x̂ Q̂

Q̂ x̂ Q̂

Figure 4-3. An adaptive algorithm for implementing the MMSE rotator of (4-2).

k

Rotation
Detector

vk

λ

Q̂ dec( ) 0
0 0

•
yk

x̂k

Q̂ K 0
0 Im n–

Q
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whereQ is given by (4-2), andwhere,asin (3-36),K = KPKR is the n × n productof a

permutation and rotation ambiguity.

4.4 Experimental Results

We concludewith several computerexperiments.We usethe project-firstarchitec-

ture as depicted in Fig. 4-4. The subspace-separationalgorithm, already detailed in

section3.2 of the previous chapter, is usedto produce k. We then apply the adaptive

whitenerandrotatorof sections4.3.1and4.3.2to the reducedobservation k. The first

experimentdemonstratesconvergenceof theentireproject-firstWR detector;in particular,

it shows the contributionsto MSE from eachof the adaptive stages.The secondexperi-

mentappliesthe WR detectorto an array-processingproblemsimilar to that in Experi-

ment 3-3. The last experiment considers a synchronous CDMA system.

Experiment 4-2. Random Gaussian Channels. We now demonstrateconvergence

of the entireproject-firstalgorithmof Fig. 4-4. We considertwo users,eachtrans-

mitting 16-QAM with 20-dB SNR.Fig. 4-5 shows MSE1 = E[|zk
(1)

� xk
(1)|2] asa

functionof time, averagedover 1000realizationsof input, noise,anda 10 × 2 com-

plex Gaussianchannel.There are five curves in all. The bottom curve, labeled

MMSE, is MSE1 for the ideal MMSE equalizer. The initial subspaceseparatoris

adaptive for the curve above that, but all remainingfunctionsare idealized.Simi-

larly, theothercurvesarelabeledto indicatewhich componentsof thealgorithmare

adaptive. Everythingis adaptive for the top curve, with theeffect of theambiguous

complex permutationmatrix K removed for eachtrial. Thesecurves illustrate the

MSEcontributedby eachstageof theproject-firstalgorithm.Thesubspaceseparator

r̃

r̃
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convergesvery quickly andhaslittle impacton MSE.ThelinearpredictorandAGC

bank also converge quickly, and the receiver eventually closely approximatesthe

MMSE solution.(The parametersusedin the receiver updatesareasfollows: λ1 =

0.025in (3-23),µP = 0.03(2�

���
250) in (4-15),µA = 0.02(2� k/300) in (4-16),andλ2 =

0.8(1+ k/200) in (4-18).)

Experiment 4-3. A Linear Antenna Array. Considera 20-sensorlinear antenna

arraywith half-wavelengthspacing,andsupposetwo signalsareincidentat angles

θ1 = 0° andθ2 = 20° (measuredfrom broadside).The channelsaregeneratedasin

Experiment3-3 with SNR1 = 15 dB, andSNR2 = 35 dB. Fig. 4-6(a)shows a plot of

MSE1 versustime,averagedover 100input andnoiserealizations,with theeffect of

thecomplex permutationremoved.Fig. 4-6(b)shows constellationsfrom time 4000

to time 5000 from the last trial. Once again, we see quick convergence to

near-MMSE performance.(The parametersusedin the receiver updatesareasfol-

lows: λ1 = 0.8/(1 + k/200)in (3-23),µP = 0.1/(1 + k/250)in (4-15),µA = 0.2(2
� k/

1000) in (4-16), andλ2 = 0.8(1+ k/150) in (4-18).)

Experiment 4-4. Synchronous CDMA. Consider now a synchronous

direct-sequence-CDMAapplicationwith threeinterfering users,eachtransmitting

16-QAM. Let ci ∈{ ±1 }32 denotethebinarysignaturesequencewith length32of the

i-th user. If the transmitterpulse-shapefilters areNyquist, and the receiver usesa

chip-rate-sampledmatchedfilter followed by a serial-to-parallelconverter, the

resulting discrete-timechannelis given by (3-1) with H32 × 3 = [c1 c2 c3]B,

whereB3 × 3 = diag(B1, B2, B3) is a matrix of signal amplitudes.The signature

sequenceshave normalizedcorrelationsρi , j = ci
Tcj of ρ1,2 = −1/8, ρ1,3 = −1/4,

1
32

----------

1
32
------
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Figure 4-5. Convergence of the project-first adaptive algorithm of Fig. 4-4,

showing contributions to MSE from each stage.

λ1 = 0.025

µP = 0.03(2
�

�
/250)

0.8(1 + k/200)
µA = 0.02(2–k/300)
λ2 =

1000 trials

m = 10 sensors
n = 2, 16-QAM users
Gaussian channels



87

Figure 4-6. The adaptive project-first WR detector applied to a linear antenna

array: (a) the MSE learning curve; (b) constellations from the last trial, baud

4000 to 5000.
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CDMA system: (a) an MSE learning curve; (b) constellations from the last trial,

baud 4000 to 5000.
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andρ2,3 = 1/4. Fig. 4-7(a)shows an MSE learningcurve, averagedover 100 input

andnoiserealizations,with SNR1 = SNR2 = 20 dB andSNR3 = 40 dB. We seethat

thealgorithmconvergesquickly, eventuallycloselyapproximatingtheMMSE solu-

tion. Fig. 4-7(b) shows constellationsof the last 1000 symbolsfrom the last trial.

(Thereceiver parametersareλ1 = 0.8/(1 + k/500) in (3-23),µP = 0.06(2�

���
1000) in

(4-15),µA = 0.05(2
�

���
1100) in (4-16), andλ2 = 0.5(1+ k/1000) in (4-18).)

4.5 Chapter Summary

We have defineda multiuserdetectorbasedon a canonicalwhiten-rotatestructure

that is informationpreserving,optimally near-far resistant,andhasnear-MMSE perfor-

mance.The WR detectoris in fact the whitenerwith minimal MSE. We have presented

two equivalent architecturesfor the detector, namely the whiten-first and project-first

architectures,illustratedin Figs.4-1 and4-4, respectively. We have detailedblind imple-

mentationsfor each.For thewhiten-firstapproach,thereceiverobservationrk is whitened

via thecascadeof a prediction-errorfilter I � anda diagonalgain matrix , where

and are updatedaccordingto (4-15) and (4-16), respectively. The whiteneroutput is

thenrotatedby , updatedaccordingto (4-18).For theproject-firstapproach,theobserva-

tion rk is projectedontothesignalspaceto producethereducedobservation k = J krk,

where is updatedvia (3-23).Thewhiteningandrotationalgorithmsarethenappliedto

k. In either architecture,the second-orderstatistics of the transmittedsignals are

exploited first. The higher-order statisticsare exploited only at the last step (4-18) by

finding a unitary matrix that bestrestoresthe discretenatureof the channelinputs.The

P̂ Â P̂

Â

Q̂

r̃ Q̂

Q̂

r̃
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benefitsof this statisticallydecoupledapproachandof linear predictionin particularare

dramatically illustrated in the next chapter.
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APPENDIX 4-1: PROOF OF LEMMA 4-1

Substitutingan SVD H = USV* into Φr = HH* + σ2I yields Φr = UΛU*, where

Λ = SS* + σ2I is diagonal. It follows that W = Λ �

�
⁄ 2U* is a whitener, satisfying

WΦrW* = I, and that WH = Λ−1 ⁄ 2SV*. Replacingthe singularvaluesof WH by unity

producesits polar factorJTV*. From section4.1, the WR detectoris thenCWR = JQW,

where JQ is the polar factor of (WH)* , or JQ = VJ; thus, we have

CWR = VJW = VJΛ �

�
⁄ 2U*. This proves (4-4). If we define the diagonal matrix

= JΛJT = ( 2 + σ2I)�

���
2, then (4-5) follows from (4-4) and the identityJΛ = J.

We now establishby contradictionthe uniquenessof the WR detector. Suppose

C1 = P { W1H }*W1 and C2 = P { W2H }*W2 denotetwo distinct WR detectorsderived

from whitenersW1 andW2, respectively, whereP { A} = UAVA
* denotesthepolarfactorof

A = UASAVA
*. SinceW1 and W2 areboth whiteners,thereexists a unitary Q suchthat

W2 = QW1. It follows thatC2 = P {QW1H }*QW1 = (QP { W1H })*QW1 = P { W1H }*W1 =

C1, a contradiction. ❏

Λ̃ S̃ Λ̃
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APPENDIX 4-2: PROOF OF LEMMA 4-2

Using (4-5), we can express the error of the whiten-rotate detector as

ek = (CWRH − I)xk + CWRnk

= V[ − I]V*xk + V JU*nk, (4-20)

where = ( 2 + σ2I)�

���
2. The covarianceΦe = E[ekek

*] of this error is given by

Φe = V[ − I]2 V*+ σ2V 2V*

 = V[ 2 2 + I − 2 + σ2 2]V*

 = 2V[I − ]V*. (4-21)

The MSE of thei-th userE[|ek
(i)|2] is then given by (4-7).

Similarly, using (3-33), we can express the error of the MMSE detector as

ek = (CMMSEH − I)xk + CMMSEnk

= [(H*H + σ2I) �

�

H*H − I]xk + (H*H + σ2I) �

�

H*nk

= (H*H + σ2I) �

�

[H*H − (H*H + σ2I)]xk + (H*H + σ2I) �

�

H*nk

= − σ2V 2V*xk + V 2S*U*nk. (4-22)

The covariance of this error is

Φe = V[σ4 4+ σ2 4 2]V*

= σ2V 2V*, (4-23)

and the corresponding MSE of thei-th user is then given by (4-8).❏

Λ̃ S̃ Λ̃

Λ̃ S̃

Λ̃ S̃ Λ̃

Λ̃ S̃ Λ̃ S̃ Λ̃

Λ̃ S̃

Λ̃ Λ̃

Λ̃ Λ̃ S̃

Λ̃
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APPENDIX 4-3: PROOF OF LEMMA 4-3

Given a Hermitian matrix Φ of dimensionm × m and rankn ≤ m, thereexists a

square-rootmatrix S suchthatSS* = Φ. SinceΦ hasrankn, therows { s1, s2, …, sm } of S

spanann-dimensionalspaceS. PerformingtheGram-Schmidtorthonormalizationproce-

dureon the orderedrows of S producesa setof m row vectors{ v1, v2, …, vm }, exactly

m � n of which arezero,andn of which form an orthonormalbasisof S. Thus,we can

write

S = FV, (4-24)

where the rows ofV are the vectorsvi, 1 ≤ i ≤ m, andF is a Gram matrix:

F= , (4-25)

with . Thereexists a setof m − n unit-normvectors{ 1, 2, … m � n}

orthogonalto then non-zerorowsof V. Let beaunitarymatrix formedby replacingthe

zerorows of V with this setof vectors.Becausethe columnsof F multiplying the zero

rows of V in (4-24)arealsozero,it follows thatS = F . BecauseF mayhave complex

diagonalelements,we defineG = F andU = . It follows thatS

= GU and that

Φ = GG*. (4-26)

F1 1,

F2 1, F2 2,

Fm 1, Fm 2, … Fm m,

… …

0

Fi j, si v j,〈 〉= ṽ ṽ ṽ

Ṽ

Ṽ

diag
Fi i,
Fi i,

------------- 
  Ṽ diag

Fi i,
Fi i,
------------- 

 
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Thefactorizationin (4-26)is uniquebecausefor any othersquareroot ≠ S, thereexists

a unitary matrixQ such that  = SQ = GUQ = G , where is also unitary.

The factor G can be decomposedas G = MD, whereM is lower triangularand

monic, and whereD = diag(G), such that

Φ = MD2M*. (4-27)

If any of the first m − 1 diagonalelementsDj ,j, wherej ∈ {1, …, m � 1} of D, arezero,

thentheelementsMi , j for i > j of M arenot unique.Therefore,M is uniqueif andonly if

the first m − 1 rows of S arelinearly independent,or equivalently, if andonly if the first

m − 1 rows (or columns) ofΦ are linearly independent.❏

S̃

S̃ Ũ Ũ
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APPENDIX 4-4: PROOF OF THEOREM 4-2

Givena strictly lower-triangularpredictorP andpredictionerrorek = (I � P)rk, the

mean-square errorJ = E[ ek
2] can be expressed as

J = tr[(I � P)Φ(I � P)*], (4-28)

whereΦ = E[ rkrk
*]. Applying the factorization in (4-13) yields

J = tr[(I − P)MD2M*(I − P)*]. (4-29)

Because(I − P)M is monicandlower triangular, it canbeexpressedasI + B, whereB is

strictly lower triangular. Thus, the cost function in terms of B is

J = tr[(I + B)D2(I + B)*]

= tr[D2 + BD2B* + BD2 + D2B*]. (4-30)

BecauseB is strictly lower triangular, thetracesof BD2 andD2B* arebothzeroin (4-30).

Furthermore,thetraceof D2 is independentof B. Thus,it sufficesto minimizetr(BD2B*),

which is clearlyaccomplishedby any strictly lower-triangular in the left null spaceof

D. The best predictor can thus be expressed as

P = I − (I + )M−1, (4-31)

with sodefined.Observe that(I + )M−1 is bothmonicandlower triangular, andthatit

diagonalizesΦ:

[(I + )M−1]Φ[ (M−1)*(I + )*] = (I + )D2(I + )*= D2. (4-32)

Hence,for any inversegeneralizedCholesky factorM−1, theproduct(I + )M−1 ≡ −1 is

the inverse of some other Cholesky factor. Thus (4-31) reduces to (4-14). ❏

B̃

B̃

B̃ B̃

B̃ B̃ B̃ B̃

B̃ M̃
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APPENDIX 4-5:

A WHITEN-ROTATE DETECTOR FOR NOISELESS CHANNELS

Both the whiten-rotatestructureof section4.1 and its adaptive implementationof

section4.3 arederivedundertheassumptionof nonzeronoise.Althougha goodassump-

tion in practice,thespecialcaseof zeronoiseis alsoof interestbecauseit providesinsight

into the behavior of the whiten-rotatedetectorin the limit of high SNR. Therefore,this

appendixcontainsa brief summaryof a whiten-rotatedetectorfor channelswithout noise.

We emphasizethat the discussionthat follows applies to the whiten-first strategy of

section4.1 only; theproject-firststrategy of section4.2 canbeappliedto noiselesschan-

nels without modification.

Without noise, the covariance matrix of the observation vector rk in (3-1) is

Φr = HH* with rank n. Therefore,if the channelis tall (m > n), theredoesnot exist an

m × m whiteningmatrix W. Consequently, thewhiten-firstapproachillustratedin Fig. 4-1

anddescribedby (4-3) is not valid. Nevertheless,theredoesexist a short n × m whitener

W, satisfying WHH*W* = I, and this identity implies that WH = T for some unitary

matrix T. Hence,thewhiten-rotatefilter T*W achieveszeroMSE,which is certainlymin-

imal. In fact,any zero-forcingdetectorof the form CZF = H† + N, whereN*∈ null(H*),

canbeinterpretedasa whiten-rotatedetectorwhenit is factoredaccordingto theQR-fac-

torization theorem[121]: CZF = QW. Thus, in the absenceof noise,the whiten-rotate

detector is not unique.

According to (4-13) and(4-14), the least-mean-squarelinear predictionerror ek =

(I � P)rk hasa diagonalcovariancematrix Φe = D2, whereHH* = MD2M* is a general-
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izedCholesky factorization.BecauseH hasrankn, exactlym � n of thediagonalelements

of D arezero,which impliesthat thecorrespondingcomponentsof theerrorsignalek are

identically zero.Clearly we losenothingby discardingthesezeros,therebyproducinga

reducedvector k of dimensionn. Let J denotethen × m matrix thatextractsthenonzero

componentsof ek, so that k = Jek has covariancematrix Φ = JD2J* = 2, where

= JD is a full-rank n × n diagonalmatrix containingall of thenonzerocomponentsof

D. The diagonalfilter �

�

then whitensthe reducederror signal.An n × m whitening

matrix can thus be expressed asW = �

�

J(I � P).

Theprecedingdevelopmentsuggestsa methodfor blind adaptive implementationof

W for thecaseof low noise.Theadaptive predictorof (4-15) is guaranteedto convergeto

a solutionof theform (4-14).After convergence,them � n componentsof theprediction

error that are nearly zero can be discarded.The n remainingerror componentscan be

adaptively scaledaccordingto (4-16). (The MPLL canbe appliedwithout modification

after the whitener.)

ẽ

ẽ ẽ D̃

D̃

D̃

D̃
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C H A P T E R 5

L I N E A R P R E D I C T I O N

HE CONCEPTof using linear prediction(LP) for blind channelidentification

and equalizationoriginatedwith Slock and colleagues[94-96] in the context of

fractionally spacedequalization,wherea fractionally (T/m) spacedsamplerproducesa

baud-spacedSIMO channelof dimensionm × 1. (Recall Fig. 2-5.) Abed-Meraim[91]

usedtheseideasto developanalgorithmfor identificationof SIMO channels.Useof LP

was extendedto tall MIMO channelsby Gorokhov et al. [15][118], DelfosseandLou-

baton[135], andIcartandGautier[119]. All of thesealgorithmsarebatch-oriented,where

a block of datais collectedand usedto estimatean autocorrelationmatrix, and then a

Yule-Walker or similar equationis solved, perhapsby using the Levinson-Durbin[136]

algorithm. In contrast,the techniqueswe detail in this chapterare adaptive with com-

plexity on theorderof LMS or oneof thevariousCMA extensions.Moreover, ourexpress

goal is alwaysconstrainedMMSE detection;that is, our detectorsaredesignedto mini-

mize the MSE of all users subject to a set of architectural constraints.

We broadenconsiderationin this chapterto include channelswith memory, as

describedby (1-1), andwe presenta family of detectorsbasedon linear spatio-temporal

prediction. These detectors can be viewed as extensions of the prediction-based

whiten-rotatedetectorof chapter4; they take theform of a WR detectorprecededby one

T
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or moretemporalprediction-errorfilters.TemporalLP is usedto eliminateor nearlyelim-

inate the channelmemoryprior to applicationof spatialmethods.This approachonce

again conforms to our philosophy of maximal exploitation of second-orderstatistics;

higher-orderstatisticsareexploitedonly at the laststepto estimatea unitarymatrix. The

virtuesof thisapproach,dataefficiency andinsensitivity to thechannelinputdistributions,

are well documented in this chapter.

In section5.1, we discussequivalent representationsfor the FIR channelof (1-1),

includingmoving-average,autoregressive,andothermodels.In section5.2,weextendthe

notionof minimumphaseto MIMO channels.We arguethatalmostall tall MIMO chan-

nelshave thisminimum-phaseproperty. In section5.3,wediscussthenecessaryandsuffi-

cientconditionsfor themodelsof section5.1 to exist. We attemptto develop insight into

thephysicalmeaningof theseconditions.In section5.4,wediscusstemporalpredictionin

a noiselessenvironment.We definethreepredictorarchitectures,eachclosely relatedto

one of the channelmodelsof section5.1. In section5.5, we formally definemultiuser

detectorsbasedon linear prediction.We characterizetheir behavior andperformancein

thepresenceof noise,anddiscussmany of their properties.In section5.6,we detailblind

adaptive implementationsof the detectorsand demonstrateapplications,including an

adaptive fractionally spacedequalizer(FSE)for single-usersystemsusinghighly shaped

signal constellations and a blind multiuser detector for asynchronous CDMA systems.

5.1 Equivalent Channel Models

Weagainconsiderchannelswith memoryasdescribedby (1-1), but examinefirst the

noiseless case, for which the receiver observation is given by
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rk = Hixk � i. (5-1)

We assumethat the channelis strictly tall m > n, and the input sequenceis white:

E[ xkx�
�

� *] = Iδl. Fromlinearsystemtheory, rk is known asa moving-average (MA) pro-

cess,becauseit is aweightedaverageof samplesfrom awhiteprocess.Wemakeoneaddi-

tional assumption:

rank[HM] = rank[H(z)] = n for all z including∞. (5-2)

Including z = ∞ implies that H0 alsohasfull columnrank. Tall FIR channelssatisfying

(5-2) have many remarkableproperties.For example,theoutputof sucha channelis not

only moving average,asin (5-1), but is alsofinitely autoregressive (AR), which, among

otherthings,impliestheexistenceof anFIR inverse.(RecallExample2-3.)This is in stark

contrastto SISO channels,for which an FIR channelcan never have an FIR inverse.

Throughoutthis thesis,weusethelabels“moving average”and“autoregressive” andsim-

ilar termsto refer to thechannelitself, not merelyto its output,becausetheseequivalent

modelsareinnatepropertiesof the channel;the stochasticor deterministicnatureof the

signalshas no relevance.The following sectiondescribesthe first of three equivalent

models for (5-1), all of which are intimately related to linear prediction.

5.1.1 An Autoregressive Channel Model

It is possibleto modela tall MA channel(5-1)satisfying(5-2)by thefeedbackstruc-

ture of Fig.5-1(b). The channel outputrk can be written as

rk = Airk � i + H0xk, (5-3)

i 0=

M

∑

i 1=

N

∑
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wherethefeedbackfilter A(z) = Aiz
� i is square(m × m) andstrictly causal.Sucha

processis calledautoregressive (AR), becausetheoutputcanbeexpressedin termsof its

past.The existenceof this model implies that an FIR filter can invert an FIR channel.

Observe that thetransferfunctionof the linear feedbacksystemis [I � A(z)] �

�

; therefore,

H(z) = [I � A(z)] �

�

H0, or equivalently [I � A(z)]H(z) = H0. As shown by the following

theorem,thememoryN of thefeedbackfilter dependson thechannelmemoryM, but it is

always finite whenm > n.

Theorem 5-1. [15] Let the channelH(z) of (5-1) with m > n satisfy (5-2). If N ≥

, then thereexists an m × m FIR filter A(z) = Aiz
� i with memoryN

such that[I � A(z)]H(z) = H0.

Figure 5-1. Equivalent models for a tall MIMO channel: (a) moving average (MA)

and (b) autoregressive (AR).

i 1=

N∑

Mn
m n–
--------------- i 1=

N∑

xk rk

m × n A(z)

H0

m × m

xk rk

m × n

H(z)

⇔

(a)

(b)
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Proof: [15] We can express[I � A(z)]H(z) = H0 in block-matrix form as follows:

[I � A1 … � AN ]HN+1 = [H0 0m × n(M+N)], (5-4)

whereHN+1 is anm(N+1) × n(M+N+1) block-Toeplitz matrix:

HN+1 = . (5-5)

Subtracting[Im 0m × Nm]H N+1 from both sides of (5-4) yields

[0m× m
� A1 … � AN]HN+1 = �

�
0m× m H1 … HM 0m× Nn ], (5-6)

or equivalently,

[ A1 … AN ]HN = [ H1 … HM 0m× Nn ]. (5-7)

This is a systemof mn(M+N) scalarequationswith m2N unknowns.FromForney

[137], we know that if (5-2) is satisfiedthenHN is full rankfor all N, andtheequa-

tions are linearly independent.Therefore,the systemhas a solution if m2N ≥

mn(M+N), or equivalently if N ≥ . ❏

The coefficients {Ai} of A(z) in (5-3) andTheorem5-1 arecalledAR parameters;

they, togetherwith H0, provide a completedescriptionof thechannel.Likewise,thecoef-

ficients{Hi} of H(z) in (5-1) are calledMA parameters.

Corollary 5-1.1. The coefficients{Ai} of A(z) = Aiz
� i are given by

[ A1 … AN ] = [ H1 … HM 0m × Nn ]H † + V, (5-8)

H0 H1 … HM 0 … 0
0 H0 H1 … HM … 0

0 … 0 H0 H1 … HM

… ……

…

Mn
m n–
---------------

i 1=

N∑
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whereH = HN, andfor any V* ∈ null(H *). Thecoefficientsareuniqueif andonly

if  is an integer andN = .

Proof: The proof follows immediately by verifying that (5-8) satisfies (5-7):

[ A1 … AN ]H = [ H1 … HM 0m × Nn ]H † H + VH

= [ H1 … HM 0m × Nn ]. (5-9)

Thesolutionis uniqueif andonly if null(H *) is trivial, i.e., if andonly if its dimen-

sion is zero:dim[ null(H *)] = mN � n(M+N) = 0, or equivalently, N = is an

integer. ❏

5.1.2 An ARMA Channel Model

It is also possibleto model a tall MA channel(5-1) satisfying(5-2) by a hybrid

autoregressive-moving-average(ARMA) structure.The model is illustrated in Fig. 5-2,

whereHL(z) = Hiz
� i is a truncatedversionof H(z), an FIR filter consistingof the

first L ∈{0, 1, …, M} tapsof H(z), andAL(z) = Aiz
� i is a square(m × m) and

strictly causal feedback filter. The observationrk can thus be expressed as

Mn
m n–
--------------- Mn

m n–
---------------

Mn
m n–
---------------

xk rk

m × n AL(z)

HL(z)

m × m

Figure 5-2. An ARMA model for a tall MIMO channel.

i 0=

L∑

i 1 L+=

N L+∑
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rk =  + Hixk � i. (5-10)

TheARMA modelreducesto theAR modelwhenL = 0. Observe thatthelinearfeedback

systemhasatransferfunctiongivenby [I � AL(z)]–1, which impliesthat[I � AL(z)]H(z) =

HL(z). Again, therequirednumberN of nonzerotapsin thefeedbackfilter is alwaysfinite

whenm > n.

Theorem 5-2. Let the channelH(z) of (5-1) with m > n satisfy (5-2), and let

L ∈{0, 1, …, M}. If N ≥ , then there exists an m × m FIR filter AL(z) =

Aiz
� i such that[I � AL(z)]H(z) = Hiz

� i.

Proof: The proof is similar to that for Theorem 5-1. See Appendix 5-1.

Corollary 5-2.1. The coefficients{Ai} of AL(z) = Aiz
� i are given by

[ AL + 1 … A L + N ] = [ HL +1 … HM 0m × n(L + N)]H † + V. (5-11)

They are unique if and only ifN = .

Proof: See Appendix 5-1.

5.1.3 An Autoprogressive Model

In additionto the MA, AR, andARMA modelsof Fig. 5-1 andFig. 5-2, a tall MA

channel(5-1) satisfying(5-2) can also be modeledas illustratedin Fig. 5-3, wherethe

receiver observation is given by

rk = A
�

� rk + i + HMxk � M. (5-12)

Airk i–
i L 1+=

L N+

∑
i 0=

L

∑

Mn
m n–
---------------

i L 1+=

L N+∑ i 0=

L∑

i L 1+=

L N+∑

Mn
m n–
---------------

i 1=

N

∑
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Weinventthetermautoprogressive (AP) to describethismodelbecausethepresentoutput

is expressedin termsof future outputs;the feedbackfilter A~1(z) = A
�

� zi is strictly

anti-causal.(We denotea negative onestepwith the superscript‘~1’ ratherthan‘–1’ to

avoid confusionwith aninverse.)Althoughthemodelis somewhatunusual,it is in noway

contradictory. The linear feedbacksection[I � A~1(z)] �

�

is anti-causal,yet the overall

channelmodel H(z) = [I � A~1(z)]�

�

HMz � M is causal. It follows that the FIR filter

[I � A~1(z)] can be usedto isolate the last tap: [I � A~1(z)]H(z) = HMz � M. Although

[I � A~1(z)] is anti-causal,andthuscannotberealized,a delayedversion[I � A~1(z)]z� N,

which is causal, can be implemented such that[I � A~1(z)]z � NH(z) = HMz � M � N.

Theorem 5-3. Let thechannelH(z) of (5-1)with m > n satisfy(5-2).If N ≥ ,

thenthereexistsanm × m FIR filter A~1(z) = A
� iz

i with memoryN suchthat

[I � A~1(z)] z � NH(z) = HMz� M � N.

Proof: See Appendix 5-2.

i 1=

N∑

Figure 5-3. An autoprogressive model for a tall MIMO channel.

xk rk

m × n A~1(z)

HM z�

�

m × m

Mn
m n–
---------------

i 1=

N∑
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Corollary 5-3.1. The coefficients ofA~1(z) = A
� iz

i are given by

[ A
� N … A

�

� ] = [ 0m × Nn H0 … HM � 1 ]H † + V. (5-13)

They are unique if and only ifN = .

Proof: See Appendix 5-2.

5.2 Minimum-Phase Channels

From traditional linear systemtheory, we saythat a SISOfilter or channelH(z) is

minimum phaseif all its poles and zeros are located inside the unit circle. A min-

imum-phasechannelhasmany desirableproperties.For example,it alwayshasa causal

stableinverse.(A channelwith all zerosinsidetheunit circle hasaninversewith all poles

inside.)A minimum-phasechannelalsohasthepropertythatits energy is maximallycon-

centratedat its zero-th tap. In other words, amongall channelswith identical spectra

|H(e jθ)|2, the minimum-phasechannelhasthe minimum group delay (negative phase

derivative) [33]. Delfousseextendsthe conceptof minimum phaseto MIMO channels

[135] as follows.

Definition 5-1. A MIMO channelH(z) is called minimum phase if and only if

there exists a causal stable left-inverse.

This definition reducesto the usualSISO definition when m = n = 1. However, a min-

imum-phaseMIMO channeldoesnothaveall of thepropertiesof aminimum-phaseSISO

channel.Its energy is not necessarilyconcentratedin its zero-thtap.Furthermore,a frac-

tionally spacedchannelthat is not minimumphasein theSISOsensecanbesoaccording

i 1=

N∑

Mn
m n–
---------------
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to Definition 5-1, when viewed as a baud-spacedSIMO channel.It might be lesscon-

fusing to saythata channelis “minimum phasein theMIMO sense”or that it is “causal

stable left-invertible.” Nevertheless, we use Definition 5-1, as stated, for its simplicity.

Considera tall FIR transferfunction H(z) satisfying (5-2) and an associatedAR

modelwith FIR feedbackfilter A(z) suchthat[I � A(z)]H(z) = H0. It follows thatH(z) has

a left-inverseC(z) satisfyingC(z)H(z) = I; in particular, C(z) = H0
† [I � A(z)], whereH0

†

= (H0
*H0) �

�

H0
*. The left-inverseC(z) is causalandFIR, just like A(z), andbecauseit is

FIR, it is stable.Therefore,Theorem5-1 implies that every tall FIR channelH(z) satis-

fying (5-2) is minimum phase.

Of course,a channelneednot betall to beminimumphase,asillustratedby thefol-

lowing example.

Example 5-1. Consider a 2× 2 channelF(z) with memoryM = 2:

F(z) = . (5-14)

Observe that det[F(z)] = 2 + z �

�
� z �

�

z �

�

= 2 is nonzeroeverywhere.Therefore,an

inverse exists, and is given by

F �

�

(z) = . (5-15)

Observe thatF �

�

(z) is both causal and stable, soF(z) is minimum phase.

Channelssuchasthosein thepreviousexamplebelongto an importantclassof channels

known as unimodal channels, all of which are minimum phase.

2 z+
2– z 1–

z 1– 1

1
2
--- 1 z–

1–

z–
1– 2 z 2–

+
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Definition 5-2. [34] A squareFIR channelF(z) = Fiz
� i is calledunimodal if

det[F(z)] is nonzero for allz, including∞.

Lemma 5-1. All unimodal channels are minimum phase.

Proof: All unimodal channelsF(z) have an inversebecausedet[F(z)] ≠ 0. The

inverseis causalandFIR, andthereforestable,becauseeachelementin theinverseis

proportional to a cofactor ofF(z), all of which are FIR and stable.❏

In fact,any FIR channel,tall or square,thatsatisfies(5-2) is minimumphase.There

is an importantdistinction, however, betweensquareand tall channels:almost all tall

channels are minimum phase, and almost all square channels are not. In otherwords,if

we wereto selectat random17 a singletall channelH(z) = Hiz
� i from thesetof all

suchchannels,it would satisfy (5-2) with probability one.In contrast,a squarechannel

G(z) = selectedin thesamemannerwouldsatisfy(5-2)with probabilityzero.

In general,det[G(z)] would be a polynomial of degreeM and thereforewould have M

zeros.The channelG(z) would be minimum-phaseonly if det[G(z)] were a constant,a

zero-probabilityevent.It is thisdistinctionthatmakestall channelsremarkable.Of course,

it canbearguedthat “real-world” channelsarenot generatedin this way. A naturalques-

tion to askis, “What typesof channelssatisfy(5-2)?” In thenext section,we addressthis

question and attempt to develop some insight into the physical meaning of (5-2).

17. For a given M, select each element of each coefficient Hi uniformly and independently from

the set of complex numbers |z| < 1.

i 0=

M∑

i 0=

M∑

Giz
i–

i 0=

M∑
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5.3 Necessary and Sufficient Conditions

We have seenthat (5-2) is sufficient for a tall (or square)channelto be minimum

phase,but we have not addressedthephysical significanceof (5-2). Supposewe have an

n × n channelG(z) that is not minimum phase.We could follow G(z) with a tall m × n

minimum-phasefilter (z) suchthat the cascadecombinationis tall: H(z) = (z)G(z).

However, as intuition might suggest,H(z) doesnot inherit the minimum-phaseproperty

from (z). ExaminingH(z) morerigorously, weseethatsinceG(z) is notminimumphase,

it is not unimodal,so thereexistsa z = z0 (possibly∞) for which det[G(z0)] = 0. Conse-

quently, H(z0) is not full rank,andH(z) doesnot satisfy(5-2). We concludethat in order

for a tall channelH(z) to satisfy(5-2), therecanbe no squarechannels,otherthanmin-

imum-phase channels, hidden within it. Such a channel is said to be irreducible [34].

Definition 5-3. An m × n channelH(z) with m > n is said to be irr educible if all

squareright-factorsareminimum phase.It is saidto be reducible if thereexists a

right-factor that is not minimum phase.

Weexcludeminimum-phasefactors,becauseany tall channelH(z) canbeexpressedasthe

productof someothertall channel (z) anda minimum-phasechannelF(z) accordingto

H(z) = (z)F(z). This otherminimum-phasechannel (z) is guaranteedto exist because

F(z) is left-invertible: (z) = H(z)F �

�

(z). Thereare infinitely many suchfactorizations.

Irreducibility is thus a generalizationof the second-orderidentifiability conditionorigi-

nally given by Slock [94] for SIMO channels,namelythat the subchannelscanhave no

commonzeros(nocommonSISOfactors).Observe thatanirreduciblechannelH(z) is full

rank for all nonzeroz including ∞, becausethe determinantof all squareright-factorsis

H̃ H̃

H̃

H̃

H̃ H̃

H̃
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identicallynonzero.However, irreducibility doesnot imply that H(0) or HM is full rank,

and thus does not alone satisfy (5-2).

To investigatetherankof HM we needto review thefinal valuetheoremfor MIMO

systems [34] as well as the concept of column-reduced channels.

Lemma 5-2. Initial and Final Values. For the channelH(z) of (5-1), the initial

coefficient H0 is given by

H0 = H(∞) ≡ (z). (5-16)

If the subchannels of all users have memoryM, the final coefficient HM is given by

HM = H(0)º = º º(z)z�

�

. (5-17)

If the subchannels do not have the same memory, then

H(0)º = , (5-18)

is a matrix whosei-th columnis that of , whereMi is the memoryin the i-th

column ofH(z).

Definition 5-4. [34] ThechannelH(z) of (5-1) is saidto becolumn reducedif its

columnsare linearly independent,i.e. if H(z)D(z) = 0 ⇔ D(z) = 0 whereD(z) =

Diz
� i is n × n.

For thespecialcaseof squarecolumn-reducedchannels,thedegreeof thedeterminantis

equalto thesumof thememoriesof theusers:deg[detH(z)] = Mi. Thekey property

of column-reduced channels is that they are full column rank atz = 0.

H
z ∞→
lim

H
z 0→
lim

H(z) diag z
M1… z

Mn( )
z 0→
lim

HM i

i 0=

∞∑

i 1=

n∑
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Lemma 5-3. [34] ThechannelH(z) of (5-1) is column reduced if andonly if it is

full column rank atz = 0.

From Lemmas5-2 and5-3, we concludetwo things:first, the leadingtap H0 of an

irreduciblechannelis full rank,andsecond,thefinal tapHM of acolumn-reducedchannel

is full rankprovidedthatall usershavememoryM. Thus,wearriveat thefollowing result.

Theorem 5-4. ThechannelH(z) of (5-1) satisfies(5-2) if andonly if it satisfiesall

of the following conditions:

1. H(z) is irreducible;

2. H(z) is column reduced;

3. All users have memoryM. (5-19)

We stressthat while either(5-2) or (5-19) is sufficient for a tall channelH(z) to be

minimumphase,neitheris necessary. For example,Gorokhov et al. [15] have shown that

even if all usersdo not have identicalmemory, therestill existsan integerN ≤ Mi

suchthat an AR modelexists. In Example5-1, the usersdo not have identicalmemory,

andyet thecorrespondingchannelis minimumphase.In fact,thechannelin thatexample

is neithercolumnreducednor tall. Of the threecriteria in (5-19),only the first, irreduc-

ibility , is necessary for a tall channel to be minimum phase.

If a channelis reducible,then only the irreducible factor can be identified from

second-orderstatistics.Suppose,for example,thatH(z) is tall, but reducible,andthusnot

minimumphase.We canalwaysfactorthechannelasH(z) = (z)U(z), suchthat (z) is

minimum phaseandU(z) is allpass:U(z)U*(1/z*) = I. The channelsH(z) and (z) are

indistinguishable from their second-orderoutput statistics; i.e., H(z)H*(1/z*) =

i 1=

n∑

H̃ H̃

H̃
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(z) *(1/z*). Any second-orderalgorithm for equalizationor identification of H(z)

would behave as if (z) werethe channel.Thereforeit follows that any suchalgorithm

could thusbe usedto identify or equalize (z), the irreduciblepart of H(z). This is ade-

quateif the allpassterm U(z) is inconsequentialor if it canbe resolved by othermeans.

Consider the following example.

Example 5-2. Supposethat a channel (z) satisfies(5-2) and is thus minimum

phase.Thismeansthereexistsacausalstablefilter C(z) suchthatC(z) (z) = I. Now

defineH(z) = (z)U(z), whereU(z) is a diagonal delay:

U(z) = , (5-20)

for integersDi > 0. Thediagonaldelayis notunimodalbecausedet[U(z)] is zeroatz

= ∞. Clearly, the only left-inverseof U(z) is anti-causal.So U(z) is not minimum

phase.Hence,H(z) is neitherirreduciblenor minimum phase.Yet the filter C(z) is

still a viabledetectorbecauseit leavesonly thediagonaldelayterm,which is harm-

less:C(z)H(z) = U(z).

5.4 Temporal Linear Prediction

Considera SISOchannelwith a white input andwith a frequency responseH(e jθ).

The power spectrumof the output|H(e jθ)|2 conveys no informationaboutthe phaseof

thechannel,implying thatsecond-orderstatistics(SOS)areinsufficient for channelidenti-

fication.However, if thechannelweresomehow known to beminimumphase,thenSOS

would be sufficient. In particular, we could uselinear prediction. We could estimatethe

presentobservation rk from pastobservationsaccordingto k = pi rk � i, with the

H̃ H̃

H̃

H̃

H̃

H̃

H̃

diag z
D– 1… z

D– n( )

r̂
i 1=

∞∑
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coefficients{pi} of thepredictorP(z) = piz
�

�

chosento minimizethevarianceσ2 of

thepredictionerrorek = rk
�

k. We couldthenrecover theminimum-phasetransferfunc-

tion (up to a constantfactor)via (z) = . The resulting (z) would differ from

H(z) by only an arbitrarycomplex constante jθ with unit magnitude,but this ambiguity

would usually not be problematic. (It could be handled at carrier recovery, for example.)

5.4.1 One-Step Prediction

Considernow a tall MIMO channel,which is almostalwaysminimumphasein the

senseof Definition 5-1.As we now show, SOSaresufficient for channelidentification,up

to anarbitrarymemorylessunitarymatrix U. Again,we canuselinearprediction.We can

predict the presentobservation vector rk using a linear combinationof the previous N

observations: k = Pirk � i, wherethecoefficients{Pi} areof dimensionm × m. We

definetheone-steppredictorof orderN asP(z) = Piz
� i. Thepredictionerroris then

ek = rk – k. If we chooseN sufficiently large,thenwe canuseany valid AR representa-

tion of (5-3) to express the error as

ek = H0 xk + (Ai
� Pi)rk � i. (5-21)

The mean-square prediction errorξ = E[ ek
2] = is then

ξ = trH0H0
* + tr (Ai

� Pi)E[ rk � irk � j
*](Aj

� Pj)
*. (5-22)

The doublesummationis positive semi-definite,so its traceis alwaysnon-negative. We

canforceit to beidenticallyzeroby choosingPi = Ai for all i ∈ {1, …, N}. Therefore,the

minimum mean-squarepredictionerror is ξ min = tr(H0H0
*). In fact, the only solutions

i 1=

∞∑
r̂

Ĥ σ
1 P z( )–
---------------------- Ĥ

r̂
i 1=

N∑

i 1=

N∑
r̂

i 1=

N

∑

E rk Pirk i–i 1=

N∑–
2

i 1=

N

∑
j 1=

N

∑
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that minimize ξ areP(z) = A(z) for any valid feedbackfilter (satisfying(5-8)) in an AR

channelmodel.Thecorrespondinglinearpredictionerror is ek = H0xk. Thechannelthus

reduces to a memoryless channel, the subject of chapters 3 and 4.

Theorem 5-5. Let thechannelH(z) of (5-1) with m > n satisfy(5-2),andlet P(z) =

Piz
� i denoteaone-steppredictorof orderN ≥ . Thecoefficients{Pi},

minimizing ξ = , are given by (5-8)

[P1 … PN] = [H1 … HM 0m × Nn]H † + V, (5-23)

whereV* ∈ null(H *). The coefficients are unique if and only ifN = .

Let Σ be any m × n square root of the error autocorrelationmatrix Φe =

E[ekek
*] = H0H0

*, satisfyingΣΣ* = H0H0
*. This implies thatΣ = H0U for someunitary

matrix U. Thenthelinearpredictionchannelestimateis (z) = [I � P(z)] �

�

Σ. (Noticethe

similarity to theSISOestimateof (z) = .) SinceP(z) = A(z) andΣ = H0U, it fol-

lows that (z) = [I � P(z)] �

�

H0U, and thus (z) differs from H(z) = [I � P(z)] �

�

H0 by

only aunitarymatrix.Souseof second-orderoutputstatistics,namelylinearprediction,is

sufficient for channel identification up to some arbitrary unitary matrix.

5.4.2 Multiple-Step Prediction

Multiple-steppredictionis theestimationof thepresentobservationvectorrk usinga

linear combination of older observations: k = Pirk � i. We define the

(L+1)-steppredictorof order N as PL(z) = Piz
�

�

. If L = 0, this reducesto a

one-steppredictor. ProvidedN is sufficiently large,wecanuseany valid ARMA represen-

tation of (5-10), to express the prediction error as

i 1=

N∑ Mn
m n–
---------------

E rk Pirk i–i 1=

N∑–
2

Mn
m n–
---------------

Ĥ

Ĥ σ
1 P z( )–
----------------------

Ĥ Ĥ

r̂
i L 1+=

L N+∑

i L 1+=

L N+∑
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ek = Hixk � i + (Ai
� Pi)rk � i. (5-24)

The mean-square prediction errorξ = E[ ek
2] is given by

ξ = tr HiHi
* + tr (Ai

� Pi)E[rk � irk � j
*](Aj

� Pj)
*. (5-25)

As before,wecanforcethesummandto zeroandthusminimizeξ by choosingPi = Ai for

all i ∈ { L+1, …, L+N}, yielding a minimum of ξ min = tr H iH i
*. Thus,the linear

predictoris identicalto thefeedbackfilter in theARMA modelof Fig. 5-2,PL(z) = AL(z),

and the corresponding prediction error isek = Hixk � i.

Theorem 5-6. Let thechannelH(z) of (5-1) with m > n satisfy(5-2), andlet PL(z)

= Piz
� i denote an (L+1)-step predictor of order N ≥ , where

L ∈{0, 1, …, M}. The optimal predictor coefficients {Pi} minimizing ξ =

 are given by (5-11)

[ PL+1 … PL+N ] = [ HL+1 … HM 0m × (N+L)n]H † + V, (5-26)

whereV* ∈ null(H *). They are unique if and only ifN = .

5.4.3 Backward Prediction

We can also estimatethe presentobservation rk using future observations: k =

Pirk � i. We call P~1(z) = Piz
� i a one-stepbackward“predictor” of order

N for lack of a bettername.If N is sufficiently large,we canusetheAP representationof

(5-12) to express the prediction error as

i 0=

L

∑
i L 1+=

L N+

∑

i 0=

L

∑
i L 1+=

L N+

∑
j L 1+=

L N+

∑

i 0=

L∑

i 0=

L∑

i L 1+=

L N+∑ Mn
m n–
---------------

E rk Pirk i–i L 1+=

L N+∑–
2

Mn
m n–
---------------

r̂

i N–=

1–∑ i N–=

1–∑



116

ek = HMxk � M + (Ai
� Pi)rk � i. (5-27)

The mean-square prediction error is

ξ = trHMHM
* + tr (Ai

� Pi)E[rk � irk � j
*](Aj

� Pj)
*, (5-28)

andchoosingPi = Ai for all i ∈ { �

�
, …, � 1}, yields a minimum of ξ min = trHMHM

*.

Thus,theoptimalbackwardpredictoris identicalto thefeedbackfilter in theAP modelof

Fig. 5-3: P~1(z) = A~1(z). Thecorrespondingpredictionerror is ek = HMxk � M. Although

we cannotimplementthe predictorP~1(z) becauseit is anti-causal,we can implement

z��� P~1(z) with a correspondingdelayedpredictionerrorgivenby ek � N = HMxk � M � N. As

was the casewith the one-stepforward predictor, the effective channelis memoryless;

however, the last tap is isolated, rather than the first.

Theorem 5-7. Let thechannelH(z) of (5-1) with m > n satisfy(5-2),andlet P~1(z)

= Piz
� i denoteaone-stepbackwardtemporalpredictorof orderN ≥ .

The optimal coefficients {Pi}, minimizing ξ = , are

given by (5-13)

[ P
� N … P

�

� ] = [ 0m × Nn H0 … HM�

� ]H † + V, (5-29)

whereV* ∈ null(H *). They are unique if and only ifN = .

i N–=

1–

∑

i N–=

1–

∑
j N–=

1–

∑

i N–=

1–∑ Mn
m n–
---------------

E rk Pirk i–i 1–=

N–∑–
2

Mn
m n–
---------------
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5.5 Multiuser Detection Using Linear Prediction

In thefollowing sectionswepresenta family of multiuserdetectorsthatcombinethe

temporalLP conceptsof section5.4 andthe spatialLP ideasof chapter4. The first and

simplestof theseusesaone-stepforwardtemporalpredictor. In section5.5.1,we formally

definethe forward LP detectorandanalyzeits performancein the presenceof noise.In

section5.5.2,we definea generalizedforward-backwardLP detector, which usesthecas-

cadeof a forwardanda backwardlinearpredictor, andwhich in generalhasbetterperfor-

mance, but at the expense of increased complexity.

5.5.1 The Forward LP Detector

So far in this chapter, we have consideredonly noiselesschannels.We have shown

that, for the channelH(z) of (5-1), temporalpredictioncanbe usedto eliminatechannel

memory:[I � P(z)]H(z) = H0, whereP(z) = Piz
� i, asdefinedby (5-23).Moreover,

we have shown in chapter4 that spatialwhiteningandrotationcanbe usedto invert the

remainingmemorylesschannel.Recallthat,if W is any n × m spatialwhitener, satisfying

in this caseWH0H0
*W* = I, thenthereexists a unitary matrix U suchthat UWH0 = I.

Spatialpredictioncanbeusedto implementW. (SeeAppendix4-5.)Therefore,for noise-

less channels we can perfectly recover the channel input.

The precedingdiscussionsuggestsan architecturefor multiuserdetection.The for-

ward linear-predictive (FLP) detector, illustratedin Fig. 5-4,consistsof severalstages,the

first of which is a one-stepforward temporalprediction-errorfilter I � P(z) of order

N ≥ . The forwardpredictionerror is givenby ek = rk – Pirk � i, wherethe

coefficients{Pi} arechosento minimize themean-squarepredictionerrorξ = E[ ek
2].

i 1=

N∑

Mn
m n–
--------------- i 1=

N∑
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For nonzeronoise,theoptimalcoefficientsarenot thoseof (5-23);they aregivenbelow in

Theorem5-8 asa function of the noisevarianceσ2. The next stageof the detectoris a

memorylessspatial prediction-errorfilter I � . The spatial error is = (I � )ek,

where is astrictly lower-triangularm × m matrixwith elementschosento minimize =

E[ 2]. The third stageis a diagonalgain A chosensuchthat eachcomponentof its

outputwk = Aek hasunit energy: E[ wkwk
* ] = I. Hence,thecascadeW = A(I � ) is an

m × m spatialwhitener. The fourth stageof the detectoris a unitary rotation matrix Q

chosento minimize the MSE of all users E[ JQwk
�

k
2], where k = [ ,

, …, ]T, andwhereDi is thedelayfor useri, alsochosento minimizeMSE.

Weshow laterin thissectionthat,surprisingly, theoptimaldelaysmaynotalwaysbezero.

The last stage of the detector is the familiar n × m truncation matrix: J = [I 0].

A full understandingof thepropertiesandperformanceof theFLP detectorrequires

additionalanalysis.We begin by solvingfor theoptimaltemporalpredictorcoefficientsin

noise.

Figure 5-4. A block diagram of the forward LP detector.
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Theorem 5-8. Let thechannelH(z) of (1-1) with m > n andσ > 0 satisfy(5-2),and

let P(z) = Piz
� i denotea one-steppredictorof orderN ≥ . Thecoeffi-

cients{Pi}, minimizingξ = , are uniquely given by

P = [P1 … PN] = KH*(HH * + σ2I)�

�

(5-30)

= K(H *H + σ2I)�

�

H *, (5-31)

where K = [H1 … HM 0m × Nn].

Proof: See Appendix 5-3.

Observe that (5-31) is consistentwith (5-23). Because (H *H + σ2I) �

�

H * = H † ,

thepredictorcoefficientsfor thenoisychannelapproachtheminimum-normsolutionfor

the noiseless channel as the noise variance goes to zero.

We refer to the cascadeF(z) = [I � P(z)]H(z) of the forward prediction-errorfilter

andthechannelastheforward cascade. Wecanderiveanexpressionfor it usingTheorem

5-8.

Corollary 5-8.1. The forward cascadeF(z) = Fiz
� i = [I � P(z) ]H(z) has

coefficients given by

F = [F0 F1 … FN+M] = [H0 | [ H1 … HM 0m× Nn] ·Ψ], (5-32)

whereΨ = σ2(H *H + σ2I) �

�

. Furthermore,thepredictionerrorek = Fixk � i

has covariance matrix given by

Φe = E[ ekek
*] = H0H0

* + σ2I + KΨK*. (5-33)

Proof: See Appendix 5-3.

i 1=

N∑ Mn
m n–
---------------

E rk Pirk i–i 1–=

N–∑–
2

σ 0+→
lim

i 0=

M N+∑

i 0=

M N+∑
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Again, (5-32)confirmsresultsfor thenoiselesscase;theforwardcascadereducesto

H0 whenσ = 0 becauseΨ goesto zerowith σ. In general,however, theeffect of thepre-

diction error filter is to “scale” the trailing coefficientsK = [H1 … HM 0m × Nn] by the

matrix Ψ, while keepingH0 asthe leadingtap.For σ > 0, thecascadeis not memoryless,

but hasmemoryM + N. Thestructureof Ψ hasinterestingimplicationsfor thebehavior of

the FLP detector; we discuss this in more depth later in this section.

Using (5-33), we can derive expressionsfor the remaining stagesof the FLP

detector. FromTheorem4-2,theoptimalspatialpredictor, minimizingE[ (I – )ek
2], is

= I � M�

�

, whereM is a termin theCholesky factorization(4-13)of Φe = MD2M*. The

diagonal gain isA = D�

�

. An m × m spatial whitener is thenW = A(I � ) = D �

�

M �

�

.

Recall that wk = A(I � )ek is the whiteneroutput,andassumefor now that the

optimaldelayis zerofor all users,sothat k = xk. (Thisassumptionis relaxedlaterin this

section.)Thebestunitarymatrix Q0, minimizing E[ JQwk
� xk

2], canthenbefoundin

a mannersimilar to that in chapter4. Giventhatthedetectorfront endis I � P(z) andthat

the correspondingtemporalpredictionerror is ek, we first find the n × m matrix C0 that

minimizes the zero-delay MSE sumE[ Cek
� xk

2].

Lemma 5-4. Let ek = Fixk + vk, where xk and vk are independentwith

covariancesI and Φv, respectively. The unique n × m matrix CD minimizing the

D-delay MSE sumE[ Cek
� xk � D

2] is

CD = FD
*Φe

�

�

, (5-34)

whereΦe = FiFi
* + Φv.

Proof: See Appendix 5-4.

P̃

P̃

P̃

P̃

x̃

i 0=

M N+∑

i 0=

M N+∑
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So for a delay of zero,we have C0 = F0
*Φe

�

�

= H0
*Φe

�

�

. Furthermore,sinceΦe
�

�

=

W*W, it follows that C0 canbe implementedfollowing the spatialwhitenerby the short

filter (WH0)* = (D�

�

M�

�

H0)*. Following thediscussionof section4.1,wecanexpressQ0

in terms of the polar factor of this short filter:

JQ0 = P *(D�

�

M �

�

H0), (5-35)

where J = [I 0]. We are now in a position to formally define the zero-delay FLP detector.

Definition 5-5. Let thechannelH(z) of (1-1)with m > n andσ > 0 satisfy(5-2).The

n × m zero-delayFLP detectorof orderN ≥ for H(z) is uniquelydefinedas

CFLP0(z) = JQ0D �

�

M�

�

[I � P(z)], (5-36)

whereP(z) is givenby (5-31),whereMD2M is aCholesky factorizationof Φe, given

by (5-33), and whereQ0 satisfies (5-35).

TheFLP detectorcouldof coursebedefinedin termsof any squarespatialwhitener

W, but aswe have shown in chapter4, thespatialwhitenerbasedon linearpredictionW =

D�

�

M �

�

hasimportantimplementationadvantages.Moreover, in thecontext of (5-36), it

hasa certainconceptualeleganceaswell. Thecascadeof thespatialandtemporalpredic-

tion-error filters can be interpreted as a singlespatio-temporal prediction error filter:

I � (z) = [I � ][I � P(z)] = M�

�

[I � P(z)]. (5-37)

This spatio-temporalpredictor (z) minimizes = , where 0

is strictly lower triangular.

Mn
m n–
---------------

P̃ P̃

P̃ ξ̃ E rk P̃irk i–i 0=

N∑–
2

P̃
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It is of interestto comparetheperformanceof thezero-delayLP detectorto thatof

the zero-delay MMSE detector. It can be shown that the two detectors are closely related.

Lemma 5-5. For them × n channelH(z) of (1-1), satisfying(5-2), with m > n and

σ > 0, let C0(z) = Ciz
� i denotetheuniquen × m (N+1)-tapzero-delayMMSE

detector, minimizing . This detectorcan be factoredas

follows:

C0(z) = C0[I � P(z)], (5-38)

whereP(z) is theoptimalone-steptemporalpredictorof orderN definedby (5-31)

with predictionerror ek, andwhereC0 = H0
*Φe

�

�

is the memorylessn × m matrix

minimizing E[ Cek
� xk

2].

Proof: See Appendix 5-5.

In otherwords,zero-delay MMSE detection is equivalent to optimal temporal prediction

followed by memoryless MMSE detection. The implication of Lemma 5-5 is that the

zero-delayFLP andMMSE detectorsshouldcomparemuchin thesameway thattheWR

andMMSE detectorscomparefor memorylesschannels.This is indeedthecaseasillus-

trated by the following computer experiment.

Experiment 5-1. For asystemwith n = 2 users,weconsidertwo receivers:onewith

m = 3 sensors,andtheotherwith m = 10. In Fig. 5-5,we plot MSE1 versusSNR1 =

⁄σ2, where denotesthe first column of the j-th channeltap.

Thecurvesaretheensembleaverageof 100004-tapchannels(M = 3) of dimension

m × 2. The elementsof the channelcoefficientsareselectedindependentlyfrom a

i 0=

N∑
E xk Cirk i–i 0=

N∑–
2

j 1=

m∑ h j
1( ) h j

1( )
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zero-mean,unit-variancecomplex Gaussiandistribution, and the channelcolumns

arethenscaledsothatuser1 hasenergy 10dB below thatof user2. Thecurvescom-

paretheMSE performanceof thezero-delayFLP andMMSE detectors,eachwith 7

taps(N = = 6). The resultsillustratethat the performanceof the zero-delay

FLP detectoris nearto that of the zero-delayMMSE detectorespeciallyfor high

SNR and for very tall channels (m >> n).

Observe that Fig. 5-5 is similar to Fig. 4-2 from Experiment4-1. A closecomparisonof

thesefiguresrevealsthat, for a givenSNR,thedetectorsfor channelswith memoryhave

significantlyhigherMSEthanthosefor channelswithoutmemory. Thereasonfor thisper-

formancedifferenceis that,for channelswith memory, energy is distributedover multiple

taps, and the temporal predictor essentiallydiscardsenergy associatedwith taps H1

throughHM. In Experiment5-1, thereare4 channeltaps,eachhaving, on average,1/4 of

thetotalchannelenergy. Hence,thezero-delayFLPdetectoressentiallydiscards3/4of the

channelenergy. This is truefor thezero-delayMMSE detectoraswell, in light of Lemma

5-5.Theperformanceof bothdetectorsfor useri is in facthighly dependentuponthefrac-

tion of energy associated with thei-th user that is contained in the zero-th tap:

= , (5-39)

where denotesthe i-th column of the j-th channeltap. The next exampledemon-

strates this dependence more clearly.

Mn
m n–
---------------

γ0
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Figure 5-5. A comparison of the zero-delay FLP and MMSE detectors.
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Experiment 5-2. In this experimentwe analyzethe performanceof the zero-delay

FLP detectorasa function of , the fraction of user1’s energy containedin the

zero-thtap. We consider1000random3-tap(M = 2) channelsof dimension5 × 2.

(The coefficientsareselectedindependentlyfrom a zero-meanunit-varianceGaus-

sian distribution, and then is scaledto control , while keepingthe total

energy associatedwith user 1 at unity.) The predictor order is N = = 2.

Fig. 5-6 plotsMSE1, averagedover the1000trials,versusSNR1 for differentvalues

of . Observe thatfor ≈ 1, theslopeof thecurve is approximately–1,but for

≈ 0, the slopeof the curve is approximately0. Obviously, the performanceis

highly dependent upon the energy fraction.

It might seemlogical to concludethat if H0 is vanishinglysmall, thenthe temporal

predictorwould discardessentiallyall of thechannelenergy. However, this is not thecase

provided that σ2 > 0. Recall from Corollary 5-8.1 that the cascadeF(z) of the temporal

prediction-errorfilter I � P(z) andthechannelH(z) hascoefficientsgivenby [H0 KΨ],

whereK = [H1 … HM 0m × Nn], andΨ = σ2(H *H + σ2I)�

�

. Thestructureof Ψ hasinter-

estingimplicationsfor thebehavior of thetemporalpredictorif theleadingcoefficient H0

is sufficiently small. We can expressΨ as follows:

Ψ = , (5-40)

where = [H1 … HM 0m × n(N � 1)], and where is an m(N � 1) × n(M+N � 1) block

Toeplitz matrix given by

γ0
1( )

h0
1( ) γ0

1( )

Mn
m n–
---------------
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γ0
1( )

σ2 H0
*H0 σ2I+ H0
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*
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 = . (5-41)

Taking the limit ofΨ asH0 goes to zero yields

 = = ≡ . (5-42)

Therefore, in the limit, the forward cascadeF(z) becomes

[H0 [H1 … HM 0m × Nn]·Ψ ] = [ 0m × n H1 [H2 … HM 0m × Nn]· ],(5-43)

and H1, rather than H0, plays the role of leadingtap. From (5-40), we observe that if

H0H0
* is negligible relative toσ2I, then

[H0 [H1 … HM 0] ·Ψ ] ≈ [ 0 H1 [H2 … HM 0]· ]. (5-44)

In otherwords,H0 is essentiallyignoredby thepredictorif its energy is below thenoise

floor: tr(H0H0
*) << σ2; thepredictorbehavesasif thechannelwere (z) ≈ Hjz

�

�

.

For high SNR,i.e. (H *H + σ2I)–1H * ≈ H †, we have thatF(z) ≈ H1z�

�

.

This behavior can be describedmore generally. First, it generalizesto multiple

leadingtaps.If theenergy in theL leadingtapsis below thenoisefloor, tr HjHj
* <<

σ2, thenthepredictoressentiallyignoresall L taps.In thiscase,thepredictorbehavesasif

the channelwere (z) ≈ Hjz
�

�

suchthat F(z) ≈ HLz � L for high SNR.Second,the

behavior in responseto eachuseris independent.If theenergy in thei-th columnof theLi

leadingtaps,correspondingto useri, is below thenoisefloor, 2 << σ2, then

H̃

H1 H2 … HM 0 … 0
0 H1 H2 … HM … 0

0 … 0 H1 H2 … HM

… ……

Ψ
H0 0→

lim σ2 σ2I 0

0 H̃
*
H̃ σ2I+

1–
I 0

0 σ2 H̃
*
H̃ σ2I+( )

1–
In n× 0

0 Ψ̃

H0 0→
lim Ψ̃

Ψ̃

H̃
j 1=

M∑

j 0=

L 1–∑

H̃
j L=

M∑

j 0=
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thepredictorignoresthe i-th columnof thesetaps.Thefollowing theoremformally states

the result in its most general form.

Theorem 5-9. Let thechannelH(z) of (1-1),with m > n andσ > 0, satisfy(5-2),and

let denotethe i-th column of the j-th channeltap H j. For eachuseri, let Li

∈{0, …, M} denotethe length of the precursor Γi, definedas Γi = …

for Li > 0 or asΓi = 0m × 1 for Li = 0. Let Γ = [Γ1 … Γn] denotethetotal pre-

cursor. Let P(z) betheoptimalone-steptemporalpredictorof orderN ≥ for

H(z), defined by (5-31). The following holds:

[I � P(z)]H(z) =

… diag … . (5-45)

Proof: See Appendix 5-6.

Theorem5-9 canberoughlyparaphrasedasfollows: for each user, precursors with ener-

giesbelowthenoisefloor are ignored. If theprecursorenergy of useri, = tr(ΓiΓi
*), is

below the noisefloor, << σ2, thenthe predictorbehavesasif the i-th columnof the

channelwere (z) ≈ z�

�

, and if useri hassufficiently high SNR, then the

i-th column (z) of F(z) approaches .

Considernow a channelfor which the energy in H0 is below the noise floor,

tr(H0H0
*) << σ2, but for which theSNRof all usersis high,(H *H+ σ2I)–1H * ≈ H†, such

that F(z) ≈ H1z �

�

. For this channelthe zero-delayLP detectorCFLP0(z), as definedby

(5-36),performspoorly. It makesmoresensein this caseto definea delay-1LP detector

CFLP1(z) = JQ1D �

�

M�

�

[ I � P(z) ], whereall termsare definedas in (5-36) except Q1,

h j
i( )

h0
i( ) h1

i( )

hLi

i( )
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which is now chosento minimize the delay-1MSE sum E[ Qwk
� xk �

� 2], wherewe

recall thatwk is thespatiallywhitenedtemporalpredictionerrorwk = Wek = D�

�

M �

�

ek.

As before,Q1 canbe derived from the delay-1memorylessdetectorC1 given by (5-34).

From Lemma5-4, C1 = F1
*Φe

�

�

= F1
*W*W. Hence,Q1 satisfiesJQ1 = P* (D�

�

M�

�

F1).

In thefollowing simulationexperiments,we show thatastheenergy in H0 becomesvan-

ishinglysmall,thedelay-1detectorbeginsto outperformthezero-delaydetector. Consider

the following experiments.

Experiment 5-3. We essentiallyrepeatExperiment5-2 here,exceptwe implement

both the delay-1and the delay-0FLP detectors.(We consider1000 random3-tap

channelsof dimension5 × 2, generatedas before;again, N = 2.) The resultsare

shown in Fig. 5-7,wherethesolidcurvesarefor thedelay-1detector, andthedashed

curves are for the delay-0detector. The curves clearly show regions in which the

delay-1detectoroutperformsthedelay-0detector, for instance,when ≤ 0.01and

SNR1 ≤ 24 dB (see point A) or when  ≤ 0.1 and SNR1 ≤ 10 dB(see point B).

Experiment 5-4. In this experimentwe fix the SNR of user1 at 20 dB, andthen

vary thezero-thtapenergy fraction . We consider1000,2-tap(M = 1) Gaussian

channelsof dimension5 × 2. TheSNRof user2 is set10dB greaterthanthatof user

1, so SIR1 = –10dB.The predictororder is N = = 1. Fig. 5-8 plots MSE1,

averagedover the 1000 trials, versusSNR1 for both the delay-0anddelay-1FLP

detectors.Observe thatthecurvesintersectwhen ≈ SNR1
�

�

. To theright of this

intersection, the delay-1 detector outperforms the delay-0 detector.

γ0
1( )

γ0
1( )

γ0
1( )
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Theseexamplesdemonstratethat thereexists an optimal delayDi for eachuseri,

which dependson theenergy in theprecursortapscorrespondingto thatuser. Sotheuni-

tary rotation Q should be defined accordingly. We take k = [ , , …,

]T anddefine asa m × n matrix whosei-th columnis the i-th columnof .

(Recall that F(z) = [I � P(z)]H(z).) The unitary matrix that minimizesthe MSE sum

E[ JQwk
�

k
2] satisfies

J  = P *(D �

�

M�

�

). (5-46)

The definition of the FLP detector with optimal delays is based on the optimal.

Definition 5-6. Let thechannelH(z) of (1-1)with m > n andσ > 0 satisfy(5-2).The

(optimal delay) forward LP detector of order N ≥ for H(z) is uniquely

defined as

CFLP(z) = J D �

�

M�

�

[I � P(z)], (5-47)

whereP(z) is given by (5-31), whereMD2M is the Cholesky factorizationof Re,

given by (5-33), and where satisfies (5-46).

In the adaptive implementationthat follows, is implementedwith a decision-directed

MPLL. It implicitly findstheoptimaldelaysassociatedwith , becausethesearetheones

that produce the smallest slicer error.

Evenwith optimaldelays,theFLPdetectormaynotperformwell if theenergy in the

zero-thtap is small,yetalsosignificantrelative to thenoise.For instance,in Example

5-4 theaverageMSE1 is unacceptablefor boththedelay-0andthedelay-1FLP detectors

if is nearSNR1
–1. Onesolutionto this problemis to modify the linear predictorto

x̃ xk D1–
1( ) xk D2–

2( )

xk Dn–
n( ) F̃ FDi

Q̃

x̃

Q̃ F̃

Q̃

Mn
m n–
---------------

Q̃

Q̃

Q̃

Q̃

γ0
1( )

γ0
1( )
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isolate,not the zero-thtap H0, but the L-th tap HL, and to chooseL suchthat it corre-

spondsto the tap of greatestenergy: tr(HLHL
*) ≥ tr(HjHj

*) ∀ j ≠ L. This canbeaccom-

plishedby extendingtheSIMO forward-backwardpredictionconceptmentionedin [96] to

MIMO channels.A generalizedprediction-baseddetectorbasedon this ideais presented

in the next section.

5.5.2 The Forward-Backward LP Detector

We have shown that a noiselessFIR channelH(z) = Hiz
� i with memoryM

(5-1)canbeequalizedto atruncatedversionHL(z) = Hiz
� i with memoryL by using

an (L+1)-step forward linear predictor. We have also shown that an FIR channel

HL(z) = Hiz
� i with memoryL can be equalizedto its last tap HLz� L by using a

one-stepbackwardlinearpredictor. Clearly, thecascadeof a (L+1)-stepforwardpredictor

anda one-stepbackwardpredictorisolatestheL-th tapHL of theoriginal channel,sothat

the outputof the backward prediction-errorfilter is bk = HLxk � L. Spatialwhiteningand

rotation can then be used to invert HL.

The previous discussionsuggestsa generalizedarchitecturefor a prediction-based

detector. Theforward-backward LP detector, or simply theLP detector, consistsfirst of an

(L+1)-stepforward temporalprediction-errorfilter I � PL(z) of order N ≥ . The

forward predictionerror is given by ek = rk – Pirk � i, wherethe coefficients

{Pi} arechosento minimizethemean-squarepredictionerrorE[ ek
2]. Thenext stageis

aone-stepbackwardtemporalerrorfilter [ I � P� (z)] of order ≥ . (Thedelay

term ensures causality.) The backward prediction error is given by bk =

– Pi , wherethecoefficientsarechosento minimizeE[ bk
2]. The

subsequentstages,in order, area memorylessspatialprediction-errorfilter I � , a diag-

i 0=

M∑

i 0=

M∑

i 0=

M∑

Mn
m n–
---------------

i L 1+=

L N+∑

z Ñ– Ñ Ln
m n–
---------------

z Ñ–

r
k Ñ– i 1–=

N–∑ r
k i– Ñ–

P̃



134

onal gain A, a unitary rotationmatrix Q, anda truncationmatrix J = [I 0]. Theseare

chosento spatiallywhitenandoptimally rotatebk in amannerexactly like thatfor thefor-

ward LP detector.

Wenow work towardaformaldefinitionof thegeneralizedLP detector. Webegin by

solving for the optimal (L+1)-step forward predictor coefficients in noise.

Theorem 5-10. Let thechannelH(z) of (1-1)with m > n andσ > 0 satisfy(5-2),and

let P(z) = Piz
� i denote a (L+1)-step temporal predictor of order

N ≥ , where L ∈{0, 1, …, M}. The optimal coefficients {Pi }, minimizing

, are given by

[ PL+1 …PL+N ] = KLH *(HH * + σ2I) �

�

(5-48)

= KL(H *H + σ2I) �

�

H *, (5-49)

where KL = [ HL+1 … HM 0m × (L + N)n].

Proof: Appendix 5-3.

Using Theorem 5-10 we can derive an expression for the forward cascade.

Corollary 5-10.1. TheforwardcascadeFL(z) = Fiz
� i =[ I � PL(z)]H(z), with

memory = M +L+N, has coefficients{Fi} given by

FL = [ F0 F1 … F ] = [H0 … HL [ HL+1 … HM 0m × (N + L)n] � Ψ ], (5-50)

whereΨ = σ2(H *H + σ2I)�

�

.

Proof: See Appendix 5-3.

i L 1+=

L N+∑
Mn

m n–
---------------

E rk Pirk i–i L 1+=

L N+∑–
2

i 0=

M̃∑
M̃

M̃
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Noticethat thecascadeof (5-50) is similar to thatof (5-32); taps0 thoughL arethe

sameasthoseof theoriginal channel,but tapsL+1 throughM aremodifiedby Ψ. There-

fore, Corollary 5-10.1 implies that the (L+1)-steppredictorand the one-steppredictor

exhibit the same behavior in response to vanishingly small leading taps.

The output of the forward cascade is the forward prediction error, given by

ek = Fixk � i + vk, (5-51)

wherevk = nk
� Pink � i. Thebackwardpredictorthusseesa channelsimilar to

that of (1-1) except that the noiseis colored.The optimal coefficients for the backward

predictor, giventheobservationek, cannow bedetermined.First,we definethefollowing

block-Toeplitzmatricesformedfrom theforwardcascadeandtheforwardprediction-error

filter:

 = (5-52)

 = , (5-53)

which have dimensionsof m × n( + ), and m × m( +N+L), respectively. The

subscript,indicating the numberof block rows, is suppressedwhenequalto , so that

i 0=

M̃

∑

i L 1+=

L N+∑

F Ñ

F0 F1 … F
M̃

0 … 0

0 F0 F1 … F
M̃

… 0

0 … 0 F0 F1 … F
M̃

… ………

E Ñ

Im 0m mL× P– L 1+ … P– L N+ 0 … 0
0 I 0 P– L 1+ … P– L N+ … 0

0 … 0 I 0 PL 1+ … P– L N+

…… ………

Ñ Ñ M̃ Ñ Ñ

Ñ
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F = and E = . We can now conciselyexpressthe optimal backward predictor

coefficients as follows:

Theorem 5-11. For the systemof (5-51), let P~1 (z) = Piz
� i denotea

one-stepbackward temporalpredictorof order ≥ . The coefficients {Pi}

minimizing are uniquely given by

P~1  = [ P … P
�

� ] = (KFF *+ σ2KEE *)(FF * + σ2EE *) �

�

, (5-54)

where

KF = [ 0 F0 … F ] (5-55)

KE = [ 0 Im 0m × mL
� PL+1 … � PL+N � 1]. (5-56)

Proof: See Appendix 5-7.

Thetotal temporal prediction-error filter is given by

T(z) = Tiz
� i = [ I � P~1 (z)][ I � PL(z) ]. (5-57)

We refer to the cascade ofT(z) and the channelH(z), as thebackward cascade:

B(z) = Biz
� i = [I � P~1 (z)][I � PL(z)]H(z). (5-58)

Unfortunately, thecoefficientsof B(z) cannotbeexpressedin termsof thechannelcoeffi-

cientsaselegantly asthosefor F(z) in (5-32)or (5-50).Nevertheless,a closed-formsolu-

tion is given by

F Ñ EÑ

i Ñ–=

1–∑
Ñ Ln

m n–
---------------

E ek Piek i–i Ñ–=

1–∑–
2

Ñ–

m nÑ× M̃ 1–

m mÑ×

i 0=

N Ñ+

∑

i 0=

M̃ Ñ+

∑
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B = [B1 B2 … B ] = [ � P … � P
�

� Im] . (5-59)

Similarly, the coefficients ofT(z) are given by

T = [T1 T2 … T ] = [ � P … � P
�

� Im] . (5-60)

The covarianceof the backward predictionerror bk = ek – Piek � i can then be

expressed in terms ofB andT as

Φb = E[ bkbk
*] = BB* + σ2TT*. (5-61)

All that remainsis to specifythespatialwhitenerandtherotationmatrix. Usingthe

Cholesky factorizationof Φb = MD2M, wecandefineaprediction-basedwhitenerasW =

D�

�

M �

�

. We canthenderive theoptimal rotatorasbefore.We define suchthat its i-th

columnis thatof , whereDi is theoptimaldelayfor thei-th user. Theoptimalrotation

then satisfies

J  = P *(D�

�

M�

�

). (5-62)

The generalized LP detector is formally defined as follows.

Definition 5-7. Let thechannelH(z) of (1-1)with m > n andσ > 0 satisfy(5-2).The

(forward-backward)LP detectorof index L ∈ {0, 1, …, M} andorder(N, ), satis-

fying N ≥ and ≥ , is uniquely defined as

CLP(z) = J D�

�

M �

�

[ I � P~1 (z) ][ I � PL(z) ], (5-63)

wherePL(z) is givenby (5-49),whereP~1 (z) is givenby (5-54),whereMD2M* is a

Cholesky factorization ofΦb, given by (5-61), and where satisfies (5-62).

M̃ Ñ+ Ñ– F Ñ 1+

N Ñ+ Ñ– E Ñ 1+

i Ñ–=

1–∑

B̃

BDi

Q̃

Q̃ B̃

Ñ

Mn
m n–
--------------- Ñ Ln

m n–
---------------

Q̃ z Ñ–

Q̃
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Observe that for the specialcaseof L = 0, thereis no backward predictor, and the LP

detectorreducesto theforwardLP detectorof Definition5-6:CLP(z) = CFLP(z). Similarly,

for thespecialcaseof L = M, thereis no forwardpredictor, andtheLP detectorreducesto

thebackward LP detector: CLP(z) ≡ CBLP(z). This case is investigated in Appendix 5-8.

We now attempt to quantify the performance of the LP detector with some computer

experiments.Recallfrom Experiment5-4 thatfor 2-tapchannels,theFLP detector(anLP

detectorwith L = 0) producesanunacceptableMSEi whenever theenergy fractionγ0
(i) is

closeto 1/SNRi, regardlessof thedetectordelay. Thenext experimentconsidersthesame

2-tap channels, but applies an LP detector with a different index L, namelyL = 1.

Experiment 5-5. We again consider1000,2-tap Gaussianchannelsof dimension

5 × 2, asin Experiment5-4. We vary thezero-thtapenergy fraction for SNRs

fixed at SNR1 = 20 dB andSNR2 = 30 dB, so that SIR1 = –10dB.The predictor

order is N = = 1. Fig. 5-9, like Fig. 5-8, shows the averageMSE1 versus

SNR1 for thedelay-0anddelay-1FLP detectors,but it addsanadditionalcurve for

the LP detectorwith index L = 1 anddelayD = M +N = 2. Observe that the worst

caseMSE1 is lessthan–13 dB, occurringwhen ≈ –4 dB. Regardlessof ,

there always exists an LP detector with good performance.

Thenext experimentmoregenerallyquantifiestheperformanceof theLP detector. It

comparestheperformanceof anLP detectorwith optimal index L anddelayD to thatof

an MMSE detector with the same memory.

Experiment 5-6. We considerrandom3-tap(M = 2) channelsof dimension6 × 2.

Theelementsof eachtaparedrawn independentlyfrom a complex Gaussiandistri-

γ0
1( )

Mn
m n–
---------------

γ0
1( ) γ0

1( )
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bution andthenthe columnsarescaledto control the SNR of user1. The SNR of

user2 is alwaysset10 dB above thatof user1, sothatSIR1 = –10dB. We consider

10000channelsateachSNRpoint.For eachchannelwe implementtheoptimalmin-

imum-orderLP detector, i.e. consideringall possibleindicesL ∈ { 0, 1, M = 2} and

all possibledelaysD ∈ { 0, 1, …, M+L+N }, andusingN = = 1 whenthecorre-

spondingpredictorexists.Therefore,countingthespatialpredictor, theLP detector

containsat most 3 taps.As a benchmark,we also implement the optimal 3-tap

MMSE detector. Fig. 5-10 comparesthe performanceof the bestLP detectorwith

thatof thebestMMSE detector. Fromthehorizontalgapbetweenthecurves,wesee

thattheLP detectorsuffersanSNRpenaltyrelative to theMMSE detector. Thesize

of this penaltyin high SNRis roughlyequivalentto theamountof energy discarded

by the temporal predictors.If the energy were evenly distributed among the 3

channeltaps, we would expect the LP detectorto keep only about 33% of the

channelenergy. However, for this example,the largesttapon averagecontains36%

of the total channel energy, so the average penalty is 1/0.36= 4.44 dB.

Of course,theperformanceof theoptimalLP detectorfor any particularchanneldepends

on the distribution of channelenergy. The performanceis bestif the channelmemoryis

small or if a significant fraction of the channel energy is concentrated in a single tap.

We now briefly discusssomeof the propertiesof the LP detector. We stressthat

thesepropertieshold for any index L ∈{0, 1, …, M} andfor any order(N, ) satisfying

N ≥ and ≥ .

Ñ

Ñ

Mn
m n–
--------------- Ñ Ln

m n–
---------------
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Property 5-1. The LP detectorapproachesa delayedzero-forcingdetectorin the

limit as noise energy goes to zero.

LP(z) = HL
† [I � ~1(z)][I � AL(z)], (5-64)

whereAL(z) is givenby (5-26),and ~1(z) is givenby (5-13),substitutingHL(z) =

Hiz
� i for H(z).

Property5-1 can be arguedwithout mathematicalrigor by consideringCLP(z) for very

small positive noisevarianceσ2. In this case,all predictorsare approximatelyequalto

their respective minimum-normsolutions.Specifically, (5-49) is approximately(5-26),

and(5-54)is approximately(5-13)with H(z) = HL(z). It follows thatΦb ≈ HLHL
* (5-61);

Φb remainsfull rank, althoughpossibly poorly conditioned.Hence,M �

�

in (5-63) is

approximatelyequalto theminimum-normmonicfactorin ageneralizedCholesky factor-

ization(4-13)of HLHL
* . (M�

�

is well definedwith or withoutnoise.)For verysmallσ, the

termD �

�

in (5-63)hasexactly m � n very largevalues,yet theproductJQD�

�

M�

�

≈ HL
†

is well behaved. We remark that CLP(z) as definedin (5-63) doesnot exist for σ = 0

becauseD �

�

is undefined;however, the detector definition can be extended to the

zero-noise case by simply substitutingD†  for D �

�

.

Property 5-2. The LP detector is optimally near-far resistant.

Optimal near-far resistance is inherited from the zero-forcing detector.

Property 5-3. For σ > 0, the outputof the LP detectoris spatiallywhite, but not

temporally white. For σ = 0, the output is spatio-temporally white.

C
σ 0+→
lim z L– Ñ– Ã

Ã

i 0=

L∑
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Property 5-3 follows from inspection of (5-61).

Property 5-4. TheLP detectoris informationlosslessupto thetruncationmatrixJ.

Property5-4 follows becauseall detectoroperations,exceptthe truncationmatrix J, are

full column rank on the unit circle, and thus invertible. Although in general,inversion

would require an infinite numberof taps, this property doessuggestthat other blind

detector architectures might be designed using linear prediction as a front end.

5.6 Blind Adaptive Implementations

A block diagramof a blind adaptive LP detectoris shown in Fig. 5-11.Thepredic-

tors aredeterminedadaptively by minimizing their respective predictionerrors.The first

stageis an (L+1)-stepforward temporalpredictorof orderN: L(z) = iz
� i.

Let Rk � L
T = [rk � L � 1

T … rk � L � N
T], of dimensionmN × 1, denotea stacked and

delayed(by L+1) observationvector, andlet L(k) = [ L + 1 … L + N], of dimensionm

× mN, denotethematrix of predictioncoefficients.(We denotedependenceon time k par-

entheticallyfor the coefficients to avoid confusionwith coefficient indices.)The coeffi-

cientscanbeadaptedto minimizethevarianceof thepredictionerrorek = rk
� L(k)Rk as

follows:

L(k+1) = L(k) + µ fekRk
*. (5-65)

Becausethe updateis derived from a costthat is quadraticin L, convergenceto L =

[ PL + 1 … PL + N], as defined in (5-49), is guaranteed for sufficiently small step sizeµ f.

P̂
i L 1+=

L N+∑ P̂

P̂ P̂ P̂

P̂

P̂ P̂

P̂ P̂
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The secondstageis a delayedone-stepbackward temporalpredictorof order N:

~1(z)z��� = i z�

�
��� . Observe that ~1(z)z��� is causal.Let Ek

T = [ ek � 1
T …

e T] of dimensionmN × 1 denotea stackedanddelayed(by 1) versionof theforward

predictionerror, andlet ~1(k) = [ … ], of dimensionm × mN, denoteamatrixof

backwardpredictorcoefficients.Thecoefficientscanbeadaptedto minimizethevariance

of the backward prediction errorbk = ek
� ~1(k)Ek as follows:

~1(k+1) = ~1(k) + µbbkEk
*. (5-66)

After convergenceof theforwardpredictor L, convergenceof ~1 to [P … ], as

defined in (5-54), is guaranteed for a sufficiently small step sizeµb.

The final adaptive stagesof the detectoraredesignedto spatiallywhiten andopti-

mally rotatethe backward predictionerror bk. Let denotea strictly lower-triangular

spatialpredictor. This spatialpredictorcanbeadaptedby usinga constrainedLMS algo-

rithm designedto minimizedthevarianceof thespatialpredictionerror = bk
� bk

as follows:

(k+1) = (k) +µs bk
*. (5-67)

(k+1) = (k+1) ⊗ L, (5-68)

where,asin chapter4, '⊗' denotesacomponent-wiseproduct,andL is anm × m maskthat

properlyconstrains . If precedingstageshaveconverged,then convergesto I � M�

�

for asufficiently smallstepsizeµs, whereM is avalid factorin theCholesky factorization

of Φb = E[ bkbk
*].

P̂
i N–=

1–∑ P̂ P̂

k Ñ–

P̂ P̂ Ñ– P̂ 1–

P̂

P̂ P̂

P̂ P̂ Ñ– P 1–

P̂0

b̃k P̂0

P̂0 P̂0 b̃k

P̂0 P̂0

P̂0 P̂0
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The last two adaptive stages,namely the AGC and rotator, can be implemented

exactly as explainedin chapter4. Seesection4.3.1 for detailsregarding the AGC, and

section4.3.2 for a discussion of the adaptive rotator.

There are several variations of this basic implementationoutlined above. For

example, if L = 0, then the backward predictor doesnot exist. The updateof (5-66)

becomes unnecessary, and we can replace (5-67) with the following:

(k+1) = (k) +µs ek
*, (5-69)

where = ek
� ek. Similarly, if L = M, thereis no forwardpredictor. Theupdateof

(5-65) becomes unnecessary, and we can replace (5-66) with the following:

~1(k+1) = ~1(k) + µbbkRk
*, (5-70)

whereRk
T = [ r�

� 1
T … r T], andbk = rk

� ~1(k)Rk. As anothervariation,we might

chooseto combinetheimplementationof thespatialpredictorwith thebackwardtemporal

predictor(or forward temporalpredictorif L = 0). For example,we coulddefinea back-

ward spatio-temporalpredictor as ~1(z) z� � = i z� i � N, where is strictly

lower triangular. Let T = [ ek
T … ek� N

T], of dimensionm(N+1) × 1, denotea stacked

versionof the forwardspatio-temporalpredictionerror. (Note that differs from Ek in

(5-66)by inclusionof thetermek.) Let ~1(k) = [ … 0], of dimensionm ×

m(N+1), denotea matrix of predictioncoefficients.The coefficients can be adaptedto

minimizethevarianceof thespatio-temporalpredictionerror = ek
� ~1(k) asfol-

lows:

~1(k+1) = ~1(k) + µb
*. (5-71)

P̂0 P̂0 ẽk

ẽk P̂0

P̂ P̂

k Ñ– P̂

P̂
i 0=

N–∑ P̂ P̂0

Ẽk

Ẽk

P̂ P̂ Ñ– P̂ 1– P̂

b̃k P̂ Ẽk

P̂ P̂ b̃kẼk
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(k+1) = (k+1) ⊗ L. (5-72)

The updateof (5-71) thuscombines(5-66) and(5-67). If the stepsizeµb is sufficiently

small, andthe forward predictorhasproperlyconverged,then ~1 is guaranteedto con-

verge to

~1 = [ … 0] = [ M�

�
�

�
P … ] | (I � M �

�

) ], (5-73)

whereM is a termin a Cholesky factorizationof Φb (5-61),andwhere[P … ] is

definedby (5-54).In termsof numericalcomplexity, thecombinedspatio-temporalupdate

is virtually the sameasseparatetemporalandspatialupdates;however, in termsof pro-

gramcomplexity, thecombinedapproachmayhave anadvantage.Theadvantageof sepa-

rate updatesis that the step sizes µb and µs in (5-66) and (5-67) can be chosen

independently to optimize convergence speed and misadjustment.

5.7 Experimental Results

We now consideradditionalcomputerexperiments.The first of thesecomparesa

fractionally spacedsingle-userLP-basedequalizer(i.e., an LP detectorwith n = 1) with

the well-known fractionally spacedconstant-modulusalgorithm (FS-CMA) [138]. The

experimentclearly illustratestwo of the primary advantagesof basingblind algorithms

primarily onsecond-orderstatistics—fastconvergenceandaninherentcompatibilitywith

shapedconstellations.Recallfrom thediscussionin chapter2 thatclassicalblind equaliza-

tion techniques,i.e. thosebasedon HOS,areunableto copewith shapedconstellations.

Unshapedsystemstransmitall symbolsin thealphabetwith equalprobability; theproba-

bility distribution is uniform. In contrast,shapedsystemsfavor symbolsthatarecloserto

P̂0 P̂0

P̂

P̂ P̃ Ñ– P̃ 1– P̃ Ñ– P 1–

Ñ– P 1–
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theorigin; thedistribution is nearerto Gaussian.A blind equalizerbasedonHOSis bound

to fail for a Gaussianinput distribution,becausesuchdistributionsarecompletelycharac-

terizedby their first andsecond-orderstatistics.For example,Leblancet al. [139] have

shown that CMA deterioratesas the kurtosisof the channelinput approachesthat of a

Gaussiandistribution. And yet, a near-Gaussiandistribution is a prerequisiteto achieving

capacity on an AWGN channel. The following experiment demonstratesthis false

dichotomy.

Experiment 5-7. LP versus CMA. This experimentcomparesa T/2-spacedCMA

equalizerto a 1 × 2 LP detector(equalizer)for a systemusingshaped64-QAM. The

shapingis implementedby quantizinga complex Gaussianrandomvariableto its

nearestconstellationpoint.18 By so doing,pointscloserto the edgeareusedmore

often,while pointsneartheorigin areusedlessoften.Thedegreeof shapingis con-

trolled by the varianceof the Gaussianrandomvariable,andit is quantifiedby the

kurtosisκ = of thechannelinput xk. For anunshaped64-QAM constella-

tion, κ = 1.381,while for a 64-QAM constellationshapedaccordingto the above

procedure,κ is larger. Thekurtosisof a complex Gaussianrandomprocessis κ = 2.

Theconstellationis scaledto haveunit energy sothatthemodulusparameterusedin

the CMA updateis equalto the kurtosis.We decimatethe outputof the FS-CMA

equalizerwith a baud-ratesampler, andthenappenda first-orderPLL to recover the

complex scalarejθ left unresolvedby CMA. (An analogous2-dimensionalPLL, fol-

lowedby a 1 × 2 truncationmatrix J, is usedasanintegral partof theLP equalizer.)

18. Strictly speaking, the complex plane is tiled with 64-QAM constellations, and points chosen
from the secondary constellations are mapped isomorphically back to the primary constellation.

E xk
4[ ]

E2 xk
2[ ]

-------------------------
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TheLP index is chosento beL = 0, sothereis nobackwardpredictor. Eachequalizer

spans4 baud.Thechannelis randomlygenerated,virtually noiseless(80 dB SNR),

and also spans 4 baud.

Weconductthreetrialswith varyingdegreesof shaping.For thefirst trial, there

is no shaping;all symbolsfrom the 64-QAM constellationare equally likely, as

depictedby thehistogram19 in Fig. 5-12(a).Thekurtosisof this unshapedconstella-

tion is experimentallydeterminedto be κ = 1.386(which is closeto the theoretical

value of 1.381).Also shown in Fig. 5-12(a)are the outputsof both equalizersat

2500,5000,and10000baud.Theupperrow correspondsto theLP equalizer, while

the lower row correspondsto the CMA equalizer. We seethat both equalizersare

effective for the unshaped trial, although the LP equalizer converges slightly faster.

Thesecondtrial usesmoderateshapingwith ameasuredkurtosisof κ = 1.595.

We seein Fig. 5-12(b) that the convergencerate of the LP equalizeris virtually

unchanged, while that of the CMA equalizer slows substantially.

Theconstellationis heavily shapedfor thethird trial. Thekurtosisis measured

to beκ = 1.857,which is closeto κ = 2, thekurtosisof a complex Gaussianrandom

variable.20 In Fig. 5-12(c)weseethattheCMA equalizerfails completelyevenafter

10000baud.In contrast,the LP equalizeris still easilyable to recover the shaped

constellation.Theexperimentthusdemonstratesthebenefitsof theLP equalizerand,

in particular, the benefits of minimal reliance on HOS.

19. The histograms in this experiment are for the real part of the symbols only. By symmetry,
the histogram of the imaginary part of the symbols is virtually identical.
20. In the language of Leblanc et al. [137], a distribution with kurtosis equal to that of a Gaussian
distribution is mesokurtic.
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We remarkthat, for eachtrial, the stepsizesin all updatesareoptimizedfor

convergencespeed.For theLP equalizer, thestepsizesarethesameacrossall trials:

µ f = 0.5(2� k/500) and µs = 0.2(1 + k/600) for the temporaland spatialpredictors,

respectively, µa = 0.06(2� k/700) for theAGC,andλ = 0.5(1+ k/800) for therotator.

In contrast,for theCMA equalizer, theinitial stepsizesaredecreasedfor increasing

kurtosisin orderto maintainstability. We useµ = 0.09(2� k/700), µ = 0.08(2� k/1200),

andµ = 0.05(  for trials 1, 2, and 3, respectively.

Thepreviousexperimentdemonstratesthebenefitsof statisticaldecoupling,that is,

decouplinguseof secondandhigher-orderstatistics,andusingHOSminimally only at the

laststep.TheLP equalizerdecomposestheequalizationtaskinto two steps:thefirst uses

only SOSandthusis not affectedby theGaussianityof thetransmittedsymbols,whereas

the secondusesHOS implicitly, by relying on knowledgeof the finite alphabet.Strictly

speaking,theLP equalizerdoesuseHOS,but only at the last step,andonly to resolve a

memorylessunitary ambiguity. SOS are enough to perform the initial and more

demandingtaskof eliminatingthechannelmemory, andit is this initial taskthat is obliv-

ious to the Gaussianity of the symbols.

Thenext experimentdemonstratestheeffectivenessof theLP detectorfor anasyn-

chronousmultiuserCDMA system.Theexperimentis a generalizationof Experiment4-4

to channels with memory.

Experiment 5-8. Asynchronous CDMA. We now considerthe 2-userasynchro-

nous CDMA system illustrated in Fig. 5-13. Both users transmit QPSK. The

spreadingcodefor the i-th useris givenby fi(t) = cj
(i)p(t � jT ⁄ m), wherethe

2
k 1200⁄–( )

j 0=

m 1–∑
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Figure 5-12. Convergence of LP versus CMA: (a) unshaped 64-QAM; (b)

moderately shaped; and (c) heavily shaped.
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chip-pulseshapep(t) = is an idealsinc functionwith bandwidthequal

to half the chip ratem ⁄ T. In termsof the chip-ratePAM sequence,this p(t) is the

idealzero-excess-bandwidthpulseshape.Thechip sequences{ cj
(i), j = 0, …, m � 1}

areof lengthm = 16 with periodequalto onebaudinterval T. They arerandomly

generated:

{ cj
(1) } = { +1 �

�
+1 +1 �

�
�

�
�

�
�

�
�

�
+1 +1 +1 �

�
�

�
�

�
�

�
},

{ cj
(2) } = { +1 +1 +1 �

�
+1 +1 +1 �

�
+1 �

�
�

�
�

�
�

�
+1 �

�
+1 }. (5-74)

Their normalizedcorrelationis ρ = –3 ⁄ 8 = –0.375.Both CDMA signalsaresubject

to severechanneldispersionmodeledby a first-orderlow-passfilter h(t) with 3-dB

bandwidthequalto one-fourththechip rate,W = 1 ⁄ 4Tc. Thesignalsaredelayedby

τ1 = 0.7Tc andτ2 = 6.2Tc, respectively, whereTc = T ⁄ m is the chip duration.The

receiver front endconsistsof ananti-aliasingfilter, followedby a chip-ratesampler,

and a S/P converter. Becausethe transmittershave zero excessbandwidth, the

front-endlow-passfilter is identicalto thechip-pulseshapep(t). Thechip-ratesam-

ples are groupedin blocks of m = 16 to generatethe baud-ratesequencerk. The

equivalenttransferfunction H(z) hasdimension 16 × 2. TheamplitudesA1 andA2

and the noise varianceσ2 are selected such thatSNR1 = 40 dB andSNR2 = 35 dB.

We implementtheblind adaptiveLP detectorwith index L = 0 andorderN = 1

using µ f = 0.5(2� k/500) for the forward predictor, µs = 0.05(2� k/600) for the spatial

predictor, µa = 0.1(1 + k/1000) for the AGC, and λ = 0.8(2� k/700) for the rotator.

Fig. 5-14 shows the recovered constellationsat steady state (18000 to 20000

baud).

πtm T⁄( )sin
πtm T⁄( )

--------------------------------
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f1(t)xk
(1)

rj

Figure 5-13. (a) A two-user asynchronous CDMA system with a chip-rate

sampling receiver; (b) An equivalent MIMO FIR channel.

xk rk

(a)

(b)

rkS ⁄ P

A1h(t � τ1)

LPF
m ⁄ T

H(z)

m × 1

m × n

AWGN

AWGN

f2(t)xk
(2) A2h(t � τ2)

⇔

Figure 5-14. Recovered constellations for the asynchronous CDMA system of

Experiment 5-8.
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5.8 Chapter Summary

We have shown that,undermild assumptions,thereexist many equivalentrepresen-

tationsof tall FIR channels,e.g., moving average,autoregressive, andothers.The exist-

enceof afinitely parameterizedAR model,in particular, impliesthattall channelshavean

FIR, andthereforestable,left-inverse;thus,in thissense,they areminimumphase.Hence,

second-orderstatisticsare sufficient to identify or equalizea tall FIR channelup to an

ambiguousunitary ambiguity. The minimum-phasepropertyalso immediatelysuggests

linearpredictionasaneffective way to eliminateor to nearlyeliminatechannelmemory.

Using this idea,we have presenteda family of blind multiuserdetectorsthat exploit the

special properties of tall FIR channels.

The forward LP detectorof Definition 5-6 exploits the AR channelmodel of

section5.1.1.The first stageof the detectoris a one-stepforward prediction-errorfilter.

Without noise,sucha filter effectively convertsthechannelH(z) of (1-1) into a memory-

lesschannelH0. Although with noise,this conversion is only approximate,the spatial

methodsof chapter4 canthenneverthelessbeappliedto recover thetransmittedsequence

xk. The blind adaptive implementationwe have proposedhasrelatively low complexity,

fastconvergence,andan inherentinsensitivity to sourcedistributions.With a zero-delay

constraint,theFLPdetectorhasperformancenearthatof theMMSE detector. However its

performanceis highly dependentupontheenergy in thezero-thtapH0, assumingthatit is

significant relative to noise.

The generalized(forward-backward) LP detectorof Definition 5-7 exploits the

ARMA andAP modelsof sections5.1.2and5.1.3,respectively. Thefirst stageof theLP

detector is an (L+1)-step forward prediction-errorfilter, which roughly converts the
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channelof H(z) = H0 + … + HMz � M of (1-1),whichhasmemoryM, into HL(z) = H0 + …

+ HLz � L, which hasmemoryL. Thesecondstageof thedetectoris a one-stepbackward

prediction-error filter, which roughly converts HL(z) into a memoryless channel

HL . (Recallthat is theorderof thebackwardpredictor).Thespatialmethodsof

chapter4 arethenappliedto invert HL. ThegeneralizedLP detectoris in facta family of

detectors,onefor eachindex L, andtheFLPdetectorcanbeviewedasthespecialcasefor

which L = 0. Usingan index otherthanL = 0 canresultin betterperformance,but at the

expenseof increasedcomplexity. Ideally the index L should correspondto the tap of

greatest energy.

Thereis one remainingdeficiency in the blind implementationof the generalized

detector. If thechannelis unknown, thenthechannelenergy distribution is alsounknown.

Therefore,thereis no obviousway to choosetheoptimalindex L. Onepossibilityto is try

severalor all possibleindices,eitherseriallyor in parallel.Of course,eithermethodhasan

associatedcost.The serial methodwould increasethe recovery time, while the parallel

methodwould increasethe complexity of the detector. A clever methodfor choosingL

remainsan openissue,althoughwe discussonepromisingpossibility in the future work

section of chapter7.

z L– Ñ– Ñ
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APPENDIX 5-1: PROOF OF THEOREM 5-2 AND COROLLARY 5-2.1

(EXISTENCE OF THE ARMA MODEL)

To prove theexistenceof anARMA model,we needto show that [I � AL(z)]H(z) =

HL(z) has a solution. We can express the equation in block-matrix form as follows:

[ I 0m × mL
� AL+1 … � AL+N]HN+L+1 = [H0 … HL 0m × n(M + N)]. (5-75)

Subtracting[Im 0m × (N+L)m]HN+L+1 from both sides of (5-75) yields

[ 0m × m(L+1)
� AL+1 … � AN+L]HN+L+1 = �

�
0m × m HL+1 … HM 0m × (N+L)n] (5-76)

[AL+1 … AL+N]HN = [HL+1 … HM 0m × n(N+L)]. (5-77)

This is a systemof mn(M+N) scalarequationswith m2N unknowns. If (5-2) is satisfied

thenHN is full rankfor all N [137]; therefore,theequationsarelinearly independent,and

the system has a solution ifN ≥ . (Theorem 5-2)❏

We now solve for theAR parametersof theARMA model.By substituting,we see

that (5-11) satisfies (5-77):

[AL+1 … AL+N ]H = [ HL+1 … HM 0m × n(N+L)]H † H + VH

= [HL+1 … HM 0m × n(N+L) ]. (5-78)

Thesolutionis uniqueif andonly if thedimensionof null(H ) is trivial; i.e., if andonly if

� �
��� (M+N) = 0. (Corollary 5-2.1)❏

Mn
m n–
---------------
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APPENDIX 5-2: PROOF OF THEOREM 5-3 AND COROLLARY 5-3.1

(EXISTENCE OF THE AP MODEL)

Expressing[I � A~1(z)]z� NH(z) = HMz� M � N in block-matrix form yields

[ � A
� � … � A

� 1 I ]HN+1 = [ 0m × (M+N)n HM]. (5-79)

Subtracting[ 0m × Nm Im ]HN+1 from both sides of (5-79) yields

[ � A
� N … � A

�

� 0m × m]HN+1
� �

�
0m × Nn H0 … HM � 1 0m × m], (5-80)

[A
� N … A

�

� ]HN = [ 0m × Nn H0 … HM � 1]. (5-81)

This is a systemof mn(M+N) scalarequationswith m2N unknowns. If (5-2) is satisfied

thenHN is full rankfor all N [137]; therefore,theequationsarelinearly independent,and

the system has a solution ifN ≥ . (Theorem 5-3)❏

We can solve for the AP parametersby substituting;we seethat (5-13) satisfies

(5-81):

[A
� N … A

�

� ]H = [ 0m × Nn H0 … HM � 1 ]H † H+ VH

= [ 0m × Nn H0 … HM�

� ]. (5-82)

Thesolutionis uniqueif andonly if thedimensionof null(H ) is trivial; i.e., if andonly if

� �
��� (M+N) = 0. (Corollary 5-3.1)❏

Mn
m n–
---------------
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APPENDIX 5-3: PROOF OF THEOREMS 5-8, 5-10, COROLLARIES 5-8.1,

5-10.1 (OPTIMAL L-STEP FORWARD PREDICTOR)

Applying an(L+1)-stepforwardpredictorof orderN to thechannel(1-1) outputrk

produces a forward prediction errorek, which can be expressed as follows:

ek = + (KL � PLH )Xk � L � 1 + nk
� PLNk � L � 1. (5-83)

H = HN

+

X�
� L � 1

H0 H1 HL HL 1+ HM 0 0
0 H0 HL 1– HL HM 0 0

0 H0 H1 HL HM 0 0
H0 H1 … HL HM 0

0 H0 H1 … HL HM

… … …

……
…

…

0mN× n(L+1)

…

…

……

…

…

…

…

…

…

…

KL

xk � L

xk

xk � L � 1

xk � L � M � N

N�
� L � 1

nk � L

nk

nk � L � 1

nk �

�
���

Im 0m mL× PL 1+– P– L 2+ … P– L N+ ×

� PL

ek =

HN+L+1

…
…

Hixk i–
i 0=

L

∑
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Using the fact that the signalandnoisearewhite anduncorrelated,we canexpressthe

mean-square prediction errorξ = trE[ ekek
*] as follows:

ξ =  + tr[(KL � PLH )(KL � PLH )*+ σ2I + σ2PLPL*]. (5-84)

We can neglect terms that are independent ofPL, so it suffices to minimize

J(PL) = tr[(KL � PLH )(KL � PLH )*+ σ2PLPL*]. (5-85)

Taking the gradient ofJ(PL) and setting it equal to0, we have

∇J(PL) = (PLH � KL)H * + σ2PL = PL(HH * + σ2I
�

� KLH * = 0. (5-86)

SincetheHessian∇2J(PL) = (HH * + σ2I) > 0 is positive definite,thesolutionof (5-86)

minimizes (5-85). The optimal coefficients are thus given by (5-48), restated here:

PL = KLH *(HH * + σ2I)�

�

. (5-87)

The expressionof (5-49) follows from the identity H *(HH * + σ2I)�

�

= (H*H + σ2I)�

�

H *, which is derived in Appendix 3-1.(Theorem 5-10)❏

Theexpressionsof (5-30)and(5-31)follow from (5-48)and(5-49),respectively, by

simply substitutingL = 0. (Theorem 5-8)❏

The coefficients of the forward cascadeFL = [F0 … FM+L+N ] for generalL are

given by the following convolution representation:

FL = [Im | 0m×mL | � PL ]HN+L+1 = [ H0 … HL |(KL � PLH )]. (5-88)

Substituting the optimal predictor coefficients (5-49), we obtain

FL = [ H0 … HL | (KL � KL(H *H + σ2I)�

�

H *H ) ]. (5-89)

tr HiHi
*( )

i 0=

L

∑

1 2⁄( )
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Left-factoringKL(H *H + σ2I)�

�

yields

FL = [H0 … HL | KL(H *H + σ2I)�

�

{(H *H + σ2I
�

� H *H }]

= [H0 … HL | KLσ2(H *H + σ2I)�

�

]

= [ H0 … HL | [HL+1 … HM 0m × n(L+N)
�

� Ψ], (5-90)

which verifies (5-50). (Corollary 5-10.1)❏

The expressionin (5-32) follows from (5-50) by substitutingL = 0. We needto

derive (5-33) to completethe proof of Corollary 5-8.1.Using the expressionfor the for-

wardpredictionerror ek givenby (5-83)with L = 0, the forwardpredictionerror covari-

ance is given by

Φe = E[ ekek
*] = H0H0 + σ2I + (K � PH )(K � PH )* + σ2PP*. (5-91)

SubstitutingKΨ for (K � PH ) andσ �

�

KΨH * for P in (5-91) yields

Φe = H0H0 + σ2I + KΨΨK* + σ2σ�

�

KΨH *H ΨK*σ �

�

= H0H0
* + σ2I + KΨ(σ2I)ΨK*σ�

�

+ KΨ(H*H )ΨK*σ�

�

= H0H0
* + σ2I + KΨ(σ2I + H*H )ΨK*σ�

�

= H0H0
* + σ2I + KΨΨ�

�

ΨK*

= H0H0
* + σ2I + KΨK*, (5-92)

which verifies (5-33). (Corollary 5-8.1)❏
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APPENDIX 5-4: DERIVATION OF LEMMA 5-4

Let ek = Fixk + vk, wherexk andvk areindependentwith covariancesI and

Φv, respectively. In matrix notation, we can expressek as

ek = FXk
� vk, (5-93)

whereF = [F0 F1 … FM+N], andXk
T = [ xk

T xk�

� T … xk�

�
� N

T]. For ann× m memory-

less detectorC, theD-delay MSE sum is given by

J(C) = E[ Cek
� xk� D

2] = E[ CFXk
� Cvk

� xk � D) 2]. (5-94)

If D ∈ {0, 1, …, M+N}, then we have

J(C) = E[ (CF – )Xk � Cvk
2], (5-95)

where ≡ [ 0n× nD In 0n× n(
� � � ��� )] suchthatxk� D = Xk. Observe thatXk andvk are

independent, so

J(C) = tr[(CF – )(CF – )* + CΦvC*]. (5-96)

The gradient ofJ(C) is then

∇J(P) = 2(CF – )F* + 2CΦv = 0. (5-97)

With F* = FD
*, we have

CMMSE = FD
*(FF* + Φv) �

�

 = FD
*Φe

�

�

. ❏ (5-98)

i 0=

M N+∑

ĨD

ĨD ĨD

ĨD ĨD

ĨD

ĨD
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APPENDIX 5-5: PROOF OF LEMMA 5-5 (THE RELATIONSHIP BETWEEN

THE FLP AND MMSE DETECTORS AT ZERO-DELAY)

Let C(z) = Ciz
� i beann × m detectorwith N+1 tapsfor thechannelof (1-1)

with observationrk. Wecanexpresstheoutputzk = Cir� �

� of thisdetectorin matrix

notation as follows:

zk = C(HN+1Xk + Nk). (5-99)

The zero-delay detector errorek = zk
� xk can then be expressed as

ek = (CHN+1
� )Xk + CNk, (5-100)

where ≡ [ In 0n× n(M+N)] such thatxk = Xk. The total MSEtrE[ekek
*] is then

J(C) = tr(CHN+1
� )(CHN+1

� )* + σ2trCC*. (5-101)

Taking the gradient ofJ(C) and setting it equal to0 produces

∇J(C) =(CHN+1
� )HN+1* + σ2C = 0 (5-102)

C(HN+1HN+1
* +σ2I) = HN+1

*. (5-103)

i 0=

N∑

i 0=

N∑

H0 H1 … HM 0 … 0
0 H0 H1 … HM

0
0 … 0 H0 H1 … HM

…

…

… … …

xk

x�
� M � N

xk � 1
nk

nk � N

nk � 1+

C0 C1 … CN

HN+1
Xk Nk

zk =

C

KC
~

Ĩ0

Ĩ0 Ĩ0

Ĩ0 Ĩ0

Ĩ0

Ĩ0
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We can partition (5-103) as

[C0 ]  = [H0
* 0n×mN], (5-104)

which yields the following system of equations:

C0(H0H0
* + KK* + σ2I) + HK* = H0

* (5-105)

C0KH* + (H H * +σ2I) = 0. (5-106)

The solution to (5-106) is

� � C0KH*(H H * +σ2I)�

�

. (5-107)

Therefore, the optimal MMSE taps can be written as

C = [I ] = C0[I
�

� KH*(H H * +σ2I) �

�

]

C0[I
�

� P ]. (5-108)

whereP = [P1 … PN] is given by (5-30). Hence,the one-stepforward prediction-error

filter is a right-factor of the (N+1)-tap MMSE detector:

CMMSE(z) = C0[I � P(z)]. (5-109)

The coefficient C0 canbe derived from (5-105),but this is unnecessary;C0 mustbe the

n × m matrix thatminimizesthetotal MSE givenek, theforwardpredictionerror. If there

wereanothermatrix D0 producingsmallertotal MSE, thenD(z) = D0[I � P(z)] would

have smaller total MSE thanCMMSE(z), a contradiction.❏

C̃
H0H0

* KK* σ2Im+ + KH *

H K* H H *
σ2ImN+

C̃

C̃

C̃

C̃
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APPENDIX 5-6: PROOF OF THEOREM 5-9

(PRECURSORS BELOW THE NOISE FLOOR ARE IGNORED.)

We can express the matrix of channel taps as a matrix of column vectors:

[H0 H1 … HM] = [ h0
(1) …h0

(n) |h1
(1) …h1

(n) | …| hM
(1)… hM

(n) ]. (5-110)

We can then expressΨ as follows:

Ψ = , (5-111)

where = [ h0
(2) … h0

(n) |h1
(1) … h0

(n)|… | hM
(1)… hM

(n) | 0m × Nn ], andwhere

is anmN � 1 × n(M+N) � 1 block-Toeplitz matrix given by

 = . (5-112)

Taking the limit ofΨ asH0 goes to zero yields

 = = ≡ . (5-113)

Therefore, ash0
(1) becomes vanishingly small, the coefficients ofF(z) become

σ2 h0
1( )∗h0

1( ) σ2
+ h0

1( )∗K̃

K̃
*
h0

1( ) H̃
*
H̃ σ2I+

1–

K̃ H̃

H̃

h0
2( ) … h0

n( ) h1
1( ) … h1

n( ) … hM
n( ) 0 … 0

0 h0
2( ) … h0

n( ) h1
1( ) … h1

n( ) … hM
n( ) … 0

0 … 0 h0
2( ) … h0

n( ) h1
1( ) … h1

n( ) … hM
n( )

… …… …………

Ψ
H0 0→

lim σ2 σ2 0

0 H̃
*
H̃ σ2I+

1–
1 0

0 σ2 H̃
*
H̃ σ2I+( )

1–
1 0
0 Ψ̃
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[h0
(1) … h0

(n) [h1
(1) … hM

(n) 0m × Nn] � Ψ ] =

[ 0m × 1 h0
(2) … h0

(n) h1
(1) [ h1

(2) … h1
(n) … hM

(n) 0m × Nn] � ]. (5-114)

Let h(i)(z) denotethei-th columnof H(z) sothatH(z) = [ h(1)(z) … h(n)(z)]. An equivalent

expression for (5-114) is then given by

[I � P(z)]H(z) = [ I � P(z) ][ (1)(z) h(2)(z) … h(n)(z)], (5-115)

where (1)(z) = hk
(1)z� k. The predictorbehaves as if the channelwere (z) =

[ (1)(z) h(2)(z) … h(n)(z)], rather thatH(z).

Thesameargumentcanberepeatedfor thenew effectivechannel (z); therefore,by

induction, (5-115) generalizes to

[I � P(z)]H(z) = [ I � P(z) ][ hk
(1)z� k| h(2)(z) … h(n)(z)], (5-116)

whereΓ1 = … . Finally, we arguethat (5-116)musthold for any useri,

not just user1. We canchangethelabelingof usersby right-multiplying H(z) by any per-

mutation matrix Π of our choosing, and becauseH(z)Π and H(z) have identical

second-order output statistics, the behavior of the predictor is the same. It follows that

[I � P(z)]H(z) =

[ I � P(z) ][ hk
(1)z� k| … | hk

(n)z� k], (5-117)

whereΓ = [Γ1 Γ2 … Γn] is thetotalprecursor. Takingthelimit of (5-117)asthenoisevari-

ance goes to zero verifies (5-45).❏

h0
1( ) 0→
lim

Ψ̃

h0
1( ) 0→
lim h̃

h̃
k 1=

M∑ H̃

h̃

H̃

Γ1 0→
lim

k L1 1+=

M∑

h0
1( ) h1

1( ) hL1

1( )

Γ 0→
lim

k L1 1+=

M∑ k Ln 1+=

M∑
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APPENDIX 5-7: PROOF OF THEOREM 5-11

(OPTIMAL BACKWARD PREDICTOR FOLLOWING FORWARD PREDICTOR)

The backward prediction errorbk can be expressed in matrix notation as follows:

bk
� � P~1F  + KF  + F x

� P~1E  + KE  + . (5-118)

E = EN

 F0 … F
M̃ 1–

F
M̃

0 … 0

0 … F0 … F
M̃ 1–

F
M̃

0

0 … 0 F0 … F
M̃ 1–

F
M̃

KE

P
Ñ

– P
Ñ 1–

– … P
Ñ 1–

– Im

� P
�

�

���

bk =

… …………

Im 0 P– L 1+ … P– L N+ 0 … 0

0 … Im 0 P– L 1+ … P– L N+ 0
0 … 0 Im … … P– L N 1–+ P– L N+

Nk

nk

nk � L � N � N

nk � L � N � N +2

…

~

~

nk � L � N � N +1
~

×

~

F = F N~

KF

Xk

xk

xk � M � N

…

~~

xk � M � N+2
~~

xk � M � N+1
~~

+
F N+1~

EN+1
~

Xk Xk M̃ k M̃– Ñ–

Nk Nk PL N+ nk L– N– Ñ–
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Thesignalandnoisearewhiteanduncorrelated,sowecanexpressthemean-squareback-

ward prediction errorξ = trE[ bkbk
*] as follows:

ξ = tr[  + (KF
� P

�
�

���

F )(KF
� P~1F )*]

+ σ2tr[PL+NPL+N
* + σ2(KE

� P~1E)(KE
� P~1E )* ]. (5-119)

We can neglect terms that are independent ofP~1, so it suffices to minimize

J(P~1) = tr[(KF
� P~1F )(KF

� P~1F )*+ σ2(KE
� P~1E)(KE

� P~1E)*]. (5-120)

Taking the gradient ofJ(P~1) and setting it equal to0, we have

∇J(P~1) = (KF
� P~1F )F * + σ2(KE

� P~1E)E *

= P~1(FF * + σ2EE* �
� (KFF * + σ2KEE *) = 0. (5-121)

SinceFF * + σ2EE* > 0, thesolutionof (5-121)minimizes(5-120).Theoptimalcoeffi-

cients are thus given by

P~1 = (KFF * + σ2KEE *)(FF * + σ2EE*) �

�

. ❏ (5-122)

F
M̃

F
M̃

*

1 2⁄( )
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APPENDIX 5-8: A BACKWARD LP DETECTOR

Applying a one-stepbackward predictorof orderN to the channel(1-1) outputrk

produces a backward prediction errorbk, which can be expressed as follows:

bk = (K~1 � P~1H )Xk + HMx�
�

�
���  + nk

� P~1Nk. (5-123)

Using the fact that the signalandnoisearewhite anduncorrelated,we canexpressthe

mean-square prediction errorξ = trE[ bkbk
*] as follows:

ξ = tr[(K~1 � P~1H )(K~1 � P~1H )* + HMHM
*+ σ2I + σ2P~1(P~1)* ]. (5-124)

We can neglect terms that are independent ofP~1, so it suffices to minimize

J(P~1) = tr[(K~1 � P~1H )(K~1 � P~1H )*+ σ2P~1(P~1)* ]. (5-125)

Taking the gradient ofJ(P~1) and setting it equal to0, we have

H0 … HM 1– HM 0 … 0
0

H0 … HM 1– HM 0
0 … 0 H0 … HM 1– HM

…

…

xk

xk � M � N+1

nk

nk � N

nk � N+1

P
Ñ–

– … P 1–– I

H

Xk

Nk

bk =

P~1

xk � M � N

×

+

K~1

………

1 2⁄( )
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∇J(P~1) = (P~1H � K~1)H * + σ2P~1 = P~1(HH * + σ2I
�

� K~1H * = 0. (5-126)

SincetheHessian∇2J(P~1) = (HH * + σ2I) > 0 is positivedefinite,thesolutionof (5-126)

minimizes (5-125). The optimal coefficients are thus given by

P~1 = [ P
� N … P

�

� ] = K~1H *(HH * + σ2I) �

�

(5-127)

= K~1(H *H + σ2I)�

�

H *, (5-128)

where K~1 = [ H0 … HM � 1 ], and where we have used the identity

H *(HH * + σ2I) �

�

= (H *H + σ2I)�

�

H *, from Appendix 3-1, in (5-128).

Thecoefficientsof thebackwardcascadearegivenby thefollowing convolutionrep-

resentation:

B = [B0 … BM+ N ] = [P~1 | Im ]HN +1 = [ (K~1 � P~1H ) | HM]. (5-129)

Substituting the optimal predictor coefficients of (5-128), we obtain

B = [ (K~1 � K~1(H *H + σ2I) �

�

H *H ) |HM]. (5-130)

Left-factoringK~1(H *H + σ2I) �

�

yields

B = [K~1(H *H + σ2I)�

�

{(H *H + σ2I
�

� H *H } | HM]

= [K~1σ2(H *H + σ2I)�

�

| HM]

= [ H0 … HM �

�
�

� Ψ | HM]. (5-131)

The backward prediction-error covarianceΦb = E[ bkbk
*] is then given by the following:

Φb = HMHM
* + σ2I + (K~1 � P~1H )(K~1 � P~1H )* + σ2P~1(P~1)*. (5-132)

SubstitutingK~1Ψ for (K~1 � P~1H ) andσ�

�

K~1ΨH * for P~1 in (5-132) yields

0m nN×

0m nN×



170

Φb = HMHM
* + σ2I + K~1ΨΨ(K~1)* + σ2σ �

�

K~1ΨH *H Ψ(K~1)*σ �

�

= HMHM
* + σ2I + K~1Ψ(σ2I)Ψ(K~1)*σ �

�

+ K~1Ψ(H*H )Ψ(K~1)*σ�

�

= HMHM
* + σ2I + K~1Ψ(σ2I + H*H )Ψ(K~1)*σ�

�

= HMHM
* + σ2I + K~1ΨΨ�

�

Ψ(K~1)*

Φb = HMHM
* + σ2I + K~1Ψ(K~1)*. (5-133)

UsingtheCholesky factorizationof Φb = MD2M, we candefinea prediction-based

whiteneraccordingto W = D–1M–1. We canthenderive theoptimalrotatorasbefore.We

define suchthat its i-th columnis the i-th columnof , for all i ∈ { 1, 2, … , n}

whereDi is the optimal delay for thei-th user. The optimal rotation then satisfies

J  = P *(D�

�

M�

�

). (5-134)

The backward LP detector is formally defined as follows.

Definition 5-8. For them × n channelH(z) of (1-1) with m > n andσ > 0, then × m

backward LP detector of orderN is uniquely defined as

CBLP(z) = J D �

�

M�

�

[I � P~1(z)], (5-135)

whereP~1(z) is givenby (5-128),whereMD2M is theCholesky factorizationof Φb

given by (5-133), and where satisfies (5-134).

B̃ BDi

Q̃

Q̃ B̃

Q̃

Q̃



171

C H A P T E R 6

S T A C K E D D E T E C TO R S

ALL CHANNELS have another important property which we have yet to

exploit. In addition to the MA, AR, ARMA, and AP modelsof the previous

chapter, tall FIR channelshave a memoryless representation.By stackinga sufficient

numberof receiver observationsrk = H0xk + H1xk�

� + … + HMxk � M + nk (1-1), we can

effectively convert a tall FIR channelH(z) into a tall memorylessblock-Toeplitzchannel

H . Thedetectorsof chapters3 and4, whicharedefinedin termsof amemorylesschannel

rk = Hxk + nk (3-1),canthusbegeneralizedto channelswith memory. Wecall thesegen-

eralizationsstacked detectors. They canbe,but arenot always,higherin complexity than

theprediction-baseddetectorsof chapter5; however, they offer betterperformance.More-

over, the adaptive implementationswe proposearemorefully blind; they do not needto

know or estimatethechannelenergy distribution, nor evenneedto know, necessarily, the

number of users or the particular constellations being used.

Thischapteris organizedasfollows.In section6.1,weshow thatif H(z) (1-1) is tall,

we canusestackingto effectively transformit into a memorylessblock-Toeplitzchannel

H that is also tall. We then introducedetectorsbasedon this block-Toeplitz model. In

section6.2,we definethestacked MMSE detector, which hasperformanceequivalentto a

conventionalN-tapMMSE detectorwith thedelayoptimizedfor eachuser. In section6.3,

T
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wedefinethestacked ZF detector. Theminimum-normrealizationhasperformanceequiv-

alent to the N-tap MMSE zero-forcingdetector, that is, the uniquedetector, amongthe

classof zero-forcingdetectors,that minimizesthe MSE for all users.In section6.4, we

introducethe stacked WR detector, which hasperformancenear to that of the stacked

MMSE detector, but which haslower implementationcomplexity for somechannels.In

section6.5,wedefinethesignalandnoisesubspaces,andthesubspaceseparator, in terms

of H. In section6.6,we extendthechanneldiagonalizationschemeof chapter3 to chan-

nelswith memory. We show that for almostall tall FIR channels,thereexists a lossless

precoderof finite complexity thatcanbeusedto completelyeliminateboth ISI andMUI

in the receiver, without noise enhancement.In section6.7, we presentblind adaptive

implementationsof the detectors.In section6.8, we provide simulation results for a

antenna-array application with multipath, and an asynchronous-CDMA application.

6.1 A Memoryless Channel Model

We first transformthe channelof (1-1) into an equivalent but higher-dimensional

channelwithout memory. StackingN consecutive receiver observation vectorsrk from

(1-1) yields

, (6-1)

H0 H1 … HM 0 … 0
0 H0 H1 … HM

0
0 … 0 H0 H1 … HM

…

…

… … …

+

H Xk Nk

rk

rk � N +1

rk � 1

Rk

=

…

xk

xk � N � M +1

xk � 1

…

nk

nk � N +1

nk � 1

…

= +×
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whereRk, Xk, andNk arestackedversionsof thechanneloutput,input,andnoise,respec-

tively, andwhereH is an mN × n( M+N) block-Toeplitz channelmatrix. The modelof

(6-1) canbeinterpretedasa memorylesssystemwith n( M+N) virtual usersandmN vir-

tualsensors.If theoriginalchannelH(z) is strictly tall, thentherealwaysexistsasufficient

stackingdepthN > suchthat H is also tall. Equivalent modelsare illustrated in

Fig. 6-1, in which part (a) shows the FIR channelH(z) of (1-1) followed by a stacking

operationin thereceiver, andpart (b) shows thememorylessblock-ToeplitzchannelH of

(6-1) preceded by a stacking operation in the transmitter.

Mn
m n–
---------------

Figure 6-1. Equivalent models: (a) an FIR channel followed by receiver

stacking, and (b) a memoryless block-Toeplitz channel preceded by transmitter

stacking.

H(z)xk
rk

AWGN

Rk

Xk
Rk

AWGN

stack

xk H

(a)

(b)

N

stack

M+N

mN × n(M+N)

m × n

⇔
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Theadvantageof (6-1) is thatit closelyresemblesthememorylessmodelrk = Hxk +

nk of (3-1),usedthroughoutchapters3 and4. Hence,theconceptsanddetectionstrategies

developedin thosechaptersfor H of (3-1) can be appliedto H of (6-1), and therefore

implicitly to H(z) of (1-1).Thedetectorsdescribedin chapters3 and4 assumeonly thatH

is full columnrank,andthat thesignalandnoiseareindependentandspatiallywhite.So,

likewise,if H is full columnrank,andif thestackedinput andnoisevectorsareindepen-

dentandspatiallywhite, thenthedetectionstrategiesof thosechapterscanbeappliedto

H . We begin with the assumptionthat (5-2) holds,implying that H is full columnrank;

however, asweshow later, thisassumptionis notessential.Wealsoassumethatthesignal

and noise are independent,zero mean and satisfy the following: E[xkxk*] = I,

E[ xkxk � l
*] = 0 for |l| < M+N, E[ nknk

*] = σ2I, whereσ > 0, andE[ nkn�
� l

*] = 0 for |l|

< N. This signalandnoisecanbe white, but this is not necessary. We make no assump-

tions regarding the autocorrelation of the signal or noise outside the given range of lagsl.

6.2 The Stacked MMSE Detector

Let Zk = C Rk beanestimateof thestackedchannelinput Xk, whereC hasdimen-

sionn(N+M) × mN. We definethestackedMMSE detectorasthedetectorthatminimizes

the total mean-square error betweenZk andXk.

Definition 6-1. ThestackedMMSE detectorCMMSE for (6-1) is then(M+N) × mN

matrix C that minimizesE[ C Rk
� Xk

2].

In a manneranalogousto Lemma3-4, the stacked MMSE detectorcanbe expressedin

terms ofH  as follows.
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Lemma 6-1. For the channel H of (6-1) with σ > 0, the unique stacked MMSE

detector can be expressed in three equivalent ways.

CMMSE = H *(H H * + σ2I)�

�

(6-2)

= (H *H + σ2I)
�

�

H * (6-3)

= VS  *(SS * + σ2I)�

�

U *, (6-4)

where H = U SV * is a channel SVD.

Unlike the channel H , the detector CMMSE is not block-Toeplitz.

We can relate the stacked MMSE detector to a set of conventional MMSE detectors

as follows. Partition C MMSE into M+N block rows of dimension n × mN:

C MMSE = . (6-5)

Let CD denote the D-th block row of C MMSE, and let zk
(D) denote the corresponding D-th

block row of the output Zk, so that

Zk = . (6-6)

Observe that the total mean-square error E[ Zk
� Xk

2] can be expressed as a sum:

C1

CM+N�

�

C0

…

zk
(1)

zk
(M + N � 1)

zk
(0)

…
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E[ Zk
� Xk

2] = E[ zk
(D)

� xk � D
2]

= E[ CDRk
� xk � D

2]. (6-7)

Therefore,theD-th blockrow of theC thatminimizesE[ Zk
� Xk

2] is then × mN matrix

CD thatminimizesE[ CDRk
� xk � D

2]. Sozk
(D) = CDRk = CD,jrk � j, wherethe

coefficientsCD,j havedimensionn × m. It follows thatzk
(D) is theoutputof anN-tapfilter

with transfer functionCD(z) = CD, j z�

�

.

Theorem 6-1. The stacked MMSE detectorC MMSE of Definition 6-1 simulta-

neouslyimplementsM + N differentconventionalN-tapMMSE multiuserdetectors,

C0(z) throughCM+N � 1( z), correspondingto decisiondelaysD = 0 throughM+N � 1.

Therefore,if we stackN observationvectorsandimplementthestackedMMSE detector

C MMSE of Lemma6-1,thentheD-th blockrow of its outputzk
(D) is theoutputof anN-tap

MMSE detectorCD(z), minimizing theD-delay MSE of all usersE[ zk
(D)

� xk � D
2].

Of coursea decisiondevice mustfollow C MMSE. Our approachis to usea bankof

n(N+M) independentdecisiondevices,onefor eachoutput,andto choosefor eachuser

the associatedoutput with smallestmean slicer error, as illustrated in Fig. 6-2. This

approachis equivalent to implementinga conventionaln × m, N-tap MMSE multiuser

detector with the delay optimized for each user.

D 0=

M N 1–+

∑

D 0=

M N 1–+

∑

j 0=
N 1–∑

j 0=
N 1–∑
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6.3 The Stacked Zero-Forcing Detector

As we discussedin chapter3, the MMSE linear multiuserdetectordoesnot com-

pletely eliminateinterference,but ratherfinds the bestcompromisebetweeninterference

and noise. Completeelimination of interferenceis accomplishedwith a zero-forcing

detector.

Definition 6-2. For thechannelH of (6-1),a stacked zero-forcing detector C ZF is

ann(M+N) × mN matrix satisfyingC H = I.

ExtendingLemma3-5 to (6-1), we canexpressthe stacked ZF detectorin termsof the

block-Toeplitz channel matrixH and its SVD as follows.

Lemma 6-2. For thechannelH of (6-1), a stackedZF detectorcanbeexpressedin

two equivalent ways:

C ZF = H †  + N (6-8)

= VS † U * + N , (6-9)

Figure 6-2. A block diagram of the stacked MMSE detector.

Stack
N

CMMSE
Select
Best

x̂k D1–
1( )

x̂k Dn–
n( )

rk
Rk Zk X̂k

…

n(M+N) × mN



178

whereH = USV *, andwhereN *∈ null(H *). ThestackedZF detectoris uniqueif

and only ifmN = n(M+N).

We can relatethe stacked ZF detectorto the conventionalZF detectoras follows.

OnceagainpartitionthedetectorC ZF into M+N blockrowsof dimensionn × mN, andlet

CD denotethe D-th block row of thedetector. TheD-th block row of thedetectoroutput

can then be expressedas zk
(D) = CDRk = CD, jr� �

� , wherethe coefficients CD, j

again have dimensionn × m. By definitionC ZF completelyeliminatesbothISI andMUI,

soZk = C ZFRk = Xk +C ZFNk. It follows thatzk
(D) = x�

��� + CDNk is theoutputof a con-

ventionalN-tapD-delay zero-forcing detector:CD(z) = CD, j z � j.

Theorem 6-2. Thestacked-ZFdetectorsimultaneouslyimplementsM+N different

conventionaldelayedzero-forcingmultiuserdetectors,C0(z) throughCM+N � 1( z),

corresponding to decision delays ofD = 0 throughD = M + N � 1.

The MSE sum corresponding toCD(z) is proportional to the norm ofCD:

E[ zk
(D)

� xk � D
2] =

=

= σ2 CD . (6-10)

Clearly, CD is a function of D, so theselower-dimensionalZF detectorsdo not have

the same MSE performance.

j 0=
N 1–∑

j 0=
N 1–∑

E CD j, rk j–
j 0=

N 1–

∑ xk D––
2

E CD j, nk j–
j 0=

N 1–

∑
2

F
2

F
2
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Thereis indeedan optimal N-tap ZF detectorthat minimizesthe MSE of all users

subject to a zero-interference constraint.

Definition 6-3. For the channelof (1-1), let C(z) = Cj z � j denotean n × m,

N-tapdetectorwith outputzk. Let ξ = E[ zk
�

k
2] denotethe total MSE, where

k = [ , , …, ]T for delaysDi ∈ { 0 … M+N � 1}, i ∈ {1, …, n}.

The minimum-MSE zero-forcing detector CMZF(z) is the filter that minimizesξ

over all possible delays subject to the constraint thatzk = k + Cjn� � j.

It follows from Theorem6-2 thatif we implementthestackedZF detectorof Lemma6-2,

followedby a bankof independentslicers,andonceagain,choosefor eachuser, theasso-

ciatedoutputwith smallestmeanslicererror, we, in effect, implementCMZF(z) of Defini-

tion 6-3. Later, in Experiments6-1 and 6-2, we comparethe MSE performanceof the

stackedMMSE andZF detectors.However, wefirst defineoneadditionalstackeddetector.

6.4 The Stacked Whiten-Rotate Detector

We can also generalizethe whiten-rotatedetectorof chapter4 to channelswith

memory. In thecontext of (6-1),ann(N+M) × mN matrix C is saidto bea whitenerif the

covarianceof Zk = C Rk is the identity matrix, C ΦRC * = I, whereΦR = E(RkRk
*). We

define the stacked whiten-rotate detector as the whitener with minimal MSE.

Definition 6-4. The canonical stacked whiten-rotate detector C WR for (6-1) is

then(N+M) × mN whitener that minimizes the MSE sumE[ C Rk
� Xk

2].

j 0=
N 1–∑

x̃

x̃ xk D1–
1( ) xk D2–

2( ) xk Dn–
n( )

x̃ j 0=
N 1–∑
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Using arguments similar to those in section 4.1, it follows that for any mN × mN whitener

W , satisfying W ΦRW * = I, the stacked whiten-rotate detector can be expressed as

JQW , where

Q = *, (6-11)

where and are factors in a SVD of W H = *, and where J = [ I 0 ] is a trunca-

tion matrix of dimension n(N+M) × mN.

One such whitener W , based on linear prediction, is given by

W = D −1M −1, (6-12)

where ΦR = MD 2M * is a Cholesky factorization. (See Lemma 4-3 and Theorem 4-2.)

Although we are free to use any whitener W , the whitener of (6-12) reveals an interesting

relationship between the stacked WR detector and the prediction-based detectors of

chapter 5. Partition JQ into M+N block rows of dimension n × mN, and partition W of

(6-12) into N block rows of dimension m × mN as follows:

J Q = , W = . (6-13)

Let Vk= W Rk and Zk = J Q Vk denote the outputs of the whitener and the detector,

respectively. Let vk
(i) denote the i-th block row of Vk, and let zk

(D) denote the D-th block

row of Zk, so that

V 0
0 V N

U

U V U S V

Q1

QM+N�
�

Q0

…

W1

WN�
�

W0

…
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Vk = , Zk = . (6-14)

Observe that

vk
(i) = WiRk = Wi , jrk � j = Wi , jrk � j, (6-15)

wherethe coefficientsWi , j have dimensionm × m. BecauseW is lower triangularand

monic,so is Wi , i. Moreover, Wi , j = 0 for j > i; so,the lastsummationin (6-15)doesnot

includetheseterms.Thusvk
(i) is thescaledpredictionerrorfrom aspatio-temporalpredic-

tion-errorfilter. Specifically, Wi(z) is thecascadeof aone-stepbackwardtemporalpredic-

tion-errorfilter of orderi, a lower-triangularspatialprediction-errorfilter, anda diagonal

gain:

Wi(z) = Wi , jz
�

�

= Ai (I �
� j

(i) z� j)

= Ai(I � (i))( I � P
� j

(i) z� j), (6-16)

where Ai = diag(Wi , i ), and where (i) is strictly lower triangular. Let ek
(i) = rk –

� j
(i)rk � j denotethe predictionerror of the i-th spatio-temporalpredictionerror

filter I �
� j

(i) z� j, and define a stacked error as

vk
(1)

vk
(N � 1)

vk
(0)

…

zk
(1)

zk
(M + N � 1)

zk
(0)

…

j 0=

N 1–

∑
j 0=

i

∑

j 0=

i

∑
j 0=

i

∑ P̃0

P̃0
j 1=

i

∑

P̃0

j 0=

i∑ P̃0
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Ek = . (6-17)

Observe thatM � 1 minimizesE[ Ek
2], andthusE[ ek

(i) 2] for all i ∈ { 0 … N–1}, so it

follows thatthecoefficients
� j

(i) in (6-16)alsominimizeξ = E[ ek
(i) 2]. TheD-th block

row of thedetectoroutputzk
(D), anestimateof xk−D, is thereforea linearcombinationof N

optimal prediction errors:

zk
(D) = QDVk = QD,iAiek

(i), (6-18)

wherethe coefficients QD,j have dimensionn × m. We thus arrive at the following the-

orem, which is also represented graphically in Fig.6-3.

Theorem 6-3. ThestackedWR detectorsimultaneouslygeneratesestimateszk
(D) of

xk − D for all delaysD ∈ { 0 … M+ N � 1} by usinglinearcombinationsof theerrors

from N optimalspatio-temporalpredictionerrorfilters of the form I �
� j

(i)

z� j, for i = 0 throughi = N � 1.

Thearchitectureof Fig. 6-3 is not proposedasanefficient implementation.Nevertheless,

Theorem6-3 has pedagogicalimportance.It says that spatio-temporallinear predic-

tion-baseddetectioncanbeusedto approachMMSE detectionfor any delay, not just for

delayzeroasshown by Lemma5-5 of the previous chapter. The architectureof Fig. 6-3

illustrates this important connection with the detectors of chapter5.
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Figure 6-3. An interpretation of the stacked WR detector showing its

relationship to the spatio-temporal prediction-based detectors.
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Most of the theoreticaldevelopmentof chapter4 pertainingto the whiten-rotate

detectorCWR of Definition 4-1, is equally valid for the stacked whiten-rotatedetector

C WR of Definition 6-4.We needonly to make appropriatesubstitutions:Xk for xk, H for

H, etc.Lemma4-1, for example,which expressestheWR detectorin termsof a channel

SVD holdsalsofor thestackedWR detector. Thepropertiesof theWR detectorhold for

thestackedWR detectoraswell. Resultsin chapter4 thatapplyto aparticularuseri, such

asLemma4-2 or Property4-4, apply to a particularvirtual userin the context of (6-1),

where useri at delayD corresponds to virtual useri + nD.

It is beneficialto reformulateLemma4-2, in particular, to expressthe MSE of the

stackeddetectorsin termsof realusersanddelays.Let Zk denotetheoutputof a stacked

detector, eitherMMSE, ZF, or WR, suchthatZk
(i+nD) is anestimateof xk−D

(i), anddefine

MSE i,D = E[|Zk
(i+nD) − xk−D

(i)|2] as theD-delay MSE for useri.

Lemma 6-3. TheD-delayMSE for useri, denotedMSEi,D, of thestackedMMSE,

ZF, and WR detectors, respectively, can be expressed as

MSED,i
MMSE = σ2vi+nD

*( 2 + σ2I)−1vi+nD , (6-19)

MSED,i
ZF = σ2vi+nD

* �

�

vi+nD , (6-20)

MSED,i
WR = 2vi+nD

*[I − ( 2 + σ2I) −1/2 ]vi+nD , (6-21)

wherevj is thej-th column ofV *, from H = USV *, and where = JS.

In the following experiments,we use Lemma 6-3 to comparethe performanceof the

stackeddetectorsin termsof MSE.We payparticularattentionto theperformancediffer-

ence between the stacked WR and MMSE detectors.

S̃

S̃

S̃ S̃

S̃
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Experiment 6-1. Considera systemwith n = 2 usersand m = 10 sensorshaving

channel memory M = 5. Using a stacking depth of N = 2, we compare the

mean-squareerrorsof thestackedMMSE, ZF, andWR detectorsfor bothusersatall

delays 0 through M+N � 1 = 8. We consideronly a single, randomly generated

channel,where the elementsof the each tap are drawn independentlyfrom a

zero-mean,unit-variance,Gaussiandistribution,andarethenscaledsuchthatSNR1

= 20 dB andSNR2 = 10dB.Fig. 6-4 shows that theWR detectorsuffers lessthana

1-dB penalty relative to the MMSE detector, regardlessof delay or user. It also

shows that,for all detectortypes,theoptimaldelayfor eachusercanbedramatically

different.

Experiment 6-2. Considernow a systemwith n = 3 usersandm = 30 sensors

having channelmemoryM = 3. Using a stackingdepthof N = 6, we comparethe

mean-squareerrorsof the stacked detectorsfor eachuserat all delays 0 through

M+N � 1 = 8. We consideranensembleof 10 randomchannels,generatedasin the

previousexperimentexceptthat theSNRsfor users1 through3 weresetat 20dB,

10dB, and 0 dB, respectively. In Fig. 6-5,we seethaton averagetheoptimaldelay

is D = 4, independentof detectortypeor user. Wefind that,at this delay, theaverage

MSE penaltiesincurredby using the stacked WR detectorinsteadof the stacked

MMSE detectorare 0.0343dB, 0.1332dB, and 0.7513dB for users1, 2, and 3,

respectively — less than 1 dB in all cases.

ThestackingdepthN shouldbechosento balanceperformanceandcomplexity. At a

minimum,we musthave N > in orderfor H to betall. However, largervaluesof N

result in betterperformance,especiallyat low SNR. In Experiment6-1 we usethe min-

Mn
m n–
---------------
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Figure 6-4. Comparison of the stacked detectors for a single random channel.
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Figure 6-5. Comparison of the stacked detectors: MSE versus delay.
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imum allowablestackingdepthof N = 2, whereasin Experiment6-2,we usea depthof N

= 6, substantiallylarger thanthenecessaryminimumof 1. Using largervaluesof N pro-

ducesbetter performance,but eventually with diminishing returns.It is evident from

Fig. 6-4 that a stackingdepth of N = 6 is sufficient for Experiment6-2, becausethe

optimal MSE for useri is roughly SNR i
–1. In Fig. 6-5, however, the optimal MSE for

useri is significantlygreaterthan SNR i
–1, indicatingthat a larger stackingdepthwould

have beenbeneficialin this case.Thefollowing experimentillustratestheperformanceof

the stacked detectors as a function of the stacking depthN.

Experiment 6-3. Weagainuserandom4-tap(M = 3) channelsof dimension30 × 3,

generatedasin Experiment6-2,exceptthatwevary thestackingdepthfrom N = 1 to

N = 10.We conduct10 trials for eachvalueof N andrecordtheMSE at theoptimal

delayfor eachuserandfor eachdetectortype.Observe thatFig. 6-6 verifiesthatuse

of larger values ofN improves performance, but with diminishing returns forN > 5.

In thenext experiment,weanalyzemorecloselytheMSEpenaltyof thestackedWR

detectorrelative to thestackedMMSE detector.hows theensembleaverageof thesepenal-

ties.Sincetheoptimaldelayis not always4, theresultingpenaltyis slightly smallerthan

those at delay 4, reported in Experiment 6-2.

Experiment 6-4. Weagainuserandom4-tap(M = 3) channelsof dimension30 × 3,

generatedasin Experiment6-2, except that we vary the SNRsof the users;SNR1

rangesfrom 0 to 20 dB, while SNR2 andSNR3 are10 dB and20 dB greaterthan

SNR1. We conduct10 trials at eachSNRpoint andmeasuretheMSE penaltyof the

stacked WR detectorrelative to the stacked MMSE for eachuserat the optimal
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delay. Fig. 6-7 shows the ensembleaverageof thesepenalties.Since the optimal

delayis not always4, theresultingpenaltyis slightly smallerthanthoseat delay4,

reported in Experiment 6-2.

WeconcludethatthestackedWR detector, followedby abankof independentslicers,per-

forms nearlyaswell asthe stacked MMSE detector, especiallyfor very tall channelsor

high SNRs,andthusis nearlyequivalentto a conventionalMMSE detectorwith thedelay

optimized for each user.

6.5 Signal and Noise Subspaces

Wenow definethesignalandnoisesubspaces,andthesubspaceseparatorin thecon-

text of (6-1). We need only substituteH for H in Definition 3-1.

Definition 6-5. For the block-Toeplitz channelH of (6-1), the signal subspaceis

the rangeor columnspanof H : S = range(H ); the noisesubspaceis the left null

space ofH : N = S⊥ = null(H *).

Thedimensionalityof thesignalsubspaceis equalto therankof H, which is n(M+N); the

dimensionalityof thenoisesubspaceis mN − n(M+N). A subspace-separationmatrix is

easilydefinedasin Definition3-1,but with n(M+N) andmN playingtherolesof n andm,

respectively.

Definition 6-6. For the mN × n(M+N) channelH of (6-1), an mN × mN unitary

matrix Θ is a subspace-separationmatrix if and only if the last mN � n(M+N)

rows ofΘH are identically zero.
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Lemma3-3,whichexpressesthemathematicalform of asubspace-separationmatrix

in terms of the left factor of a channel SVD, is easily extended.

Lemma 6-4. For H of (6-1), a unitary subspace-separationmatrix mustbe of the

form:

Θ = U *, (6-22)

where US and UN are arbitrary unitary matrices of dimension n(M+N) and

mN � n(M+N), respectively, andwhereU is the left factorof any channelSVD H

= USV *.

Following thedevelopmentof section3.1,we seethat if Θ satisfies(6-22),thenthe

lastmN � n(M+N) components ofYk = ΘRk contain no signal energy:

Yk = Xk + ΘNk, (6-23)

where = US V * is of dimensionn(M+N) × n(M+N). Discardingthesenoise-only

components effectively produces a square channel model:

k = J Yk = Xk + k, (6-24)

whereE[ k k
*] = σ2I, and where , unlike H , is not block-Toeplitz. The n(M+N)

componentsof k aresufficient for estimatingXk. In particular, Theorem4-1 extends,

which we restate here in the context of (6-1).

US 0

0 U N

H̃
0

H̃ S̃

R̃ H̃ Ñ

Ñ Ñ H̃

R̃
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Theorem 6-4. The cascadeof a signal-subspaceprojector J Θ and a stacked

detector , eitherMMSE, ZF, or WR, designedfor the reducedchannel , pre-

cisely implementsthe stacked detectorC designedfor the original block-Toeplitz

channelH .

Proof: The proof is identical to that of Theorem 4-1.

6.6 Channel Diagonalization and Lossless Precoding

We canalsoextendthe channeldiagonalizationideaof chapter3 to channelswith

memory. Consider again, for example, a single-userarray-to-arraycommunication

problemwith n transmitantennasandm receive antennas,wherem > n. Sucha system

canbemodeledby rk = H0xk + H1xk �

� + … + HMxk � M + nk of (1-1).Thei-th component

rk
(i) of rk correspondsto the sequencereceived at the i-th receive antenna,and the j-th

componentxk
(j) of xk correspondsto thesequencetransmittedby thej-th transmitantenna.

With the total power, averagedover all transmit antennas,constrainedaccording to

E[|xk
(i)|2] ≤ P, we onceagain, as in section3.6, addressthe questionof how to

achieveShannoncapacity. GivenH(z) = H0 + H1z�

�

+ … + HMz� M, wechooseN ≥ ,

suchthatH of (6-1) is squareor tall. TheSVD of H = USV * canthenbeusedto design

both a transmitterprecoder V and a receiver front-end filter U* suchthat the overall

system is diagonal:

S = U*HV. (6-25)

The systemis illustrated in Fig. 6-8. In the transmitter, we first form a precoded

vectoraccordingto Xj = V Wj, whereWj is ann(M+N) × 1 vectorof symbolsequences.

C̃ H̃

i 1=

n∑
Mn

m n–
---------------
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The norm-preservingpropertyof V ensuresthat Wj andXj satisfythe samepower con-

straint: E[ Wj
2] = E[ Xj

2] = E[|xk
(i)|2] ≤ P. We passXj througha parallel-to

serial (P/S) converter to producexk and transmit it acrossthe channel.We denotethe

symbolrateasRs = 1/T, so theblock rate,i.e. the rateat which theblocksWj aretrans-

mitted,is Rs /(M+N). Theinformationbit rateis Rb = bRs/(M+N), whereb is theaverage

total numberof informationbits conveyed by eachblock Wj. In the receiver, we passrk

throughaserial-to-parallel(S/P)converterto form Rj. We thenrotateRj accordingto Yj =

U*Rj. Thefront-endrotationcanbeinterpretedasa matchedfilter. Providedthat theP/S

andS/Pconvertersarephasesynchronized,the effective channelfrom Wj to Yj is diag-

onal:

Yj = S Wj + j, (6-26)

whereE[ j j
*] = σ2ImN. We canthusapproachcapacityby properlydistributing power

and information among the subchannels [140].

Certainly, U* and V can be estimatedadaptively; however, the truly interesting

aspectof this idealies not in the methodof adaptingthesefilters, but in their existence.

Becausethesefilters areunitary, they areinvertible,andthus informationlossless. More-

over, they have finite complexity. For the specialcaseof n = 1, our precodingtechnique

canbeviewedasageneralizationof vectorprecoding,anideaproposedby Kasturia[141],

which is similar to discretemultitone modulation(DMT) [23]. What distinguishesour

schemeis that it is designedexpresslyfor tall channelsderived either throughoversam-

pling or throughreceiver sensordiversity, and it is thereforeboth losslessand of finite

complexity. In contrast,thetechniqueof Kasturiafor baud-spacedchannels,andthemore

well-known Tomlinson-Harashima[142, 143] technique,areeitherlossy[144] or of infi-

i 1=

n∑

Ñ

Ñ Ñ
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nite complexity. Furthermore,our schemeeasily accommodatesmultichannelscenarios

(with n > 1) such as array-to-array communication.

6.7 Adaptive Implementations

Theadaptive techniquesfor subspaceseparation,singular-valuedecomposition,and

spatialwhitening,describedin thecontext of memorylesschannels(3-1),canbeextended

to channelswith memory(6-1)by makingonly minormodifications.Wecanusetheadap-

tive algorithmsdescribedin section3.4 or section4.3 to blindly implementthe stacked

MMSE, ZF, or WR detectorby simply replacingrk with Rk, n with η = n(M+N), andm

with mN. We summarize the modified algorithms below.

6.7.1 An Adaptive Stacked MMSE or ZF Detector

As suggestedby (6-4) and(6-7), thestackedMMSE andZF detectorscanbeimple-

mentedby using a rotate-scale-rotatearchitecture,in a manneranalogousto the imple-

mentationof theMMSE detectorof Definition3-3 for memorylesschannels.Thefirst step

is to rotatethestackedobservationvectorRk with anmN × mN unitarymatrix , adapted

according to

k + 1 = kR λ(G kRk → kRk), (6-27)

whereG is diagonalwith strictly decreasingelementssatisfyingg1 > g2 > … > gmN. If

Conjecture3-2 holds, then the recursionconverges to = U, a valid left factor in a

channel SVDH = US V * , at which pointV is uniquely specified.

The secondstepis to scalethe outputof the rotation,Yk = k
*Rk, by a diagonal

η × mN matrix D definedasDMMSE = S *(SS * + σ2I)�

�

for thestackedMMSE detector

Û

Û Û Û Û

Û

Û
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or asDZF = S † for thestackedZF detector. Thedimensionof D is η × mN, whereη is the

columnrankof H, or equivalently, thedimensionof thesignalsubspace.Hence,in order

to estimateD , the receiver must first estimateη.

Wecanblindly estimateη, alongwith S andσ2, andthusD, by estimatingthepower

in thecomponentsof Yk with equationsanalogousto (3-29) through(3-31). If the recur-

sion of (6-27) has converged, then the autocorrelation ofYk = Uk
*Rk is given by

ΦY = SS * + σ2I. (6-28)

The power in the components ofYk are the thus eigenvalues ofΦR:

E[|Yk
(i)|2] = (6-29)

The eigenvalues can be estimated recursively:

 = α + (1 � α)|Yk
(i)|2, (6-30)

where0 < α < 1 is a smoothingfactor. A thresholdcanthenbe usedto estimateη, the

numberof significant eigenvalues.(The choice of a thresholdis discussedfurther in

section6.8.)Givenη, wecanestimatethesingularvaluessi of H andthenoisevarianceσ2

as follows:

 = , (6-31)

i(k) = ( � )1 ⁄ 2. (6-32)





 si

2 + σ2 i ∈ {1, …, η}

σ2 i ∈ { η+1, …, m}

ε̂k
i( ) ε̂k 1–

i( )

σ̂k
2 1

mN η–
--------------------

i η 1+=

mN

∑ ε̂k
i( )

ŝ ε̂k
i( ) σ̂k

2
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Certainly, this procedureis proneto inaccuracies;first, an inaccurateestimateof U

would violate (6-28); second,noise limits the accuracy of the eigenvalue estimatesin

(6-30); and third, someof the singularvaluesmay be quite small, andhenceit may be

unclearwhich eigenvaluescorrespondto noisealoneandwhich correspondto noiseplus

signal.We investigatethesensitivity of thealgorithmsto inaccuraciesin theestimateof η

in section6.8. We show that the proposed detectors are in fact very robust in this respect.

Thefinal stepin implementingthedetectoris to rotatetheoutputof thegain stage,

Wk = Yk, by aη × η unitary matrix *  adapted according to the MPLL recursion:

k + 1 = R λ( k → Zk)* k, (6-33)

whereZk = kWk, andwhere k = dec(Zk) is aquantizeddecisionvector. Therecursion

should converge toV up to a permutation ambiguity:

= KV . (6-34)

We address the implications of the permutation in section6.7.4.

6.7.2 An Adaptive Stacked WR Detector

As suggestedby (6-12), thestackedWR detectorcanbe implementedusingspatial

prediction in a manner analogous to that of section4.3. We can predictRk according to

k = P Rk, (6-35)

whereP is an mN × mN strictly lower-triangularmatrix of predictioncoefficients. An

estimate ofP can be adapted according to the least-mean-square algorithm:

k + 1 = ( k + µEkRk
*) ⊗L, (6-36)

D̂ V̂

V̂ X̂ V̂

V̂ X̂

V̂

R̂

P̂ P̂
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whereEk = Rk − kRk is thepredictionerror, whereµ is a stepsize,where‘⊗’ denotesa

component-wiseproduct,andL is a maskthat constrains k to be strictly lower trian-

gular. For sufficiently small step-sizeµ, the predictorconvergesto M −1 of (6-12). Fol-

lowing the predictor by a bank of AGCs, adaptedaccordingto (4-16), completesthe

implementation of the spatial whitener.

To implementthefinal stage,theoutputof theAGC bankis rotatedby anmN × mN

unitary matrix  adapted according to

k+1= R λ( k → Yk)* k, (6-37)

whereYk = kEk, and where

k = Yk. (6-38)

For i ≤ η, k
(i) = deci( Yk

(i)) is thepoint in theconstellationof useri closestto Yk
(i), but

for i > η, k
(i) is setto zero.Therecursionof (6-37)shouldconvergeto Q of (6-11)up to

an ambiguous permutation matrix:

 = . (6-39)

6.7.3 An Adaptive Subspace Separator

A subspaceseparatorcanbeusedasthe front endof eitherdetectorwithout lossof

any signal information.The subspaceseparatoris implementedby a mN × mN unitary

matrix  adapted according to

k + 1 = R λ(G kRk → kRk)* k, (6-40)

P̂

P̂

Q̂

Q̂ X̂ Q̂

Q̂

X̂ dec( ) 0
0 0

X̂

X̂

Q̂ K 0
0 ImN η–

Q

Θ̂

Θ̂ Θ̂ Θ̂ Θ̂
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whereG is diagonalwith elementssatisfyingg1 … gη = 1 andgη+1 … gmN = 0. Therecur-

sionshouldconvergeto asubspaceseparatorof theform givenby (6-22).ThelastmN � η

components of  can be discarded to form the reduced channel given by (6-24).

6.7.4 Selection of the Detector Outputs

The last rotationstagein any of the proposedadaptive stacked detectorsconverges

with a permutationambiguity. We say the decisionsare correct if the slicer output is

givenby k = K Xk, for somecomplex permutationmatrixK . Componentsof Xk, i.e. vir-

tualusers,canthusberelabeledor (assumingQAM constellations)arbitrarily rotatedby a

multiple of 90˚. The final stepis to resolve the ambiguityK ; this is the function of the

“select best” block in Fig. 6-2. This stepentailsfirst determiningan estimate of the

numberof users,andthenassigningof the MPLL outputsto the identifiedusers.We

outline several techniques below.

Onemethodis to correlatethe slicer outputvector k with itself at lag 1; i.e. esti-

mate E[ k k � 1]. The stacked channel input Xk has a shifting property that can be

exploited:

E[XkXk � 1
*] = . (6-41)

In practice,large entriesin E[ k k � 1] indicatewhich outputsbelongto the sameuser.

Thebestoutputfor eachusercanthenbeselectedfrom amongtheoutputsassociatedwith

Θ̂

X̂

n̂

η̂ n̂

X̂

X̂ X̂

0
Im 0

Im 0

Im 00
… …

0

X̂ X̂
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that user. As with any blind multiuserdetector, thereremainsan arbitraryrelabelingand

phase rotation of the  users. See Appendix 6-1 for an example of this technique.

Anothermethodis to correlatescalerslicer outputsat differenttime lags;uncorre-

latedoutputscorrespondto constellationsof distinctusers.More precisely, we first select

the detectoroutputwith the smallestmeanslicer error, therebyrecovering oneuser. We

thenconsiderthedetectoroutputwith thenext smallestmeanslicererror. If this outputis

uncorrelatedwith thepreviousselectionatall time lagsL ∈{ � M � N­+1 … M+N­� 1}, then

we selectit too, therebyrecoveringa seconduser;otherwisewe rejectit. We continuethis

process,rejectingall outputscorrelatedto previousselections,until we have recoveredall

users.

A third techniqueis to considerthe structureof the stacked detectoritself. Rather

thancorrelatedetectoroutputsat varioustime lags,rows of the stacked detectorcanbe

correlatedat variousshifts.Rows correspondingto distinctusersarenearlyorthogonalat

all shifts, whereas rows corresponding to identical users are highly correlated.

6.8 Experimental Results

We now presentresultsfrom computerexperimentsthat demonstratethe proposed

blind adaptive implementationof thestackedMMSE detector. Thefirst experimentof this

sectionis designedto characterizetheperformanceof thealgorithmif theestimateof the

signal subspacedimension is inaccurate.Our approachis to implementthe stacked

MMSE detectorasoutlinedin section6.7.1,but to intentionallyoverridethethresholdtest

andto usea dimensionestimatethat is eithertoo small or too large.As we demonstrate,

the proposed algorithm is very robust to inaccuracies in the estimate.

n̂

η
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Experiment 6-5. A Linear Array with Multipath. Considerasystemwith 2 trans-

mittersanda receiver usinga linear arrayof 10 antennaelementswith half-wave-

lengthspacing.Theantennaarrayreceivesenergy from eachuseralongtwo paths:a

line-of-sight(LOS)pathandareflectedpath.Eachpathis characterizedby its ampli-

tudeA, its propagationdelayτ, andtheangleof incidenceθ. For user1, theparame-

tersare(A, τ, θ) = (0.25,–0.2,10˚) and(A, τ, θ) = (0.2,2.3,85˚) for theLOS path

andreflectedpath,respectively. For user2, theparametersare(0.22,–0.1,25˚) and

(0.032,2.1,90˚).Bothuserstransmitwith zeroexcessbandwidth,which impliesthat

thechannelmemoryis infinite. To distinguishtheusers,user1 transmitsQPSK,and

user2 transmitsBPSK.For the describedscenario,SNR1 = 20 dB andSNR2 = 17

dB. (The receiver parametersare as follows: λ1 = 1/ (1 + (k/800) 2 ) in (6-27),

α = 0.99in (6-30),andλ2 = 1/(1 + (k/900) ) in (6-37).)Thestackingdepthis N = 4,

so the stacked observation has dimension 40.

The recursion of (6-30) producesthe eigenvalue estimatesillustrated in

Fig. 6-9.Themiddlethreshold,indicatedby thedashedline, producesansignalsub-

spacedimensionestimateof = 12. However, the thresholdmight arguablybe set

higheror lower, asshown by thedottedlines,producingestimatesof thatrangefrom

= 10 to 14. Someof theserepresentan overestimateof the channelrank, and

some, an underestimation.

Weconduct5 trials,overridingthethresholdtestandforcing theestimateto be

= 10, 11, 12, 13, and 14. The detectoroutputsat steadystate(10000baud)for

eachcaseare shown in Fig. 6-10. The constellationsin the first column are the

detectoroutputsfor = 10.Although > 10, theproposedalgorithmis still ableto

produceat leastone mildly cleanconstellationfor eachuser. We seethe cleanest

η̂

η̂

η̂

η̂ η
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constellationswhen = 12.For = 13and14,wecanseethattheeffectof overes-

timating the signalsubspacedimensionis to simply produceextra noisy constella-

tions,which canbe ignored.Regardlessof the dimensionestimate,thereis at least

one clean constellation for each user.

Thepreviousexperimentdemonstratesthattheproposedalgorithmis notsensitive to

the estimateof the signal subspacedimension.A similar experimentfor an asynchro-

nous-CDMAapplication,detailedin [145], confirmstheseresultsaswell. Moreover, the

proposedalgorithmdoesnot evenneedto know thenumberof usersn, andit needsonly

limited knowledgeabouttheconstellationsof theusers.Theslicerassumesthatbothusers

aretransmittingQPSK.Wecanin factuseQPSKor quadrantdecisionsin (6-38)for prac-

tically all QAM constellations.Remarkably, therecursionof (6-37)still converges.So,the

Figure 6-9. Estimates of the eigenvalues of ΦR in Experiment 6-5 produced by

the recursion of (6-30) at steady state.
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Figure 6-10. Outputs of the stacked MMSE detector as a function of the

signal subspace dimension estimate  for Experiment 6-5.η̂
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proposeddetectorsarevery blind indeed.The next experiment,in which oneusertrans-

mits QPSK, and the other transmits 16-QAM, demonstrates this idea.

Experiment 6-6. Asynchronous CDMA. We now consideranother2-userasyn-

chronousCDMA system.The systemis identical to that of Experiment5-8 except

that the amplitudesA1 and A2 and the noise varianceσ2 are selectedsuch that

SNR1 = 25dB andSNR2 = 20dB. We implementtheblind adaptivestackedMMSE

detectorwith thefollowing parameters:λ1 = 1/ (1 + (k/500) 2 ) in (6-27),α = 0.99in

(6-30),andλ2 = 1/(1 + (k/1000) ) in (6-37).Theconstellationsfor users1 and2 are

16-QAM andQPSK,respectively. Fig. 6-11shows thebestoutputsof thedetectorat

steadystate(18000to 20000baud)for stackingdepthsof N = 1 and2. We seethat

evena stackingdepthof 1, i.e. no stacking,is sufficient to producegoodresults.A

stacking depth of 2 produces only slight improvement.

We remarkthat, for CDMA applications,the stacked MMSE detectoroften requiresno

stacking(N = 1), in which caseit hasbothbetterperformanceandlower complexity than

the prediction-based detectors of chapter5.

6.9 Chapter Summary

Wehaveshown thatby usingasimplestackingprocedure,wecaneffectively convert

the tall m × n FIR channelH(z) = H0 + H1z �

�

+ … + HMz� M of (1-1) into the tall

mN × n(M+N) memorylessblock-Toeplitz channelH of (6-1). The algorithmsfor adap-

tive subspaceseparation,singular-valuedecomposition,andspatialwhiteningcanthenbe
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User 1 User 2

N = 1

N = 2

Figure 6-11. Best outputs of stacked MMSE detector for the asynchronous-

CDMA application of Experiment 6-6.



207

easilyextendedto H andthusimplicitly to H(z). WehavedefinedstackedMMSE, ZF, and

WR detectors in terms ofH.

ThestackedMMSE detector, accordingto Theorem6-1, implementsM+N conven-

tional MMSE multiuserdetectors,one correspondingto eachdecisiondelay 0 though

M+N−1. Following thedetectorby a bankof independentslicers,andchoosingfor each

userthe associatedoutputwith the smallestmeanslicer error, effectively implementsan

N-tap MMSE multiuserdetectorwith the delayoptimizedfor eachuser. Although more

complex, in general,than the detectorsbasedon linear prediction,the stacked MMSE

detector has better performance in noise.

ThestackedZF detector, accordingto Theorem6-2, implementsM +N conventional

delayedZF detectors,onecorrespondingto eachdelay0 thoughM + N−1. Following the

minimum-normdetectorby a bankof independentslicers,andchoosingfor eachuserthe

output with the smallestmeanslicer error, effectively implementsan N-tap multiuser

detector that, among the class of ZF detectors, minimizes the MSE of each user.

ThestackedWR detector, accordingto Theorem6-3, estimatesthechannelinput at

eachdelay0 thoughM+N−1 by usinglinearcombinationsof predictionerrors.It canbe

interpretedas a prediction-basedapproximationto the stacked MMSE detector. It has

nearly the same performance, but can have lower complexity whenmN ≈ n(M+N).

Wehavedetailedblind adaptive implementationsof thesedetectors,andhaveshown

that thestackedMMSE detector, in particular, is anexcellentcandidatefor CDMA appli-

cations.It is robust to inaccuraciesin the estimateof the signal subspacedimension.It

needsonly minimal informationregardingthe numberandconstellationsof the users.It

has better performancethan the prediction-baseddetectorsof chapter5, and can have
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lower complexity. Moreover, the blind algorithmswe have proposedin this chapter, like

thoseof chapter5, andprecedingchapters,exploit primarily second-orderstatisticsand

are thus insensitive to channel input distributions.

As a bonus,we have alsodeveloped,for tall FIR channels,a novel space-time(or

time only) precoderthat is both losslessandof finite complexity. It canbe usedto com-

pletely eliminateISI andMUI in the receiver without noiseenhancement,therebyfacili-

tating transmission approaching capacity.
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APPENDIX 6-1:

AN ALGORITHM FOR RESOLVING THE PERMUTATION K

The last rotationstagefor any of the proposedstacked detectorsconvergeswith a

permutationambiguityK , suchthat,whendecisionsarecorrect, thesliceroutputis k =

K Xk. In this context, K permutesvirtual users,not just actualusers.To resolve K , we

mustensurethat thetemporalorderingof actualusersis preserved,andthat their relative

complex rotation is zero. Mathematically, an acceptable permutation must be of the form:

 = , (6-42)

whereK is anarbitrarycomplex permutationmatrix of dimensionn × n. Fortunately, we

have additional information that can be used to ensure thatK satisfies (6-42).

Unlike xk, the sequenceXk is not temporallywhite, becausethe vector Xk, for a

giventime k, is relatedto thevectorX�
� 1 by ashift. Moreprecisely, theautocorrelationof

Xk at lag 1 is ashifting matrix:

E[XkXk �

� *] = ≡ T . (6-43)

Theterm“shifting matrix” originatesfrom thepropertythatpre-multiplyingany vectorby

T effectively shiftsthecomponentsof thatvectordown by n. (Thelastn componentsare

X̂

K̃

K
K

K0

0
…

0
In 0

In 0

In 0
0

0

… …
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discardedat thebottom,andn zerosareshiftedin at the top.) Observe that for any arbi-

trary ambiguityK , we can left factor ambiguities that are detrimental:

K = K 0 , (6-44)

where satisfies(6-42),andis thusharmless,but whereK 0 doesnotsatisfy(6-42).If we

assumethat the decisionsarecorrect,so that k = K Xk, thenthe autocorrelationof the

output k at lag 1 is given by

E[ k k−1
*] = KT K * = K 0 T *K 0

*= K 0T K 0
*. (6-45)

The detrimental ambiguity K 0 can be removed as follows. First, estimate Φ =

E[ k k−1
*], by sampleaveragingandquantizingthe elementsof the averageto the set

{ ± 1, ± j, 0 }. This estimatecanbedeemedvalid by observingthesizeof thequantization

error, andthestructureof theresultingmatrix.Any valid estimate canthenbemanipu-

lated to create a shifting matrix, by using a series of row exchangesB i:

BL…B 2B 1 B 1
*B 2

*…BL
* = T. (6-46)

The productBL…B 2B 1 = K 0
* removes the detrimentalambiguities.Considerthe fol-

lowing example.

Example 6-1. With n = 2 and n(M+N) = 4, supposethat the stacked detector

converges with the following permutation:

k = K Xk = Xk. (6-47)

K̃

K̃

X̂

X̂

X̂ X̂ K̃ K̃

X̂ X̂

Φ̂

Φ̂

X̂

0 1 0 0
0 0 j– 0
1– 0 0 0
0 0 0 1
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Theresultingsliceroutputis k = [ xk
(2), −jxk� 1

(1), � xk
(1), xk� 1

(2)]T. Without knowl-

edgeof thepermutationwe do not know which componentsbelongto which users.

For the givenK , the estimate  of E[ k k−1
*] should be

= K T K *= = . (6-48)

Givenonly thematrix to theright of theequalityin (6-48),we now look for a series

of row exchangesB i thatproducesa shifting matrix. By inspection,thefirst opera-

tion B1 should swap rows 1 and 2 of  in order to force row 2 to be all zeros:

B 1 B 1
* =  = . (6-49)

Fromtheresult,we seethat thenext operationB 2 shouldmultiply row 3 by −j, and

then swap rows 3 and 4:

B2(B1 B1
*)B2

* = = = T . (6-50)

Obtaining T as a result terminatesthe algorithm. Observe that multiplying the

output of the MPLL byB2B1 = K 0
*removes the detrimental ambiguities:

X̂

Φ̂ X̂ X̂

Φ̂

0 1 0 0
0 0 j– 0
1– 0 0 0
0 0 0 1

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

0 0 1– 0
1 0 0 0
0 j 0 0
0 0 0 1

0 0 0 0
0 0 j 0
0 0 0 0
1 0 0 0

Φ̂

L̂

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0 0 0 0
0 0 j 0
0 0 0 0
1 0 0 0

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0 0 0 0
0 0 0 0
0 j 0 0
1 0 0 0

Φ̂

1 0 0 0
0 1 0 0
0 0 0 1
0 0 j– 0

0 0 0 0
0 0 0 0
0 j 0 0
1 0 0 0

1 0 0 0
0 1 0 0
0 0 0 j
0 0 1 0

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0



212

(B2B1)K Xk =K 0
*K Xk =

Xk = Xk = Xk. (6-51)

The residualpermutation , which is of the form given by (6-42), is harmless

because it merely exchanges the user labels and negates one user.

In practice,onceK 0
* is estimated,wecancorrecttherotatorof (6-37)accordingto Q k =

K 0
*Q k. We thencanstarta new runningestimateof Φ, andperiodicallyverify that the

new estimate continues to be a shifting matrix:= T.

1 0 0 0
0 0 1 0
0 0 0 1
0 j– 0 0

0 1 0 0
0 0 j– 0
1– 0 0 0
0 0 0 1

0 1 0 0
1– 0 0 0
0 0 0 1
0 0 1– 0

K̃

K̃

Φ̂
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C H A P T E R 7

C O N C L U S I O N S A N D
F U T U R E W O R K

7.1 Conclusions

We have developedseveralnew algorithmsfor blind multiuserdetectionandequal-

izationbasedon a philosophy of minimal relianceon higher-orderstatistics.Thesealgo-

rithms use adaptive linear prediction and subspaceor singular-value decompositionto

exploit primarily the second-orderstatisticsof the receiver observation, an approach

which offerssignificantadvantagesover HOS-basedor batch-orientedmethods.Thepro-

poseddetectorshave goodperformance,low complexity, fastconvergence,andan innate

compatibility with shapedsignalconstellations.We have demonstratedthe effectiveness

of these algorithms in a wide variety of contexts, including multisensor receivers,

code-division multiple-access systems, and fractionally spaced equalizers.

In chapter3, we have proposedsubspace-baseddetectorsfor memorylesschannels.

We have proposeda blind algorithmfor adaptively separatingthe signalandnoisesub-

spaces.Becausethe subspaceseparatoris information-lossless,it canbe usedasa uni-

versaldetectorfront end to reducethe complexity of subsequentprocessing.We have

generalizedthesubspaceseparatorto furtherdecomposethereceivespacetherebyleading

to an algorithmfor adaptive singular-valuedecompositionof the channel.We have pro-
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posedfully blind implementationsof theMMSE andZF multiuserdetectors,basedon the

adaptive SVD. We have alsoproposeda channeldiagonalizationalgorithm,which facili-

tates transmissionapproachingcapacity in single-usermulti-channelcontexts such as

array-to-array communication.

In chapter4, we have proposedthecanonicalwhiten-rotatedetectorfor memoryless

channels.TheWR detectoris theuniquespatialwhitenerwith minimal MSE. It is infor-

mationlossless,optimallynear-far resistant,andit hasnear-MMSE performance.Wehave

proposeda blind adaptive implementationbasedon spatiallinearpredictionanda simple

modificationto theMPLL algorithm.We have alsoproposeda project-firstWR architec-

ture that usesthe subspaceseparatorin its front end.The two structuresaremathemati-

cally equivalent, but the project-first approach has lower complexity, and faster

convergence,when the dimensionof the receiver observation is exceedinglylarge. We

have demonstratedtheWR detectorfor bothwidebandsynchronous-CDMAandnarrow-

band linear-array applications.

In chapter5, we have presenteda family of blind multiuserdetectorsthat combine

spatialandtemporalpredictionto exploit the uniquepropertiesof tall FIR channels.We

have shown that tall channelscan have many equivalent representations,e.g., moving

average,autoregressive, andothers.The existenceof a finitely parameterizedAR model,

in particular, implies an FIR, andthereforestable,left-inverse.In a sense,almostall tall

FIR channelsareminimum phase,a factwhich suggeststheuseof linearprediction.We

have proposedthe forward LP detector(Definition 5-6), the first stageof which is a

one-stepforward temporalprediction-errorfilter. The detectorexploits the AR channel

model of section5.1.1 to roughly convert the channelH(z) of (1-1) into a memoryless
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channelH0. Althoughwith noise,thisdescriptionis only approximate,thespatialmethods

of chapter4 canthenneverthelessbeappliedto recover the transmittedsequence.With a

zero-delayconstraint,the FLP detectorperformanceis nearthat of the MMSE detector.

However its performancein generalis highly dependentuponthe sizeof the zero-thtap

H0, provided that this tap is significant relative to noise.

Therefore,we have also proposeda more generalforward-backward LP detector

(Definition 5-7). The first stageof the LP detectoris an (L+1)-step forward predic-

tion-errorfilter; the secondstageis a one-stepbackward prediction-errorfilter. Together

thesefilters exploit theARMA andAP modelsof sections5.1.2and5.1.3,respectively, to

roughlyconvert thechannelH(z) of (1-1) into a memorylesschannelHL . (Recall

that is theorderof thebackwardpredictor.) Thespatialmethodsof chapter4 arethen

appliedto invert HL. The performanceof the LP detectoris roughly proportionalto the

energy in HL; thereforethe index L shouldcorrespondto the tap of greatestenergy. In

section5.6, we have detailedblind adaptive implementationsof the detectorsand have

demonstratedapplications,including an adaptive fractionally spacedequalizer(FSE)for

single-usersystemsusing highly shapedsignal constellationsand a blind multiuser

detector for asynchronous CDMA systems.

In chapter6, we have extendedthealgorithmsfor adaptive subspaceseparation,sin-

gular-value decomposition,and spatial whitening to channelswith memory. We have

shown thatby usingasimplestackingprocedure,wecaneffectively convert thetall m × n

FIR channelH(z) of (1-1) into thetall mN × n(M+N) memorylessblock-Toeplitzchannel

H of (6-1). The algorithmsdesignedfor H of (3-1), thenreadily extendto H . We have

definedstackedMMSE, ZF, andWR detectorsin termsof H. ThestackedMMSE detector

z L– Ñ–

Ñ
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implementsM+N conventional MMSE multiuser detectors,and thus can be used to

implementan N-tap MMSE multiuserdetectorwith the delay optimizedfor eachuser.

Althoughmorecomplex, in general,thantheLP-baseddetectorsof chapter5, thestacked

MMSE detectorhasbetterperformancein noise.ThestackedZF detectorcanbeusedto

implementan N-tap multiuserdetectorthat,amongthe classof ZF detectors,minimizes

the MSE of eachuser. The stacked WR detectoris a spatio-temporalprediction-based

approximationto thestackedMMSE detector. It hasnearlythesameperformance,but can

have lower complexity whenmN ≈ n(M+N). We have detailedblind adaptive implemen-

tations of these detectors.

ThestackedMMSE detectoris particularlyappealing.It is robust to inaccuraciesin

the estimateof the channelorder, needsonly minimal informationregardingthe number

andconstellationsof theusers,hasbetterperformancethantheprediction-baseddetectors

of chapter5, and can have lower complexity in some applications, most notably CDMA.

We have alsodevelopeda novel space-timeprecoderthat is simultaneouslylossless

andof finite complexity. It canbe usedto eliminateinterferencein the receiver without

noise enhancement.

7.2 Future Research

Wehavereservedthefinal sectionof thethesisto discussremainingopenissues,and

to suggestideasfor future research.Openissuesincludea rigorousproof of convergence

for thesubspaceseparatorandSVD algorithms,amethodfor optimizingthisconvergence,

andamethodfor blind estimationof theindex L usedin thegeneralforward-backwardLP

detector. As ideasfor future research,we suggestalternative LP-baseddetectorarchitec-
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turesaswell astechniquesto speedconvergenceof all detectorsfor applicationto fading

or othertime-varyingchannels.Wealsoproposeanalgorithmfor blind channelidentifica-

tion basedon adaptive correlationmatching,which may be of interestto researchersin

this field.

7.2.1 SVD Convergence

All simulationresultssuggestthatthesubspace-separation(3-20)andcompletesub-

space-decomposition(3-25) algorithmsdo indeedconverge to the desiredsolutionsfor

sufficiently small loop gain λ; however, there is no rigorous proof of convergence.

Appendix3-2 presentsa heuristicargumentbut provesonly that the innerproductof Gy

andy, wherey is the rotator output, is maximized when

J = (7-1)

is minimized.(Recallfrom Appendix3-2 thatgi anddi arediagonalelementsof G andD

= SS*, respectively, for somechannelSVD H = USV*, andthat ti , j areelementsof T =

QU, whereQ is the rotator.) Although (7-1) is aestheticallypleasing,a more rigorous

proof of convergence is still needed and could be the subject of future research.

It is also unclearhow the elementsgi shouldbe chosento optimize convergence

speed,althoughwe have given this topic someconsideration.For thesake of discussion,

assumethattheelementsdi areall distinct.(Thechannelmustthereforebesquare.)In this

case,we would ideally like to forceall off-diagonalelementsti , j of T to zeroat thesame

rate.A reasonableapproachis to try to make thecoefficientsof |ti , j |2 in (7-1) constant

for all i ≠ j:

gi g j–( ) di d j–( ) ti j,
2

j i>
∑

i
∑
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(g i
� g j)(d i

� d j) = c, (7-2)

or equivalently, try to make

g i � g j =  ≡ c i,j, (7-3)

wherec andci , j are positive real constants. We can express (7-3) as

, (7-4)

which is a systemof m( m� 1)/2 equationswith m unknowns.For m > 2, the systemis

overdetermined,sothereis no generalsolution.(For m > 3, m( m� 1)/2 > m, andfor m =

3, rank(A) = 2.) Furthermore,the least-squaressolutiong = A† c doesnot in generalsat-

isfy theconstraintong (thattheelementsgi mustbedecreasing).Nevertheless,wecansee

from (7-3) that the elementgi shouldhave a roughly reciprocal relationshipto the ele-

mentsdi. The truly optimal choice for the elementsgi remains an open issue.

7.2.2 Blind Estimation of the LP Index

Theprimaryshortcomingin theblind implementationof thegeneralizedLP detector

is how to determinethe optimal index L. The brute-forcetechniqueof testingmultiple

indices,eitherserially or in parallel,substantiallyincreasesthe recovery time (to steady

state)or thecomplexity of thedetector. This increase,in eithercase,is by a factorof M+1

if all possibleindicesare tested.In this section,we outline a promisingalternative for

c
di d j–
-----------------

gm

g1

…

1 1– 0 … 0

1 … 1–

0 … 0 1 1–cm � 1, m

ci,j

c1,2

…
…

=
…

…

c = A g



219

low-noiseenvironmentsthatat mostroughlydoublestherecovery time, andonly slightly

increases the detector complexity.

We first implementthe blind adaptive LP detectorwith index L = 0. After conver-

gence,we canusethedetectoritself to estimatethechanneltaps.If thenoisevarianceis

small,thenatsteadystate,thecovarianceof thetemporalpredictionerroris approximately

given by

Φe = E[ ekek
*] ≈ H0H0

*. (7-5)

Let MD2M* denotethe unique minimum-normgeneralizedCholesky factorizationof

H0H0
* (whereM is monic, lower triangular, and of dimensionm × m, and whereD is

diagonalandof dimensionm × n). We canusethe LP detector’s spatialpredictor 0 to

estimateM accordingto = (I �
0) �

�

. ThefactthatI �
0 is lower triangularsimplifies

thecalculationof its inverse.Similarly, we canusetheLP detector’s AGC to estimate

D. For low noise,exactly m � n of the diagonaltermsin the AGC inverse –1 arevery

small.Let J denotethen × m matrix thatdiscardsthesesmall terms,so that = J –1.

An estimateof H0 is thengiven by = ≈ H0U, whereU is an arbitrary(n × n)

unitarymatrix. We canusethe temporalpredictorto estimatetheotherchanneltaps.We

first estimatetheAR parametersas[ 1 … N] = �
�

1 … N]. RecallthattheAR andMA

parameters are related as follows:

[ A1 … AN ]H = [ H1 … HM 0m × Nn ]. (7-6)

Therefore,using[ 1 … N] and , we canrecursively estimatetheotherchanneltaps

as follows:

P̂

M̂ P̂ P̂

Â

Â

D̂ Â

Ĥ0 M̂ D̂

Â Â P̂ P̂

Â Â Ĥ0
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i = ∀ i ∈ {1, …, M}. (7-7)

Theseestimates,like , have anarbitraryunitaryambiguity: i ≈ HiU. However, U is

normpreservingandthushasno effect on theestimateof thechannelenergy distribution:

tr( i i
*) ≈ tr(HiHi). We simply choosetheindex L correspondingto thetapof greatest

energy tr(HLHL), and then re-adapt the LP detector with this new index.

Observe that U alsohasno effect on the estimateof the energy distribution corre-

spondingto a particularuserj: 2 ≈ 2 ∀ i, j. Therefore,we might alterna-

tively chooseto implementn separateLP detectors,onefor eachuserj ∈{1, …, n}, and

choosean index Lj for eachcorrespondingto the tap having greatestenergy 2 in

column j. This approachoptimizesthe performancefor eachuser, but at the expenseof

additional complexity.

Theproposedalgorithmis subjectto certaininaccuracies.First, the initial estimates

[ 1 … N] and assumenegligible noise.Second,the recursionof (7-7) accumulates

errors as i increases.However, there are variations of this basic approachthat may

improve the accuracy. An estimateof the noise variancemight be usedsomehow to

improve theaccuracy of the initial estimatesof [ 1 … N] and . We might alsoesti-

mate the channeltaps in someother order. For example, we might start with an LP

detectorof index M, andthen,using[
�

� …
��� ] and , recursively estimatethepre-

cedingchannelstaps.We could in factstartwith anLP detectorof any index L, estimate

HL, and then devise a recursionto estimatethe other channeltaps from HL. Future

researchmight addressthe viability of theseandothertechniquesfor blindly estimating

the LP index. (See, for example, correlation matching of section7.2.5.)

Ĥ Âi j– Ĥ j
j 0=

i 1–

∑

Ĥ0 Ĥ
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ĥi
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Â Â ĤM
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7.2.3 Alternative LP-Based Architectures

Property5-4, which statesthat the LP detectoris information losslessup to the

n × m truncationmatrix J = [I 0], suggestsyet anotherdetectorarchitecture.We could

modify the LP detectorof Definition 5-7 (5-63), replacingthe memorylessterm J by an

n × m filter J(z) of sufficient memorysuchthat the resultingdetectorC(z) is asymptoti-

cally MMSE for some set of user delays:

C(z) = J(z) D �

�

M�

�

[ I � P
�

�

���

(z) ][ I � PL(z) ], (7-8)

whereall terms,exceptJ(z), areasdefinedin Definition 5-7.Blind adaptive estimationof

C(z) is straightforward.We first initialize onetap of an estimate (z) to J, while initial-

izing its other tapsto zero.Then,holding (z) fixed, we adaptively estimatethe other

termsin (7-8) aswe do thosein CLP(z) of (5-63).After convergenceof theseterms,the

eye shouldbeopensufficiently for decision-directedadaptation (z). Thealgorithmthus

provides a seamless transition fromCLP(z) to an MMSE detectorC(z).

Theremay also exist other viable LP-basedarchitectures.For example,consider

two-sided prediction.We couldreplacetheseriescascadeof temporalprediction-errorfil-

ters[ I � P~1 (z) ][ I � PL(z) ] in CLP(z) of (5-63)with an error filter of the form:

E(z) = I � � . (7-9)

We canthink of (7-9) astheparallel combinationof two predictors,oneforwardandone

backward,bothone-step.Theremay indeedexist predictorcoefficientssuchthat thecas-

cadeE(z)H(z) is memoryless.Existenceof thesecoefficientswould imply that theobser-

vationrk of (1-1) could be expressed as

Q̃ z Ñ–

Ĵ

Ĵ

Ĵ

Piz
i–

i 1–=

Ñ–

∑ Piz
i–

i 1=

N

∑



222

rk = Pirk � i + Pirk � i + HLxk. (7-10)

Unfortunately, we cannotsolve for the coefficients {Pi} in termsof the block-Toeplitz

matrix H aswe canfor thestandardAR model.(SeeCorollary5-1.1(5-8) andTheorem

5-5 (5-23).)Hence,thenecessaryandsufficient conditionsfor theexistenceof thismodel,

in termsof the channelH(z), arenot known. Nevertheless,further researchin this vein

mightproduceLP-baseddetectorswith lowercomplexity or betterperformancethanthose

we have already proposed.

7.2.4 Fading Channels

Futurework mightalsoseekto speedtheconvergenceof theproposedalgorithmsfor

applicationto fading or other rapidly time-varying channels.All of the adaptive algo-

rithms we have describedare designedin the spirit of the LMS algorithm. We usean

instantaneousestimateof the gradientin the updatesof the predictorsand AGC, and a

rank-two instantaneouserrorin therotatorupdates.Wecouldof courseadoptaphilosophy

more in the spirit of the recursive least-squaresalgorithms.Doing so would necessarily

increasethenumericalcomplexity of thealgorithms,but it wouldalsospeedconvergence,

and extend the utility of the proposed algorithm to rapidly time-varying channels.

7.2.5 Correlation Matching

In this section,we describea techniquefor blindly estimatingthechannelwith indi-

rectapplicationto themultiuserdetectionproblem.A tall channelcanbeidentifiedup to a

unitary ambiguity from the second-orderstatisticsof its output.We proposean adaptive

schemebasedonacorrelationmatchingprinciple.ConsiderthememorylesschannelH of

i 1=

N

∑
i 1–=

Ñ–

∑



223

(3-1).Supposethereceiver hasaninitial estimateof thechannel andits noisevariance

2. If the correspondingchanneloutput autocorrelationestimate * + 2I matches

thatof theactualchannelHH* + σ2I, thenthechannelestimateis accurateto within auni-

tary ambiguity:

* + 2I = HH* + σ2I ⇔ 2 = σ2 and  = HU. (7-11)

The squaredFrobeniusdistanceof thesecorrelationmatricesserves as a quadraticcost

function to developanadaptive algorithmfor estimatingthechannel.With HH* + σ2I =

E[rkrk
*], a deterministic update is given by

k+1 = k
� µ( k k

* + 2I �
� �

rkrk
*]) k. (7-12)

Wemaydroptheexpectationoperatorto produceastochasticversion.Theestimateof the

noisevariancemustbeprovidedby othermeans,suchasthesubspaceseparator. Without

loss of generality, we can restrict to be lower triangular to reducenumericalcom-

plexity. As describedthis algorithmhasindirectapplicationto theblind multiuserdetec-

tion problem in that it can be used to implement an MMSE, decision-feedback,or

maximum-likelihood detector for memorylesschannels.Furthermore,the idea easily

extendsto channelswith memoryby replacingH and with H and asin chapter6.

Correlationmatchingcould alsobe useful for estimatingthe optimal index L for the LP

detector. Future research might seek to fully develop these ideas.

Ĥ

σ̂ Ĥ Ĥ σ̂

Ĥ Ĥ σ̂ σ̂ Ĥ

Ĥ Ĥ Ĥ Ĥ σ̂ Ĥ

Ĥ

Ĥ Ĥ
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	Theorem 5-3.�� Let the channel H(z) of (5-1) with m�>�n satisfy (5-2). If N�³�, then there exists...
	Corollary 5-3.1.�� The coefficients of A~1(z) = A�–i�z�i are given by
	[�A�–N º�A�–1�] = [�0m�¥�Nn�H0 º�HM�–�1�]H�† + V. (5-13)



	5.2 Minimum-Phase Channels
	Definition 5-1.�� A MIMO channel H(z) is called minimum phase if and only if there exists a causa...
	Example 5-1.�� Consider a 2�¥�2 channel F(z) with memory M = 2:
	F(z) = . (5-14)
	F–1(z) = . (5-15)

	Definition 5-2.�� [34] A square FIR channel F(z) = Fiz–i is called unimodal if det[�F(z)�] is non...
	Lemma 5-1.�� All unimodal channels are minimum phase.

	5.3 Necessary and Sufficient Conditions
	Definition 5-3.�� An m�¥�n channel H(z) with m�>�n is said to be irreducible if all square right-...
	Lemma 5-2.�� Initial and Final Values. For the channel H(z) of (5-1), the initial coefficient H0 ...
	H0 = H(•) º (z). (5-16)
	HM = H(0)º = º º(z)�z–M. (5-17)
	H(0)º = , (5-18)

	Definition 5-4.�� [34] The channel H(z) of (5-1) is said to be column reduced if its columns are ...
	Lemma 5-3.�� [34] The channel H(z) of (5-1) is column reduced if and only if it is full column ra...
	Theorem 5-4.�� The channel H(z) of (5-1) satisfies (5-2) if and only if it satisfies all of the f...
	1. H(z) is irreducible; 2. H(z) is column reduced; 3. All users have memory M. (5-19)

	Example 5-2.�� Suppose that a channel (z) satisfies (5-2) and is thus minimum phase. This means t...
	U(z) = , (5-20)


	5.4 Temporal Linear Prediction
	5.4.1�� One-Step Prediction
	ek = H0��xk +(Ai�–�Pi)�rk�–�i. (5-21)
	x = trH0H0* + tr(Ai�–�Pi)E[�rk�–�irk�–�j*](Aj�–�Pj)*. (5-22)
	Theorem 5-5.�� Let the channel H(z) of (5-1) with m > n satisfy (5-2), and let P(z) = Piz–�i deno...
	[�P1 º�PN�] =�[�H1 º�HM 0m�¥�Nn�]H�† + V, (5-23)


	5.4.2�� Multiple-Step Prediction
	ek = Hi�xk�–�i �+(Ai�–�Pi)rk�–�i. (5-24)
	x = trHiHi* + tr(Ai�–�Pi)E[rk�–�irk�–�j*](Aj�–�Pj)*. (5-25)
	Theorem 5-6.�� Let the channel H(z) of (5-1) with m > n satisfy (5-2), and let PL(z) =Pi�z–i deno...
	[�PL+1 º PL+N�] =�[�HL+1 º�HM 0m�¥��(N+L)n]H�† + V, (5-26)


	5.4.3�� Backward Prediction
	ek = HMxk�–�M +(Ai�–�Pi)rk�–�i. (5-27)
	x = trHMHM* + tr(Ai�–�Pi)E[rk�–�irk�–�j*](Aj�–�Pj)*, (5-28)
	Theorem 5-7.�� Let the channel H(z) of (5-1) with m > n satisfy (5-2), and let P�~1(z) = Piz–i de...
	[�P–N º�P–1�] = [�0m�¥�Nn�H0 º�HM–1�]H�† + V, (5-29)



	5.5 Multiuser Detection Using Linear Prediction
	5.5.1�� The Forward LP Detector
	Figure 5-4.�� A block diagram of the forward LP detector.
	Theorem 5-8.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2), and let P(z)�=�P...
	P = [�P1 º�PN�] = K�H�*(HH�* + s2I)–1 (5-30)
	��= K(H�*H�+�s2I)–1H�*, (5-31)

	Corollary 5-8.1.�� The forward cascade F(z)�=�Fiz–i�= [�I – P(z)��]H(z) has coefficients given by
	F = [�F0 F1 º FN�+�M�] = [�H0�|�[��H1�º�HM�0m�¥�Nn�]��·Y], (5-32)
	Fe = E[�ekek*] = H0H0* + s2I + KYK*. (5-33)

	Lemma 5-4.�� Let ek�=�Fixk�+�vk, where xk and vk are independent with covariances I and Fv, respe...
	CD = FD*Fe–1, (5-34)
	JQ0 = P *(D–1M–1H0�), (5-35)

	Definition 5-5.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2). The n�¥�m zer...
	CFLP0(z) = JQ0D–1M–1[�I�–�P(z)], (5-36)
	I�–�(z)�=�[�I�–�][�I�–�P(z)�] = M–1[�I�–�P(z)�]. (5-37)

	Lemma 5-5.�� For the m�¥�n channel H(z) of (1-1), satisfying (5-2), with m�>�n and s�>�0, let C0(...
	C0(z) = C0[�I – P(z)�], (5-38)

	Experiment 5-1.�� For a system with n = 2 users, we consider two receivers: one with m�=�3 sensor...
	Figure 5-5.�� A comparison of the zero-delay FLP and MMSE detectors.
	�= , (5-39)

	Experiment 5-2.�� In this experiment we analyze the performance of the zero-delay FLP detector as...
	Figure 5-6.�� Performance of the zero-delay FLP detector as a function of g0(1), the fraction of ...
	Y = , (5-40)
	= . (5-41)
	= =� �º . (5-42)
	[�H0�[H1��º�HM��0m�¥�Nn]�·Y�]�=�[��0m�¥�n�H1�[H2�º�HM��0m�¥�Nn�]�·], (5-43)
	[�H0�[�H1��º�HM��0�]��·Y�]�ª [��0�H1�[�H2�º�HM��0]�·]. (5-44)

	Theorem 5-9.�� Let the channel H(z) of (1-1), with m > n and s > 0, satisfy (5-2), and let denote...
	[�I�–�P(z)�]H(z) = º diag º . (5-45)

	Experiment 5-3.�� We essentially repeat Experiment 5-2 here, except we implement both the delay-1...
	Figure 5-7.�� Comparison of the delay-1 and delay-0 performance as a function of the zero-th tap ...
	Experiment 5-4.�� In this experiment we fix the SNR of user 1 at 20 dB, and then vary the zero-th...
	Figure 5-8.�� Comparison of the delay-0 and delay-1 FLP detectors as a function of the energy fra...
	J = P�*(D–1M–1). (5-46)

	Definition 5-6.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2). The (optimal ...
	CFLP(z) = JD–1M–1[�I�–�P(z)�], (5-47)


	5.5.2�� The Forward-Backward LP Detector
	Theorem 5-10.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2), and let P(z)�= ...
	���[�PL+1 ºPL+N�] = KLH�*(HH�* + s2I)–1 (5-48)
	= KL(H�*H + s2I)–1H�*, (5-49)

	Corollary 5-10.1.�� The forward cascade FL(z) = Fiz–i�=[�I�–�PL(z)]H(z), with memory = M��+�L�+�N...
	FL = [�F0 F1 º F�] = [�H0��º�HL�[�HL+1 º�HM 0m�¥�(N�+��L)n]�·Y�], (5-50)
	ek = Fixk�–�i + vk, (5-51)
	� = (5-52)
	� = , (5-53)

	Theorem 5-11.�� For the system of (5-51), let P~1�(z)�= Piz–i denote a one-step backward temporal...
	P~1� = [�P º�P–1�] = (KFF��*+ s2KEE���*)(FF��* + s2EE��*)�–1, (5-54)
	KF��=�[���0�F0�º�F�] (5-55)
	KE��=�[���0�Im 0m�¥�mL � –PL+1 º� –PL+N�–�1�]. (5-56)
	T(z) = Ti�z–i�= [��I�–�P�~1�(z)�][��I�–�PL(z)��]. (5-57)
	B(z) = Biz–i = [�I�–�P�~1�(z)�][�I�–�PL(z)�]H(z). (5-58)
	B = [�B1 B2 º B�] = [��–P º�–P–1�Im�]. (5-59)
	T�= [�T1 T2 º T�] = [�–P º�–P–1�Im]. (5-60)
	Fb = E[��bkbk*] = BB* + s2TT*. (5-61)
	J = P�*(D–1M–1). (5-62)

	Definition 5-7.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2). The (forward-...
	CLP(z) = JD–1M–1[��I�–�P�~1�(z)��][��I�–�PL(z)��], (5-63)

	Experiment 5-5.�� We again consider 1000, 2-tap Gaussian channels of dimension 5�¥�2, as in Exper...
	Figure 5-9.�� Comparison of several LP-based detectors as a function of the energy fraction g0(1)...
	Experiment 5-6.�� We consider random 3-tap (M�=�2) channels of dimension 6�¥�2. The elements of e...
	Figure 5-10.�� A comparison of the optimal LP detector with an MMSE detector with equal memory.
	Property 5-1.�� The LP detector approaches a delayed zero-forcing detector in the limit as noise ...
	LP(z) = HL†[�I�–�~1(z)�][�I�–�AL(z)�], (5-64)

	Property 5-2.�� The LP detector is optimally near-far resistant.
	Property 5-3.�� For s > 0, the output of the LP detector is spatially white, but not temporally w...
	Property 5-4.�� The LP detector is information lossless up to the truncation matrix J.


	5.6 Blind Adaptive Implementations
	Figure 5-11.�� A Blind Adaptive Implementation of the LP Detector.
	L(k�+�1) = L(k) + m�f�ekRk*. (5-65)
	~1(�k�+�1) = ~1(k) + m�b�bkEk*. (5-66)
	(�k�+�1) = (k) +�m�sbk*. (5-67)
	(k+1) = (k+1)�ƒ�L, (5-68)
	�(�k�+�1) = (k) +�m�sek*, (5-69)
	~1�(�k�+�1) = ~1(k) + m�b�bkRk*, (5-70)
	~1�(�k�+�1) = ~1�(k) + m�b*. (5-71)
	(k+1) = (k+1)�ƒ�L. (5-72)
	~1� = [� º � 0] = [���M–1·[�P º �]�| (�I�–�M–1)���], (5-73)


	5.7 Experimental Results
	Experiment 5-7.�� LP versus CMA. This experiment compares a T�/�2-spaced CMA equalizer to a 1�¥�2...
	We conduct three trials with varying degrees of shaping. For the first trial, there is no shaping...
	The second trial uses moderate shaping with a measured kurtosis of k �= 1.595. We see in Fig.�5-1...
	The constellation is heavily shaped for the third trial. The kurtosis is measured to be k�= 1.857...
	We remark that, for each trial, the step sizes in all updates are optimized for convergence speed...
	Figure 5-12.�� Convergence of LP versus CMA: (a) unshaped 64-QAM; (b) moderately shaped; and (c) ...
	Experiment 5-8.�� Asynchronous CDMA. We now consider the 2-user asynchronous CDMA system illustra...
	� �{��cj(1)��}�=�{ +1 –1 +1 +1 –1 –1 –1 –1 –1 +1 +1 +1 –1 –1 –1 –1��}, {��cj(2)���} = { +1 +1 +1 ...

	We implement the blind adaptive LP detector with index L = 0 and order N = 1 using m�f = 0.5(2–k/...
	Figure 5-13.�� (a) A two-user asynchronous CDMA system with a chip-rate sampling receiver; (b) An...
	Figure 5-14.�� Recovered constellations for the asynchronous CDMA system of Experiment 5-8.

	5.8 Chapter Summary
	Appendix 5-1:�� Proof of Theorem 5-2 and Corollary 5-2.1 (Existence of the ARMA Model)
	[��I �0m�¥�mL �–AL+1 º�–AL+N�]HN+L+1 = [�H0 º�HL 0m�¥�n(M�+�N)�]. (5-75)
	[��0m�¥�m(L+1) �–AL+1 º�–AN+L]HN+L+1 = –[��0m�¥�m HL+1 º�HM 0m�¥�(N+L)n�] (5-76)
	[�AL+1 º�AL+N�]HN = [�HL+1 º�HM 0m�¥��n(N+L)�]. (5-77)
	[�AL+1 º�AL+N��]�H �= [��HL+1 º�HM �0m�¥�n(N+L)]�H�†H�+ VH ������ �= [�HL+1 º�HM�0m�¥�n(N+L)���]....

	Appendix 5-2:�� Proof of Theorem 5-3 and Corollary 5-3.1 (Existence of the AP Model)
	[�–A�–N º�–A�–1 �I��]HN+1 = [��0m�¥�(M+N)n HM]. (5-79)
	[��–A–N º�–A–1 �0m�¥�m�]HN+1 = –[��0m�¥�Nn��H0 º�HM�–�1��0m�¥�m�], (5-80)
	[�A–N º�A–1]HN = [��0m�¥�Nn�H0 º�HM�–�1�]. (5-81)
	[�A–N º�A–1�]�H = [��0m�¥�Nn�H0 º�HM�–�1��]H�†H+ VH ������ �= [��0m�¥�Nn�H0 º�HM–1��]. (5-82)

	Appendix 5-3:�� Proof of Theorems 5-8, 5-10, Corollaries 5-8.1, 5-10.1 (Optimal L-Step Forward Pr...
	ek = + (KL – PLH )Xk�–�L�–�1 + nk – PLNk�–�L�–�1. (5-83)
	x = + tr[�(KL – PLH )(KL – PLH )*+ s2I + s2PLPL*�]. (5-84)
	J(PL) = �tr[(KL – PLH )(KL – PLH )*+ s2PLPL*]. (5-85)
	—J(PL) = (PLH – KL)H�* + s2PL = PL(HH�* + s2I) –�KLH�* = 0. (5-86)
	PL =�KLH�*(HH�* + s2I)–1. (5-87)
	��FL = [�Im�|�0m�¥�mL�|�–PL�]�H�N�+�L�+�1 = [���H0�º H�L�|�(KL�–�PLH���)�]. (5-88)
	��FL = [��H0�º H�L�|�(KL – KL(�H�*H + s2I)–1H�*H���)��]. (5-89)
	� FL = [�H0�º H�L�|�KL(H�*H + s2I)–1{(H�*H + s2I) – H�*H�}�] = [�H0�º H�L�|�KLs2(H�*H + s2I)–1�] ...
	Fe = E[�ekek*]�= H0H0 + s2I + (K – PH )(K – PH )* + s2PP*. (5-91)
	�Fe = H0H0 + s2I + KYYK* + s2s–2KYH�*H�YK*s–2 = H0H0* + s2I + KY(s2I)YK*s–2 + KY(H�*H�)YK*s–2 = H...

	Appendix 5-4:�� Derivation of Lemma 5-4
	ek = FXk – vk, (5-93)
	J(C) = E[Cek – xk–D2] = E[�CFXk – Cvk – xk–D)2]. (5-94)
	���J(C) = E[�(CF – )Xk – Cvk2], (5-95)
	J(C) = tr[(CF – )(CF – )* + CFvC*]. (5-96)
	—J(P) = 2(CF – )F* + 2CFv = 0. (5-97)
	CMMSE = FD*(FF* + Fv)–1 = FD*Fe–1.�o (5-98)

	Appendix 5-5:�� Proof of Lemma 5-5 (The Relationship Between the FLP and MMSE Detectors at Zero-D...
	zk = C(�H�N+1Xk + Nk). (5-99)
	ek = (CH�N+1 – )Xk + CNk, (5-100)
	J(C) = tr(CH�N+1 – )(CH�N+1 – )* + s2trCC*. (5-101)
	—J(C) =(CH�N+1 – )H�N+1* + s2C = 0 (5-102)
	C(H�N+1H�N+1* +s2I) = H�N+1*. (5-103)
	[�C0 �] = [�H0* �0n�¥�mN�], (5-104)
	C0(H0H0* + KK* + s2I) + �H�K* = H0* (5-105)
	C0K�H�* + (�H��H��* +s2I)�= 0. (5-106)
	= –C0K�H�*(�H��H��* +s2I�)–1. (5-107)
	C = [�I� �] = C0[�I | –K�H�*(�H��H��* +s2I)–1�] C0�[�I | –P��]. (5-108)
	CMMSE(z) = C0[�I – P(z)�]. (5-109)

	Appendix 5-6:�� Proof of Theorem 5-9 (Precursors Below the Noise Floor are Ignored.)
	[�H0�H1 º�HM�] = [��h0(1) ºh0(n) |h1(1) ºh1(n) | º| hM(1)º hM(n)�]. (5-110)
	Y = , (5-111)
	= . (5-112)
	= =� �º �. (5-113)
	[�h0(1)�º h0(n)�[�h1(1)��º� hM(n)��0m�¥�Nn]�·Y�]�=� [��0m�¥�1�h0(2) º h0(n)� h1(1)� [��h1(2)��º��...
	[�I�–�P(z)�]�H(z) = [��I�–�P(z)��]�[��(1)(z) h(2)(z) º h(n)(z)�], (5-115)
	[�I��–�P(z)�]�H(z) = [��I��–��P(z)��]�[��hk(1)�z–k| h(2)(z) º h(n)(z)�], (5-116)
	[�I�–�P(z)�]�H(z) = [��I��–��P(z)��]�[��hk(1)�z–k| º |hk(n)�z–k], (5-117)

	Appendix 5-7:�� Proof of Theorem 5-11 (Optimal Backward Predictor Following Forward Predictor)
	bk = –P~1F��� + KF + Fx –�P~1E� + KE + . (5-118)
	x = tr[ + (KF – P(–1)F )(KF – P�~1F )*] + s2tr[�PL�+�NPL�+�N* + s2(KE – P~1E)(KE – P~1E�)* �]. (5...
	J(P~1) = �tr[(KF – P~1F )(KF – P~1F )*+ s2(KE – P~1E)(KE – P~1E�)*]. (5-120)
	—J(P~1) =�(KF – P~1F )F�* + s2(KE – P~1E)E��* �= P~1(FF��* + s2EE*) –�(KFF�* + s2KEE�*)�= 0. (5-121)
	P~1 =�(KFF�* + s2KEE�*)(FF��* + s2EE�*)–1. o (5-122)

	Appendix 5-8:�� A Backward LP Detector
	bk = (K~1 – P~1H )Xk� + HMxk–M–N + nk – P~1Nk�. (5-123)
	x = tr[�(K~1 – P~1H )(K~1 – P~1H )* + HMHM*+ s2I + s2P~1(P~1)* �]. (5-124)
	J(P~1) = �tr[(K~1 – P~1H )(K~1 – P~1H )*+ s2P~1(P~1)* ]. (5-125)
	—J(P~1) = (P~1H – K~1)H�* + s2P~1 = P~1(HH�* + s2I) –�K~1H�* = 0. (5-126)
	P~1 = [�P–N º�P–1�] = K~1H�*(HH�* + s2I)–1 (5-127)
	= K~1(H�*H + s2I)–1H�*, (5-128)
	��B = [�B0 º BM�+��N��] = [�P~1 | Im�]�H�N��+�1 = [����(K~1�–�P~1H��)�| HM�]. (5-129)
	��B = [��(K~1 – K~1(�H�*H + s2I)–1H�*H��)�|HM�]. (5-130)
	� B = [�K~1(H�*H + s2I)–1{(H�*H + s2I) – H�*H�}�| HM�] = [�K~1s2(H�*H + s2I)–1�| HM�] = [���H0 º�...
	Fb = HMHM* + s2I + (K~1 – P~1H )(K~1 – P~1H )* + s2P~1(P~1)*. (5-132)
	Fb = HMHM* + s2I + K~1YY(K~1)* + s2s–2K~1YH�*H�Y(K~1)*s–2 = HMHM* + s2I + K~1Y(s2I)Y(K~1)*s–2 + K...
	J = P�*(D–1M–1). (5-134)
	Definition 5-8.�� For the m�¥�n channel H(z) of (1-1) with m�>�n and s > 0, the n�¥�m backward LP...
	CBLP(z) = JD–1M–1[I�–�P~1(z)], (5-135)



	Stacked Detectors
	6.1 A Memoryless Channel Model
	, (6-1)
	Figure 6-1.�� Equivalent models: (a) an FIR channel followed by receiver stacking, and (b) a memo...

	6.2 The Stacked MMSE Detector
	Definition 6-1.�� The stacked MMSE detector C�MMSE for (6-1) is the n(M+N) ¥ mN matrix C �that mi...
	Lemma 6-1.�� For the channel H of (6-1) with s > 0, the unique stacked MMSE detector can be expre...
	����CMMSE = H�*(H�H�* + s2I)–1 (6-2)
	���������� = (H��*H + s2I)–1H�* (6-3)
	= V�S� *(S�S��* + s2I)–2U��*, (6-4)
	C��MMSE �=�. (6-5)
	Zk = . (6-6)
	E[Zk�–�Xk2] = E[zk(D)�–�xk�–�D2] = E[CDRk �–�xk�–�D�2]. (6-7)

	Theorem 6-1.�� The stacked MMSE detector C��MMSE of Definition 6-1 simultaneously implements M��+...
	Figure 6-2.�� A block diagram of the stacked MMSE detector.

	6.3 The Stacked Zero-Forcing Detector
	Definition 6-2.�� For the channel H of (6-1), a stacked zero-forcing detector C��ZF �is an n(�M+N...
	Lemma 6-2.�� For the channel H of (6-1), a stacked ZF detector can be expressed in two equivalent...
	� C��ZF�= H��† + N (6-8)
	� = VS��†U��* + N����, (6-9)

	Theorem 6-2.�� The stacked-ZF detector simultaneously implements M�+�N different conventional del...
	��������� E[zk(D)�–�xk��–�D2] = = = s2CD. (6-10)

	Definition 6-3.�� For the channel of (1-1), let C(z) = Cj��z–j denote an n�¥�m, N-tap detector wi...

	6.4 The Stacked Whiten-Rotate Detector
	Definition 6-4.�� The canonical stacked whiten-rotate detector C�WR for (6-1) is the n(N+M)�¥�mN ...
	Q �= *, (6-11)
	W = D -1M -1, (6-12)
	J��Q �= ,���W �= . (6-13)
	Vk = ,���Zk = . (6-14)
	���vk(i) = WiRk = Wi��,��j�rk��–��j�= Wi��,��j�rk��–��j�, (6-15)
	���Wi(z) = Wi��,��jz–j = Ai (�I�––j(i) z–�j) = Ai(�I�– �(i)�)(��I�–P–j(i) z–j�), (6-16)
	Ek = . (6-17)
	zk(D) = QDVk = QD�,�i�Ai�ek(i), (6-18)

	Theorem 6-3.�� The stacked WR detector simultaneously generates estimates zk(D) of xk��-��D for a...
	Figure 6-3.�� An interpretation of the stacked WR detector showing its relationship to the spatio...
	Lemma 6-3.�� The D-delay MSE for user i, denoted MSEi�,�D, of the stacked MMSE, ZF, and WR detect...
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