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Xii

Summary

Multiuserdetectionis the procesf recoveringinformationfrom mutuallyinterfering
usersof asharedcommunicatiorchannel Typical applicationsncludewirelessnetworks,
bundledcablesandmultitrack magneticrecordingsystemsA multiuserdetectorexploits
the structureof the multiuserinterferencein order to improve systemperformanceor
capacity Becauseuserssharingthe channelusually operateautonomouslyit is often
desirablefor a multiuserdetectorto function blindly, with no a priori knowledgeof the
channelnor ary transmittercooperationThis thesisaddressethe problemof blind mul-

tiuser detection.

TheresearchHocuseson tall channelsthosehaving moreoutputsthaninputs,because
suchchannelsareidentifiableup to a memorylesaunitary matrix from the second-order
statisticsof their output. Tall channelsarisein a wide variety of applications,jncluding
multisensoreceversand code-dvision multiple accessThis researchdevelopsadaptve
detectordasedn linearpredictionandsubspacelecompositionsecond-ordetechniques
offering significantadvantagesover higherorder approachesTheseadwantagesnclude
fast,reliablecorvergence Jow computationatompleity, andinherentcompatibility with

shaped constellations\iag nearGaussian distriltions.

We first addresghe specialcaseof memorylesschannelsWe first proposea novel
adaptve signal-noisesubspaceeparatoican be usedasthe front endof ary recever to
reducethe complity of subsequenprocessingWe extendthe techniqueto performsin-
gularvaluedecomposition$SVDs) adaptvely, andproposeblind implementation®f the

minimum-mean-square-err@viIMSE) andzero-forcing(ZF) detectordasedon the adap-



Xiii

tive SVD. We alsoproposea canonicaWwhiten-rotateg( WR) detectoroffering nearMMSE
performanceTheadaptve implementations basecn spatialpredictionandhasvery low
complity. For single-usemultichannelapplications,we proposean adaptve channel-

diagonalization algorithm thaa€ilitates transmission approaching capacity

For channelsvith memory we proposea family of detectordasedon spatio-temporal
prediction. These detectorscan be viewed as a generalizationof the whiten-rotate
detector;they first useoneor moretemporalpredictorsto virtually eliminatethe channel
memory andthenapply spatialalgorithmsto recover thetransmittedsignals. Thesedetec-
tors demonstratdike no othersthe specialstructureof tall channels,and experimental

results confirm the stated benefits of blind detection based on second-order statistics.

We alsoproposefamily of so-calledstacled detectordor channelsvith memory By
stackinga sufficient numberof recever obsenations,thesedetectorsffectively corverta
tall FIR channelinto a tall memorylesslock-Toeplitz channel.The adaptve algorithms
for subspaceseparationsingularvalue decomposition spatial prediction, and channel
diagonalizatiorarethenreadily extendedto tall FIR channelsWe definestacledversions
of the MMSE, ZF, andWR detectorswhich effectively implementmultiple lower-dimen-
sionaldetectordor all usersat all delays,therebyoptimizing the delayof eachuser The
adaptve implementationsve presentare robust to their estimateof the signal subspace
dimension.Moreover, they neednot know the numberof usersor even the sizesof their
signalalphabetsThe stacled channeimodelalsoleadsdirectly to aninformation-lossless
space-timeprecodingtechniqueof finite compleity, which can be usedto completely

eliminate interference in the reeer without noise enhancement.



CHAPTER 1

INTRODUCTION

OMMUNICATION systemsn which multiple userssharea commonchannelor
C transmissiommediumareknown asmultiuser or multiple-accessystemsWireless
cellularnetworksareperhapghe bestexample wheremary mobile userscommunicatéo
a basestationthrougha commontransmissiormedium,the air. Computersonnectedo a
local-areanetwork are anothergood example.In moderncabletelevision systemsthe
upstreamcommunicationfrom the set-topboxesto the headendjs multiple accessn
nature.ln recentyears,systemssuchasthesehave becomea significantand expanding
part of the global telecommunicationsfrastructure Consequentlymultiusercommuni-

cation theory has become an aeetarea of research with gvimg importance.

Reliable multiuser communicationpresentsa key new challenge:mitigation of
multiuser interference(MUI). In addition to the impairmentsthat plague single-user
point-to-point systems, such as intersymbol interference (ISI) and additve noise,
multiuser systemsmust also contendwith interferenceamong the userssharing the
channel.The corventionalapproachto the problemof MUI is to coordinatethe trans-
mittersso asto avoid interferenceg1]. For example,frequeng-division andtime-diision
multiple access(FDMA and TDMA) are protocolsthat confine eachtransmitterto a

unigue band of frequenciesor to a unique slot of time. Code-dvision multiple access



(CDMA) is atechniquethatassigndo eachusera uniquespreadingcode,choserfrom a
setof orthogonakodesAll of thesetechniqueseekto eliminateMUI by orthogonalizing
thetransmittedsignals.The hopeis thatcorventionalstratgiescanthenbe appliedin the

recever (or recerers) to detect each user independently

Multiuser interference however, can never be perfectly eliminated,only reduced,
andconsequentlythe performancef corventionaldetectionstratgiessuffers.in CDMA
systemssuch as I1S-95 [2], the spreadingcodesare only approximatelyorthogonal.
Therefore significantMUI canremainwhenthe receved signalpower of onetransmitter
is muchgreaterthanthatof anotherthisis known asthe nearfar effect[3]. Paver-control
algorithmshave hadlimited successn combattingthe problem;neverthelessthe perfor-
manceof CDMA systemsare usually limited by MUI, not noise. Even for perfectly
orthogonalcodesJack of transmittersynchronizatioror the presencef multipathpropa-
gation can destry orthogonality at the recever. Similar problemsexist for multiuser
systemsyirelessor otherwise employing frequeng or time-division techniquedecause
of imperfectionsin bandpasdilters or systemtiming. In practice,thesesystemsmust
inevitably wastea portion of the bandwidthresourcan the form of guardbandsor guard
timesin orderto keepadjacentchannelinterferenceto acceptabldevels. The degreeto
which multiuser interferencecan be tolerated ultimately impacts system capacity by
governingcell sizes,plansfor frequeng andtime-slotallocation,or choiceof spreading

codes [4].

Even if the imperfectionsin implementationcould be dismissed,interference
avoidanceis not always desirablebecausdt doesnot always make the bestuse of the

bandwidthresourceln this senseattemptsto avoid MUI are someavhat reminiscentof



early attemptsto avoid ISl in single-userchannelsoy simply reducingthe rate of trans-
mission.Clearly, scenariosxist for which interferenceavoidanceis suboptimalin terms

of capacity

Example 1-1. Echo Cancelation. Considera pair of 2-wire voicebanddata
modems.Prior to the 19805, frequeng-division duplexing was usedto avoid
interferencebetweenthe two transmittersin contrastthe V.32 [5] standardallows
both transmittersto usethe samefrequeng band,and specifiesthat the resulting

interferenceébemitigatedwith echocancellationTheresultis adoublingof capacity

Example 1-2. Space-Division Multiple Access. As anotherexample,consideran
indoor wirelessnetwork with one antennain eachroom of a building with 100
rooms.Supposehatall 100 antennasretied to a supercomputein the cellar The
collection of antennascan be viewed as one big superarray Considerupstream
communicatiorfrom the 100 portablecomputergo the supercomputeSupposehat
every antennaanhearevery portable atleastto somedegree.Thereareavariety of
waysto avoid interference(e.g., TDMA, FDMA, eachwith 100 slots).However, a
betteridea,in termsof capacityis to have eachportabletalk atwill andin theentire
frequeng band,andto usemultiuserdetectionat the supercomputeto resole the
differentsignals.The multiuserdetectorin this scenarian effectimplementsa form
of space-diision multiple accesshut no attemptis madeto completelyeliminate

multiuser interference.

This researchaddresseghe problem of multiuser detectionin the presenceof

multiuserinterferencejntersymbolinterferenceandadditive noise.The problemis illus-



tratedin Fig. 1-1,in which areceverwith oneor moreantenna®bsenresseveraldigitally
modulatedsignalstransmittedat the samenominal baudrate by independentisers.We
emphasizeagain that the wirelesssystemof Fig. 1-1 is only one example.Many others
exist with analogousimpairments, such as bundled cables with crosstalk [6,7] or
multi-track magnetic recording systemswith intertrack interference[8]. A generic
multiuser communication system is described by a multiple-input multiple-output
(MIMO) basebanathannelmodel, in which the recever obseres the following m x 1

vector sequence:
ry = Hoxk + Hlxk_l + ... + HMxk_M+ n, (1'1)

wherex;, is ann x 1 vectorof finite-alphabesymbolsequencesansmittedoy » indepen-
dentuserswhereH(z) = Hy + Hiz ! + ... + Hy;z M is anm x n channetransferfunction
with memoryM, andwheren, is noise.The dimensionm of the obseration dependn
the numberof sensorg andthe numberof samplegerbaudg accordingto m = gp. The

multiuserdetectionproblem[9-11]is to determineone or more of the component®f x;,

L 2
1 \K @ AWGN

/) .
J W (U’\‘ R x;, —> He) »é—» r
\ n

xl m)(n mxl

Figure 1-1. A wireless multiuser communication system and discrete-time

multiple-input multiple-output (MIMO) channel model.



from the obseration r;,. In other words, the problemis to determinethe transmitted

sequence of one or more users.

For single-usersystemsthe transmittercan often assistwith the detectiontask by
sendingan initial training sequencewhich canbe usedby the recever to equalizeor to
identify the channelprior to receving unknavn data.However, for multiusersystemsthe
useof training sequencess lesspracticaland often impossible. Transmittersgenerally
operateindependenthandasynchronouslyThey may be unavare of eachotheror even
unaware of therecever in question.Consequentlyit is desirablefor a multiuserdetector
to function blindly, without the cooperationof the transmitters.We assumethat the
recever hasno prior knowledgeof the channelandthatit hasonly statisticalknowvledge
of x;,; for example,it mayknow the modulationschemeof eachuser The blind multiuser
detectionproblemis thus a generalizationof the blind equalizationproblem[12], for

which the recejer obseration is also described by (1-I)thwithm = 1 andn = 1.

The blind multiuserdetectionproblemwe addresdiffers from that addressedy
someof the CDMA-specificliterature[13,14] in which knowledgeof the desiredusers
spreadingcodeis assumedIin the context of CDMA systemsthe model H(z) of (1-1)
capturesthe effects of the spreadingcodes, asynchronoustransmission, multipath
dispersiontransmitterandrecever antennaarray patternsandthe phaseof the sampler
timing. For the special caseof synchronousCDMA, chip-rate samplingwith perfect
timing, a single transmitter antenna,a single recever antenna,and no multipath
dispersion H(z) reducego a memorylessnatrix Hy whosei-th columnis the spreading
codeof useri. In this case knowing a spreadingcodeis equivalentto knowing a column

of Hy. In generalhowever, therecever doesnot know thei-th columnof H(z), evenif it



knows thei-th spreadingcode,becausef the distortioncausedy the multipath,antenna
patternsandsamplingphase Moreover, we do not wish to limit consideratiorito CDMA
systems.Therefore,our researchemphasizedully blind detectorsthat do not rely on

knowledge ofH(z) in ary way.

With neithertraining nor ary channelknowledge, a fully blind detectorhas no
meansto distinguishdesiredusersfrom interferingusers;hence,it hasno choicebut to
recover the symbolstransmittedoy all of theinterferingusers andto allow a higherlayer
protocoldeterminewvhois who. Consequentlythe detectorsve proposeaecover theentire

VeCctorxy,.

This researctfocuseson tall channelsthosehaving more outputsm thaninputsn,
and on adaptve linear detection algorithms that exploit primarily the second-order
statistics (SOS) of the obseration r,. With mild assumptionstall channelscan be
identified or equalizedup to a memorylessunitary ambiguity by using only the
second-order statistics of the channel output [15]. Restricting consideration to
second-ordetechniquesis desirablefor several reasons.Second-ordemlgorithmsare
usually more data-eficient [16,17] than higherorder methods, meaning that batch
techniguesequirelessdatato achiere agivenlevel of accurag, andthatadaptve schemes
converge faster Second-ordealgorithmsdo not suffer from problemsof ill-convergence
that plague mary classical methods using non-cowex cost functions. Furthermore,
second-ordenlgorithmsare lesssensitve to the channelinput distribution and are thus
innately compatiblewith communicationsystemsusing shapedconstellationshaving

nearGaussiandistributions. The special propertiesof tall channelslead naturally to



adaptve blind detectionalgorithmswith relatively low compleity and fast, reliable

corvergence.

This researchalsoinherentlyaddressesertainspecialcasef the blind single-user
detectionproblem,which canbe casteitherasa simplificationor asareformulationof the
more generalmultiuser problem. Blind single-userdetection(equalization)hasimpor-
tancein multipoint or broadcasthannelsor in ary applicationwheretransmittercooper-
ationis impracticalor impossible,e.g. satellite,cabletelevision (hybrid fiber-coax[18]),
andeavesdroppingystemsOversamplingatechniquealreadywidely usedbecaus®f its
numerousotheradvantageg19-21], preseresthe cyclostationarity[22] inherentto most
communicatiorsignalsand produceghe tall channelrequiredby second-ordedetection
algorithms.Oversampledingle-usesystemsaremodeledby (1-1) with m > 1 andn = 1;
theinputsequence;, is scalarvalued.Moreover, certainmultichannekystemsanalsobe
modeledby (1-1) by treatingthe input to eachsubchanneasa virtual user For example,
discretemultitone (DMT) modulation[23,24], also called orthogonalfrequeng-division
multiplexing (OFDM) [25,26] in certainwirelessapplicationsjs a techniquethatdivides
the availablebandwidthinto multiple subchannelandmakesall subchannelavailableto
asingleuser9 By treatingeachcomponenbf x;, asavirtual user thesesystemsareeasily
modeledby (1-1). Single-usewirelesssystemghattransmitwith dualpolarization[30] or
multiple antennase.g. Bell Labs LayeredSpaceTime (BLAST) [31], canbe similarly

modeledby definingvirtual users.Becauseave castthesesingle and multiuserproblems

9. See also the American standard for asymmetrical digital subscriber lines (ADSL) [27], which
specifies DMT, and the European standards for digital audio and video broadcasting (DAB [28]
and DVB [29]), which specify OFDM.



into a common framework, the concepts and algorithms we devel op can be applied to any

of them.

The remainder of the thesis is organized as follows. In chapter 2, we review linear
MIMO system theory and survey prior related work in blind equalization and multiuser
detection. Chapters 3 and 4 dea with the special case of memoryless channels. In
chapter 3, we present new detectors based on adaptive singular-value decomposition.
These include blind implementations of the minimum-mean-square-error (MM SE) and
zero-forcing (ZF) detectors as well as a blind channel diagonalization algorithm. We also
present a technique for adaptive separation of the signal and noise subspaces that can be
used in the front end of any multiuser detector to reduce the complexity of subsequent
processing without any information loss. In chapter 4, we present a canonical
whiten-rotate structure for multiuser detection with near-MMSE performance. The
adaptive implementation is based on spatial linear prediction. Chapters 5 and 6 pertain to
channels with memory. In chapter 5, we discuss at length the special properties of tall
channels, and we present detectors based on spatio-temporal linear prediction that exploit
these properties. In chapter 6, we use a time-to-space mapping procedure to generalize the
detectors and concepts of chapters 3 and 4 to channels with memory. We summarize the

key contributions of this research and present ideas for future work in chapter 7.



CHAPTER 2

BACKGROUND

ULTIUSER DETECTION stratgjies can be broadly classified into two
IVI groups:linearandnonlinear Although nonlinearmethodscanperformbetterin

termsof their probability of symbolerror, linearmethodsareusuallylower in compleity
andmoreamenabléo blind implementationLineardetectionhowever, is not alwayspos-
sible.For a discrete-timechannekuchas(1-1), we saythattheinputx;, is linearly detect-
ableif andonly if thereexists a stablelinearn x m filter C(z) thateffectively invertsthe
channelC(z)H(z) = I. Thefirst half of this chaptersection2.1,reviews key conceptgrom
the theory of linear MIMO systemsand multiusercommunicationsncluding the condi-
tionsrequiredfor theexistenceof alineardetectorWe expresshis lineardetectabilitycri-
terionfirst in section2.1.2in termsof the discrete-timenodelH(z) of (1-1). Then,using
the Nyquist criterion generalizedo MIMO systemswe shawv in section2.1.5 that the
detectabilitycriterion translatesnto a minimum bandwidthrequirementfor the under-
lying continuous-timechannel.We review important performancemeasuresncluding

asymptotic multiuser &€iengy and neafar resistance in sectiéhl.6.

The secondhalf of this chapteysection2.2,is asurwey of relatedprior work in blind
equalizatiorandmultiuserdetectionln section2.2.1,we review the classicaimethoddor

blind channelidentificationand equalizationwhich assumea single-inputsingle-output
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(SISO)channelwith a stationaryinput. In section2.2.2,we surwey a newer classof blind
equalizatioralgorithmsbasedon second-ordecyclostationarystatistics We concludethe
chapterwith a surwey of the literatureaddressinghe generalproblemof blind multiuser

detection, also knen as source separation.

2.1 Mathematical Preliminaries

2.1.1 A Review of MIMO System Theory

Most of the mathematicatools of linear systemtheory developedin the context of
SISOsystemq32,33], extendeasilyto MIMO systemsTheimpulseresponsenatrix H,
of a linear time-invariant (LTI) discrete-timeMIMO systemis a matrix of impulse
responsesvhose(i, j)-th elementh, ¢/ is the responset the i-th outputto a Kronecler
delta o, at the j-th input. Equivalently we can interpret H, as a matrix-valued dis-
crete-time sequenceThe impulse responseH, completely describesan LTI MIMO
systemin the sensethat knowledgeof H;, is sufiicient to determinethe responseof the

system to angiven input:

A systemis saidto be finite impulseresponsgFIR) if its impulseresponsematrix has
finite extent; otherwiseit is calledinfinite impulseresponsé€lIR). An LTI systemis saidto
be causalor anti-causalif H;, = 0 for all negative & or all positive &, respectrely. We add
thequalifierstrictly (causabr anti-causal)f H, is alsozero.Thechanneimodelof (1-1)is

FIR and both stableand causal.The z-transformof H, can be interpretedeither as a
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matrix-valuedfunction of z, or asa matrix of z-transformsasdefinedin traditional SISO

system theory:
He)= Y Hp™ (2-2)
k=—0

We canusetheimpulseresponsdd,, or its z-transformH(z) to establistthe stability
of aLTlI MIMO system.A systemis saidto be bounded-input bounded-output (BIBO)

stable if and only if the outpug,, is bounded for all bounded inputs
12,01 <004,k 0 1y, D1 <0 Oi,k. (2-3)

It follows that an LTI MIMO systemis stableif and only if all elementalimpulse
responses, -7/ arestable Applying resultsfrom SISOsystentheory we concludethata
discrete-timeLTI MIMO systemis stableif andonly if all componensequences;,®-/) of

its impulse response are absolutely summable:

S ISP <obi,) (2-4)
k= —0

In thez-domain,anLTI systemis stableif andonly if noneof the componentransforms
H 7(z) have poleson the unit circle, or equivalently, if andonly if H(z) corvergesuni-

formly on the unit circlethat is, the follaving summation corerges forlz| = 1:

[oe]

T IHE <o, (2-5)
k=—

where' | 0|;" denoteghe matrix 1-norm(the sumof the modulusof all matrix elements).
This equivalencefollows from the obsenation that (2-5), evaluatedon the unit circle z =

e/®, is identical to (2-4).



12

2.1.2 Linear Detectability — Discrete-Time Channels

Recallthatif a SISOchannelH(z) hasno zeroson the unit circle, thenthereexistsa
stableinverse(having no poleson the unit circle). We saythat sucha channelis equaliz-
able,andwe call its inversea zero-forcing(ZF) equalizerC;x(z) becauset zerosall ISI:
Czr(2)H(z) = 1. For a MIMO channel,an analogoudilter, zeroingall I1SI and MUI, is

called a zero-forcing multiuseletector.

Definition 2-1. FortheMIMO channebf (1-1),azero-forcing detectorisann xm

stable O filter C(z) satisfyingC(z)H(z) = 1.

In the context of CDMA, a zero-forcingdetectoris sometimegeferredto asa decorre-
lating detector[10]. The conceptof equalizabilityfor SISO channelghusgeneralizeto

linear detectability for MIMO channels.

Definition 2-2. For the channelof (1-1), theinputxy, is saidto belinearly detect-

able if and only if a zero-forcing detectoxists.

Therankof achanneH(z) on theunit circle determinesvhetheror notlineardetec-

tion of the channel input is possible.

Theorem 2-1. For thechannebf (1-1),theinputx;, is linearly detectablef andonly

if H(z) has rank: for all z on the unit circleiz| = 1.

Proof: If rank[H(z)] = n for all z onthe unit circle then[H"(1/z")H(z)]} is stable,

and a zero-forcing filter is gen by

C,r(z) =Hi(z) =[H (1/2)HE) " H (1/27). (2-6)
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(Adding ary n x m filter V(z) in theleft null spaceof H(z) to H'(z) producesanother
ZF detectof) If rank[H(zy)l<n for some z, on the unit circle, then

rank[C(z¢)H(z()1 < n, and henc€(zy)H(z,) # I, for ary stableC(z). [

Thelinear detectabilitycriterion of Theorem2-2 could be expressedn termsof the
zeros,ratherthanthe rank, of H(z) on the unit circle, if zeroswere definedas points of
rank deficieng. (Similarly polescould be definedin termsof the zerosof the left inverse
or pseudoimerse channel.) Although the suggesteddefinitions would strengthenthe
analogybetweenequalizability and detectability we resistformally defining zerosand
polesof a MIMO systembecausehereis no universally accepteccornvention, and ulti-
mately suchdefinitionsare unnecessarfor this thesis.Interestedeadersarereferredto

Kailath [34] and references therein [35-37].

We now considerthreeexamplechannelghatcontrastinearandnonlineardetection

methods.

Example 2-1. A Nonlinear Detector. Consider the follewing 2 x 2 channel:

H(z) =

3 21] | (2-7)

For squarechannelsthe pointsof rankdeficieny aregivenby thezerosof thedeter-
minant. In this case,det[H(z)] = 3 — 32 is zero at z = +1. Therefore, no
zero-forcingdetectorexists. Neverthelessnonlineardetectionmethodsmay still be
applicable.The nonlineardetectorof Fig. 2-1 is one viable option under certain

assumptions. Using the notation of (1-1), the reredbseration is
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30 01
r, = x, + X1, 1 + ng. 2-8
% [01:|k [30}1@1 k (2-8)

If theusersarequadraturgohase-shifkeyed (QPSK)with unity power, andthenoise
variancea? is sufficiently small, then the first user can be detectedfrom rﬁel) =
320+ 2P+, @ (thefirst componenf ry) by treatingthe contritution from
the seconduserx,({,/z_)1 like additve noise;i.e., the detectorscaleSr,(el) and then

makes a decision:
&1 = dec(riV/3), (2-9)

wheredec( [) denotesadecisiondevice. Assumingthedecisionis correct,thesecond

user can be detected frorﬁ) by cancelling interference from the first:

) =d(r® -3z ). (2-10)

ae “ e
3

1/3

(2) i—
Tk

>(H—> L 56;(@2)

Figure 2-1. A successive cancellation detector for Example 2-1.
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The nonlineardetectorof Fig. 2-1 usessuccessie cancellation[38-40]. The tech-
niquehasseveralshortcomingsthe mostimmediatelyobvious of whichis thatif thedeci-
sionin (2-9)is incorrect,thenit is highly probablethatthe onein (2-10)is aswell. It treats
the usersasymmetricallyor unequally Blind implementationis difficult becausethe
detectorarchitectureas highly dependendnthe channelndits input constellationsThere
are of courseothernonlineartechniquesincluding multistagedetection[41,42] (a sym-
metric versionof successie cancellation),decision-feedbackietection[30,43-46], and
maximume-likelihoodsequenceletection47], eachwith varyingtradeofs in performance
andcompleity. If the conditionsof Theorem2-2 are satisfied however, straightforvard

linear methods can be used.

Example 2-2. A Linear Detector. Consider another 22 channel:

H() = [21 ﬂ . (2-11)

Onthe unit circle, the determinantlet[H(z)] = 2 + 2! is nonzercandthe channeiis

full rank. Hence, a zero-forcing detectaists and is gien by

{1 —22_1} . (2-12)
1 1

Cyr(2)=H7(2) = —
1+2z

A bankof slicersstill follows Cz(2), but the decisionfor ary particularuserin no
way impactsthat for arny otheruser For a noiselesschannelthe detectorperfectly

recovers the channel input. ObserthatC,z(z) is IR and anti-causal:

== -z +2z - =z +... (2-13)
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Neverthelessthere exists a delay D (an integer) suchthat z?C,p(z) is approxi-

mately FIR and causal.

As the previous exampledemonstratesTheorem2-2 promisesonly thatif H(z) is
full columnrank on the unit circle, thena linear zero-forcingdetectorC,z(z) exists. It
doesnotsuggesthatthedetectoris FIR, norevencausal ThefactthatanFIR channehas
anlIR inverseshouldnot be surprising;it is alwaysthe casefor SISOchannelgassuming
an inverseexists). However, asillustratedby the following example,it is not alwaysthe

case for MIMO channels.

Example 2-3. An FIR Linear Detector. Consider a % 2 channel:

1 _1-327
H(Z) = 1 _2_1 _ 1 + 2_1 . (2'14)
z 1 -1

This channel has a zero-forcing detectoegiby

3-2:7"+3277 6+12:7 49277 ~3+52 46277 (2-15)

2 -1 2

Czr(2) = é -
— - -1 -2
-3+z 6z +3z -3+3z -2z

It is easyto verify thatindeedC,z(z)H(z) = I. Remarkablyboth the channelH (2)

and the detectdC,-(2) are FIR!

We seein chapters thatalmostall tall FIR channelshave causalFIR inverseswhichis a
directconsequencef thefactthatthey arefull rankeverywhere, notjustontheunit circle.

This property greatly simplifies blind implementation of multiuser detectors.
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2.1.3 Derivation of the Discrete-Time Channel M odel

So far we have considerednly discrete-timesignalsand systemsThe underlying
physical channelin mostcommunicatiorsystemshowever, is continuous-timen nature.
Nevertheless,the discrete-timemodel of (1-1) is adequateif the underlying contin-

uous-timechannels stableandbandlimited with additive white Gaussiamoise(AWGN).

Let H(¢) beap x n continuous-time impulse response matrix. (The (i, 7)-th element
H% J(¢) is theresponsat thei-th outputto a Dirac deltad(¢) atthej-th input.) The con-
tinuous-timeobsenationattherecever canbe expressedn termsof theimpulseresponse

matrix as

r(t)= z H(t-kT)x, +n(t), (2-16)
k=—x

wheren(t) is white Gaussian noise.
TheFourier transform of H(¢) is a matrix of transforms ggn by

H(f) = | H(t)e 2" ds . (2-17)

—o0

We assumehatthe component$?“/(f) of H(f) arebandlimitedto || < W, andthatthe
two-sided noise power spectral density (PSD) J’_OZOE[n(t)nE(t—r)]e_ﬂ"ﬁdr = Nyl
Fig. 2-2(a) takenfrom [48], illustratesone possiblerecever front endwhich convertsthe
continuous-timemodel to the discrete-timemodel of Fig. 2-2(b) while preservingall
signalinformation.This front endconsistsof a bankof ideal anti-aliasingow-pasdfilters,

eachwith cutoff frequeng gq:—p, followedby asamplewith rateq /T. To presereinforma-
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tion, the cut-off frequeng %F must be greaterthanthe bandwidthW, so g = 2WT. The

smallest alue ofq that ensures the sampling rate is angatanultiple of the baud rate is
q=[2WT]. (2-18)

Hence thereareq samplegerbaud,andeachsamples ap x 1 vector At eachbaudtime

k, aserial-to-paralle(S/ P) corverterstacksy differentp x 1 vectorsasfollows,to form a

new vector:
r(kT)
rp=| TWE- {/q)T) , (2-19)
r((k-(q-1)/q)T)
AWGN W, = 55 q=[2WT]
X, »é r(®) LPF Tk
—>» H(f) + ™ Bank > S/P |—»
rate
pxn pxp q/T
(@)
8
AWGN
XL rp
—> H() »é—>
(b)

mXn

Figure 2-2. [48] (a) Original p x n continuous-time channel and oversampling

receiver front end; (b) equivalent m x n baud-rate discrete-time channel model.
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of dimensionn x 1, where

m =qp. (2-20)
No information-preservingiront end can produce a baud-rateoutput sequencewith
smallerdimension.This baud-rateutputr, canbe modeledasthe outputof anm x n dis-

crete-timechannelshavn in Fig. 2-2(b). Following [48], we canexpressH(z) asa folded

spectrum:

H(f- %), (2-21)

e
M s

H(z) =

Nz

k

—00

Wheref{(f) is formed by stacking phase-shiftegtsions ofH(f):

H(f)
e 2T agy p)

H(f) = (2-22)

—21fT(q-1)/
e Jj21f T (q ) qH(f)_

The FIR approximatiorof (1-1) is reasonabléor sufficiently large memoryM. The noise
of the discrete-timemodelis alsowhite and Gaussianwith PSD z;: _mE[nknk_l*] =
0’1, where o® = Nyq/T. This result follows from the ideal Nyquist property of the

anti-aliasing filterbank.

2.1.4 The Generalized Nyquist Criterion

Thefamiliar Nyquistcriterionfor pulseor quadraturemplitudemodulated PAM or
QAM) signalswasgeneralizedo vectorvaluedsignalsby Shnidmar{49]. Letx(¢) denote

a ectorvalued QAM signal:
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00

x(t) = z P(¢ - kT)xy, (2-23)

k =—o0

wherex;, is ann x 1 vectorof symbolsequencesyhereP(¢) is ann x n pulseshapean
impulseresponsenatrix), andwhereT is the baudperiod.The generalizedNyquist crite-
rion stateshat samplesof x(¢), taken at the baudrate, reproducex; without intersymbol
or multiuserinterferencei.e. x(kT) = x, if andonly the Fouriertransformof the sampled

pulse shape aliases to the identity

Definition 2-3. [49,50] A pulseshapeP(¢) is saidto be Nyquist, or to satisfythe

generalized Nyquist criterion if and only if

P(ET) =51, = )=1,, (2-24)

Nl
N

S P(f-
k = —

whereP(f) is the Burier transform oP(z).

2.1.5 Linear Detectability — Continuous-Time Channels

Recall that a single scalarvalued QAM signal requiresa minimum bandwidthof
Wy = 51:7 to avoid ISI [51]. Falconeret al. [52] generalizedhis resultto n users.For a
1 xn channellinear detectionof all usersis possibleonly if the signalbandwidthW of
eachexceedsW, by afactorof ». More generally for a p x n channel(a recever with p
antennas)linear detectionrequiresthat the bandwidthof eachsignal exceedsw, by a

factor ofn/p.

For a continuous-timeMIMO system suchasthatillustratedin Fig. 2-2, we define

linear detectability as folls.
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Definition 2-4. For thep x n continuous-timehannelH(f) of (2-16),theinputx;,
is saidto belinearly detectableif andonly if thereexistsann x p stablelinearfilter

G(f) suchthatP(f) = G(f)H(f) satisfiegthegeneralizedNyquistcriterionof (2-24).

In otherwords,the channekanbe effectively invertedby the cascad®f alinearfilter and
abaudratesampler Thefollowing result,dueto Falconeret al. [52], statesnecessarnand

sufficient conditions for linear detection of the channel input.

Theorem 2-2. [52] SupposeéH(f) of (2-16)is ap x n matrix whoseelementshave

bandwidthW. The folloving conditions are necessary for linear detectiog, of

NS Nypax =p| W/ Wy |, (2-25)

WeW,,, = % W, (2-26)

TS

Moreover, if H(f) is full rank for |1 < W, then (2-25) is also digient

Proof: [52] The numberof nonzerotermsin the summationof (2-24) with P(f) =
G(f)H(f) is at least| 2WT |, so (2-24) is a systemof n? equationsand at least
pn| 2WT | unknowvns, given by G(f—%/T) for eachk. Theremustbe at leastas
mary unknavnsasequationsyhich impliesthe necessityof (2-25). Simplealgebra
thenyields(2-26).1f H(f) is full rankfor 1£1 < W, thentheequationgepresentety

(2-24) are linearly independent, which implies thdisighgy of (2-25). L]

The linear detectabilitycriterion of Theorem2-2 translatesnto a minimum band-
width requirementfor the underlying continuous-timechannel.Considerthe following

specialcasesFor arecever with only oneantennar sensorthe numberof usersthatcan
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be linearly detecteds roughly equalto the bandwidthexpansionW /W, a well-known
resultin the spread-spectruncommunity Multiplying the numberof antennasat the
recever by p dividesthe requiredbandwidthexpansionby the samefactor In systems
with lessthan100%excesshandwidth(W < 2W,)), the maximumnumberof userghatcan
belinearly detecteds equalto the numberof sensorg. This agreeswith the well-known
array processingorinciple that an array of p antennasanrejectp — 1 narravbandinter-
ferers.Finally, linear multiuserdetectionusingonly a singlesensoiis impossiblefor sys-
temswith lessthan 100% excessbandwidth.For example,we cannoteasesdropon the

corversation between the 6aV.32 modems in Example 1-1 via linear means.

2.1.6 Performance Measures for Multiuser Detectors

Therearemary criteriathatcanbe usedto measurehe performancenf a multiuser
detector Arguably the bestof thesemeasurdhe probability of someerrorevent,e.g., the
probability of symbol error for the i-th userPr{ ,¥ # x,?}, the probability of symbol
errorfor any userPr{x, # x;}, the probability of bit errorfor useri, etc. However, asfor
SISOcommunicatiorsystemsyve oftenlook for moremathematicallytractable although
lessprecise measure®f performanceThe primary figure of merit usedthroughoutthis
thesisis mean-squarerror (MSE). The correspondingpenchmarkdetectoris the min-
imum-mean-square-errgMMSE) detector (SeeDefinitions 3-1 and 6-1.) The MMSE
detectoris analogousto the MMSE equalizerfor SISO channels;it is a compromise

between interference (both ISI and MUI) and noise.

Verduandcolleagueg11,53] developedseveral measure®f performancdor mul-
tiuser detectorsin the context of CDMA systems.The measureshey developedare

intendedbothto gaugethe ability of adetectorto rejectinterferersandalsoto characterize
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its robustnesdo the nearfar problem,a major concernin wirelessCDMA systemsThe

measures are closely related to the probability of symbol error for the user in question.

The presenceof interfering userscan sene only to increasethe probability of
symbolerrorfor thedesireduser We canattemptto quantifythis effect asfollows. For the
channelH(z) of (1-1), let P; denotethe power of useri asmeasuredt the recever. For a
givendetectorC(z), let SER(0) = Pr{ i, # x,} denotethe symbolerrorratefor user;
correspondingo the noisevariances?. Following [53], we definethe effective power p; of
user; asthe enegy requiredto achieve SER(o), assuminghe samebackgrounchoisec?,

but assuming that none of the interfering users are present.

Definition 2-5. [53] The multiuser efficiencyfor useri is theratio of the effective

power to the actual peer:p; /P;.

Thereciprocalof the multiuserefficiency canbeinterpretedasa power penaltydueto the

presence of the interferers. The multiusécieing in nagligible noise is also of interest.

Definition 2-6. [53] Theasymptotic multiuser efficiency (AME) is thelimit of the

multiuser eficiengy as the noise peer goes to zero:

n; = lim P; /Pl (2'27)

g -0

Theworst-caseAME, taken over all possibleinterferencepower profiles,character-

izes a detectas’'rolustness to the neéar problem.
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Definition 2-7. [53] Thenear-far resistancefor user: of adetectorC(z) relative to
a channelH(z) is the worst-caseAME relative to all channelsH(z)A, whereA =

diag(A;)) withA;> 00 #iandA; = L:

n; = izf n;- (2-28)

Many of the detectorswe develop in subsequenthaptersare shovn to be optimally
near-far resistant for all users,meaningthat for ary channelH(z), no other multiuser

detector has a better ndar resistance.

2.2 A Survey of Related Prior Work

2.2.1 Classical Blind Equalization

We usethetermclassical to describeary blind equalizatioror channeldentification
algorithmdesignedor a SISOchannelwith a stationaryinput, suchas(1-1)withm =n =
1. Classicalalgorithmssharethe characteristidhat they all usenonlinearprocessingo
exploit the higherorderstatisticsSfHOS) of the obsenation. HOS areneededo extractthe
phaseinformation of the channel.SOS alone cannotdistinguishbetweenthe channels
a + bzt andb + az~!, for example.As a consequenceglind identificationof a (possibly
non-minimum-phasejhannebith a stationaryinput requiresthatthe channelinput have

non-Gaussian statistics [12], a well-kvoresult.

The most popular blind equalizationalgorithms are the Bussging1L0 algorithms

[55,56], which use the structure of Fig.2-3. This structureis similar to the deci-

10. In equilibrium, the equalizer output y, is a Bussgang process, satisfying E[ykg*(yk)] =
Elyay, 11541,
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sion-directecequalize57] exceptthata genericnonlinearityg( D) is usedin lieu of acon-
ventionaldecisiondevice. Nonlinearprocessinghusarisesin the computatiorof theerror
usedto updatethe equalizercoeficients: e, = g(y;) — y,. The least-mean-squar@MS)
algorithm[58,59] is popularbecause®f its simplicity. Thedecision-directegqualizetis in
fact an example of a Buss@ng algorithm, but it is poorly suited for initialization or

recovery because the decisions are generally unreliable prior veigence [55].

The first blind equalization algorithm designedexpressly for initialization or
recovery wasproposedy Sato[60] for PAM systemslt useshestructureof Fig. 2-3with

a scaledsignum function as its nonlinearity: g(y;) = ysgn(y;), where the scalefactor
_ Elx]
E[|x]

rithm to QAM systems [61].

IS basedon a priori statisticalknowvledgeof x;. Satolater extendedthe algo-

Godard[62] obsenredthatfor QAM constellations|SI cannotproducephasedistor-
tion without also producing amplitude distortion. Hence, he proposedan algorithm

designedto eliminate amplitudedistortion by minimizing the following cost function:

2p
E[x—kp] for somepositive integer p. Treichler and
Ef]x,|"]

Agee[63] independentlproposedhe constant-modulualgorithm(CMA), a specialcase

/

& Adaptive | Yk
— Channel — Filrt)elrv > g(D >

J(yp) = (lyx 1P = R,)P, whereR, =

Nonlinearity

e

Figure 2-3. The Bussgang structure for blind equalization.
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of the Godardalgorithmwith p = 2. CMA wasdesignedriginally to restoreg(attheequal-
izer output)the constant-modulupropertyof PSK constellationsbut it works for QAM
constellationgswell, in light of Godards obsenationregardinglSI. Godard/CMAcanbe

cast into the Bussang framevork of Fig.2-3 by proper choice of the nonlineargyD.

Shalvi and Weinstein[64] obsenred that the fourth-ordercumulant[65] c4(y;) =
Elly,141-2E?[1y,12] - |E[ v;2112 of the equalizeroutputy, is boundedby that of the
channelnput: le (yp) | < leg(xp) 1. They proposedhat | cy(y,) | bemaximizedsubjectto
a power constraint: E[ 1y, 2] = E[lx,12]. This algorithm can also be cast into the
Buss@ngframewnork by a properchoiceof nonlinearity— aninterestingexercisein this
casebecausd clearlydemonstratethattheuseof anonlinearityg( D is animplicit useof

higherorder statistics.

Buss@ngalgorithmshave severaldravbacks.Many areknown to suffer from prob-
lemsof ill-convergence;thatis, the coeficientsmay corverge to a suboptimalocal min-
imum becausethe cost function is often a non-cowex function of the equalizer
coeficients[66,67]. Moreover, corvergenceis often slow. Marny heuristicmethodshave
beendevelopedto combattheseproblems.To dealwith ill-convergence Godard[62] sug-
gesteda tap-initialization procedure and Foschini[68] suggestedn algorithmto track
and centerthe primary tap. To speedcorvergence Benvenisteand Goursat[69,70] pro-
posedan algorithmusinga weightedsumof the comple-Sato[61] anddecision-directed
errors.PicchiandPrati[71] suggestea “stop-and-go’algorithmthat updatesonly when
theerroris reliable.Nikias andcolleaguegproposedCRIMNO [72,73], which usesanon-

linearity with memaory toxploit knowledge of symbol sequence correlations.
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Alternativesto the Buss@ngtechniquesare not as popularin the communications
contet becaus®f theirinherentcomplexity. Methodsinvolving the explicit estimationof
higherorder cumulants[74-76] or their polyspectrgd77,78] generallyhave reliable and
fastcorvergence but they arenumericallycomplex andthereforeusuallyimpractical. The
maximume-likelihood channel-estimatioralgorithms of Seshadri[79] and Ghosh and
Weber[80] arealsoprohibitively complex. Methodsbasedon neuralnetworks have been
proposedy WongandFine[81] andChenandChen[82], but they reportedlysuffer from

cornvergence problems.

The fundamentakhortcomingof the classicalapproacho blind equalizations per-
hapsbestexpressedy Donohos minimum-entroy concept[83], illustratedin Fig. 2-4.
Donohointroducedheideaof contrasfunctionsto quantifythe Gaussianityof a distribu-
tion. If thesamplesf the channelinputx, arestationaryindependentandnon-Gaussian,
then,from the centrallimit theorem[84], the channeloutputr,, is in a sensemore Gaus-
sianthanx,. Thetaskof ablind equalizeris thusto drive its outputdistribution away from
GaussianThis interpretationhasimmediateimplications:blind equalizationof channels

with Gaussiannputsis impossible andblind equalizatiorof channelswith nearGaussian

T .
X — > Channel » Equalizer———> Yk
Stationary, i_.i.d. Increases Decreases
Non-Gaussian Gaussianity Gaussianity

Figure 2-4. Donoho’s minimum-entropy concept [83].
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inputsis difficult. Rolhustblind equalizatiorrequiresthatthe channelinput distribution be
far from GaussianBut, it is well known that Gaussiarinputs are necessaryo approach
Shannoncapacity Hence, in the classical setting, achieving channel capacity and pro-
viding for robust blind equalization are competing interests. Capacitymustbe sacrificedo
facilitate equalizationby the use of either suboptimal transmit shaping or training

sequences.

2.2.2 Blind Equalization of Cyclostationary Sequences

The underlyingassumptiorof the classicalapproache$o blind equalizationis that
the channelinput is stationary Fortunately however, most communicationsignalsare
cyclostationary. Second-ordestatisticscan be sufiicient for identifying even non-min-
imum-phasehannelsvhentheinputis cyclostationaryGardnef16] wasperhapghefirst
to understandhis; he proposeda channelidentificationmethodexploiting the cyclosta-
tionary natureof PAM signals.Although the techniquedoesrequiretransmittercoopera-

tion in the form of a pilot tone, no replica of this signal is needed in theveecei

Tong, Xu, andKailath (TXK) [17] proposedhe first truly blind channelidentifica-
tion algorithmbasedon second-ordestatistics As illustratedin Fig. 2-5,a SISOchannel
with cyclostationaryinput can be modeledas a single-input multiple-output (SIMO)
channelwith a stationaryinput, asin (1-1) with m > 1 andrn = 1. Exploiting this equiva-
lence,the TXK algorithmdefinesastacledobserationvectorR,” = [r,T ... r,_n.1L1and
then estimatests autocorrelationd®, = E[R,R;, ;'] atlags/ = 0 and/ = 1. The channel
H(z) canbeuniquelydeterminedrom theseestimatesip to anarbitrarycomplex scalare’®
provided that N is suficiently large and that the correlation estimatesare full rank.

Althoughnumericallycomple, requiringtwo singularvaluedecompositiongSVDs), the
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Figure 2-5. Equivalent FIR channel models: (a) an upsampled SISO channel,

(b) a SIMO channel, (c) a filterbank.
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TXK algorithmwasthefirst to demonstratéhe feasibility of second-ordeblind channel
identificationin a generakontet. In subsequenwork, Tonget al. [85,86] establishedhe

necessarandsufficient conditionsfor the second-ordeidentifiability of SIMO channels.

Usingtheframeawork of TXK, Moulineset al. [87,88] proposed channeidentifica-
tion algorithmsimilar to thewell-knovn MUSIC algorithm[89] thatexploits the orthogo-
nality of the signalandnoisesubspacesf ®,. Thealgorithmrequiresonly asingleSVD,
andhence|s lesscomplex than TXK. However, like TXK, it requiresan estimateof the
channelorder andis reportedlysensitve to inaccuracie$90-92]in this estimateLiu and

Xu [93] independently deeloped a similar subspace-based algorithm.

Slock and colleagueg94-96] interpretedan oversampledsISO channelas a filter-
bank,illustratedin Fig. 2-5(c). He shaved that the condition requiredfor second-order
identifiability can be expressedn termsof the zerosof the filterbank subchannelsthe
channeis identifiableif andonly if the subchannelbave no commonzeros.This criterion
is the sameasthat requiredfor the existenceof a perfect-reconstructiofIR filterbank
[97]. The implicationis thatthe outputof an FIR SIMO channelsimultaneoushjhasnot
only amoving-average(MA) nature but alsoafinitely parameterizedutorgressive (AR)
nature.Slock was the first to suggestthe use of linear predictionto equalizea SIMO

channel.

Abed-Meraim[90,91] developedthe prediction-errorblind identification (PEBI)
algorithm,alsoreferredto in theliteratureasthe linear predictive algorithm(LPA). It isa
batch-orientedalgorithmthat first computesa prediction-erroffilter, andthen correlates
the predictionerrorto the recever obsenration to determineH(z). The methodis report-

edly morerobustto over-estimationof the channelorderthaneitherTXK or the subspace
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approactof Moulines.However, it is still rathercomple, requiringa pseudoinerse.Fur-

thermore, its performance reportedlyfets when the channel has weak precursors [92].

Ding [92] developedthe outerproduct-decompositioalgorithm(OPDA) to identify
the channel.OPDA and LPA are reportedlysimilarly robust to over-estimationof the
channelorder but OPDA performsbetterthan LPA when channelprecursorsare small.

OPDA requires two SVDs.

All of the precedingSOS-basedpproacheseekto identify the channel,with the
understandinghatoncethechanneis identified,equalizercanthenbecomputedr max-
imum-likelihood sequencedetectioncan be performedusing the Viterbi algorithm. If
equalizationis the desiredgoal, a secondcomputationis thereforeneeded.In contrast,
Giannakisand Halford [98] have describedmethodsfor directly computingequalizers,
bothMMSE andZF, from the obsered channebutputs.The zero-delayMMSE equalizer
is computedrom abatchestimateof ®,. The MMSE equalizerfor delaysotherthanzero,
aswell asthe zero-forcingequalizerrequiresan estimateof the noiselessautocorrelation,
sothe noisesubspacenustbe estimatedirst. Computationof the zero-forcingequalizer
requires one pseudoirnerse; computationof the MMSE equalizerfor general delay
requirestwo. GiannakisandHalford have alsodescribedromisingadaptve implementa-
tions of thesedirect methods.However, corvergenceof thesealgorithmsappeardo be

sensitve to the initial equalizer estimate.

2.2.3 Blind Multiuser Detection

Therearemary diversebodiesof literaturethat have relevanceto the generalblind
multiuser detection problem. In some contets, partial knowledge of the channelis

assumedTheproblemis greatlysimplifiedwhentherecever haspartialor full knowledge
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of the channel.In array processing[99], knowledge of the array geometryis often
assumede.g., the generalizedsidelobecancelef100], MUSIC [89], andESPRIT[101].
In direct-sequenc€DMA systemsknowledgeof the spreadingsequencef the desired
useris assumede.g., theminimum-output-engyy (MOE) detectorof Honig et al. [13] and
the subspace-basedetectorof Wang and Poor [14]. All of thesealgorithms exploit

channel kne/ledge in some ay, and are thus only partially blind.

Thefully blind multiuserdetectionproblemis sometimegalledblind sourcesepara-
tion.1* Mirroring classicalsolutionsto the single-usemproblem, mary early blind algo-
rithms for multiuser detection or channel identification were based on explicit
computatiorof higherorderstatistics Cardosgoroposedalgorithms[102-104]for identi-
fication of memorylessMIMO channelsbasedon higherorder cumulants.Giannakis
[105], Swami [106], and Tugnait[107] proposedsimilar cumulant-basealgorithmsfor
channelswith memory Comon[108,109] generalizedhe idea of contrastfunctionsto
MIMO channels.He shaved that, under the assumptionthat the channelinputs are
non-Gaussiaandstatisticallyindependentthe detectoroutputsare separated andonly
if they arealsostatisticallyindependent.inearminimizationof the statisticaldependence
betweerndetectoroutputcomponentss known asindependentomponentnalysis(ICA),
but the ideareally is equivalentto Donohos ideaof minimizing GaussianityMoreauand
Pesquefl110] alsoproposed channeldentificationalgorithmbasedon generalizedon-
trasts. Thesealgorithms,like their counterpartdor SISO channelsare impractical for

mary applicationsbecauseof their high computationalcompleity; they require batch

11. Channels, either with or without memory, are sometimes called mixtures, either convolutive
or instantaneous, respectively.
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estimatesof higherorder statistics.Furthermoremary datasamplesare neededo pro-

duce accurate estimates.

Severaladaptve algorithmsresemblinghe classicaBuss@ngalgorithmshave also
beenproposedor blind multiuserdetection.Thesencludeextensionsof CMA to themul-
tiuser problem.For example,pointwise CMA [111,112] is an extensionthat appliesthe

CMA cost function to each component of the equalizer output: oJ,,(yz) =
b
El| =]
ponentof the channelinput andequalizeroutput,respectrely. VectorCMA [112] applies

E[‘ xk(i)

n

P y,P12 ~R;)?, whereR, =

, andwherex;, ¥ andy,® denotethei-th com-

the CMA costto the entire equalizeroutputvector:J,(y;) = (| yk||2—R)2, whereR =
2N
(PN
vectorCMA costs.DecorrelatingCMA [114,115]addsatermto the pointwise-CMAcost

. CombinationCMA [112,113] usesa weighted sum of the pointwise and

to penalizecorrelationsamongequalizeroutputcomponentst nonzerolags (in an effort
to eliminatespuriouslocal minima). TheseCMA extensionshave lower compleity than
theaforementionetbatchmethodsput they cansuffer corvergenceproblems Otheradap-
tive algorithms proposedor memoryles®r unitary channelsincludeEASI [116] (equi-
ariantadaptve sourceseparatiorvia independenceyyhichis basedna contrasfunction,

and MPLL [117], a multidimensionak&nsion of a decision-directed phase-kdkoop.

Another classof blind algorithms,basedon the seminalwork of Gorokha, Lou-
baton,andMoulines[15], hasrecentlybeendevelopedfor strictly tall channelsGorokhor
andcolleagueg15] extendedthe work of Tong[17] to shav that SOScanbe sufiicient to
identify atall MIMO channelup to amemorylesaunitary ambiguity The residualunitary
matrix U canbe interpretedasa generalizatiorof the complex scalare’® left unresohed

by the original TXK algorithm.In [15], Gorokho et al. alsoextendedthe work of Slock
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[94] to shav thatthe outputof anidentifiabletall channekimultaneoushhasbothan MA
andanAR nature.The PEBI algorithm[91] of Abed-Meraimwasthengeneralizedanda
similar weighted-least-squar€®/LS) algorithm[15,118] wasproposedor blind MIMO
channelidentification. Although HOS, and thus non-Gaussiarchannelinputs, are still
requiredto identify U (or ¢/® for SIMO channels)thisis generallyamucheasiettaskthan
identifying H(z). This statisticallydecoupledapproachreducesheneedfor HOSto amin-
imum. Any of the HOS-basednethods,n particular thosedesignedor memorylessor
unitary channelscanbe appliedto identify U. For example,lcart and Gautier[119] pro-
posedcombiningPEBI[91] with JADE [103] (joint approximataliagonalizatiorof eigen-
matrices).Throughouthe courseof our researchye adoptasour own this philosoply of
maximal exploitation of SOS, however, our emphasiss the blind detectionof the channel
inputx, ratherthanthe identificationof the channelandour solutionsareadaptve rather

than batch-oriented.
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CHAPTER 3

SUBSPACE METHODS

HIS CHAPTER EXPLORESso-calledsubspacanethodsfor blind multiuser
T detection.The recever obsenation lies in a vector spaceknown as the receve
space Subspacenethodsarethosewhich decomposéhe receve spacento two or more
smaller orthogonalsubspacesand then exploit their orthogonality Examplesinclude
MUSIC [89], perhapsthe best-knavn subspacelgorithm,and the CDMA detectorsof
Wang and Poor [14] and others[120]. Thesealgorithmsare only partially blind in that
they assumenowledgeof the arraymanifold or of thedesiredusers spreadingcode.The
subspacealgorithmsof Moulines[87-88] andLiu [93], in contrastarefully blind, but like
MUSIC, they arebatchorientedandhave relatively high compleity. In keepingwith our
philosoply, the subspacenethodswe presentare adaptve, low compleity, and fully

blind.

We limit considerationn this chapterto memorylesshannelsA full understanding
of the subspaceédeasin this contect canprovide valuableintuition for the more compli-
catedcase Moreover, thememorylessasemeritsstudyin its own right becaus@ number
of real-world applicationsaremodeledasmemorylessystemse.g., synchronouDMA
or arrayprocessingn ervironmentswithout multipath.We extendthe conceptsandalgo-

rithms presented in this chapter to channels with memory in ct&pter



36

In thefollowing section,we briefly review the singularvaluedecompositior{SVD)
and its relationshipto the signal and noise subspacesIn section3.2, we describea
low-compleity algorithmfor blindly andadaptvely separatinghe signalsubspacdérom
the noise subspaceThis subspaceseparatgras we call it, requiresneither batch pro-
cessingnor explicit singularvalueor eigendecomposition#t. canbe usedin the front end
of ary recever without lossof signalinformation.Thus,ary blind multiuserdetectorcan
then be implementedin the reduced-dimensionadignal space,with a commensurate
reductionin complity. Reducingthe numberof recever parametersftenincreaseshe
speedof convergenceaswell. In section3.3, we generalizeghe subspacaeparationtech-
niqueto performan SVD of the channelagain adaptvely andwithout batchprocessing.
Numericalresultsdemonstratéastcorvergenceandgoodperformanceln section3.4,we
presentfully blind implementationsof the minimum-mean-square-errdqMMSE) and
zero-forcing(ZF) multiuser detectorsbasedon the adaptve SVD algorithm. In section
3.4, we presenta channel diagonalizationalgorithm, which facilitates transmission

approaching channel capacity in single-user multi-channel applications.

3.1 Signal and Noise Subspaces

We beagin by reviewing the singularvalue decomposition(SVD) of the channel
matrix and its relationshipto the signal and noise subspacesConsidera memoryless

channel, for which the model of (1-1) reduces to
ry = Hxy, + ny, (3-1)

whereH is anm x n memorylesshannelmatrix. In a narravbandm-sensotineararray

application,the columnsof H representhe steeringvectorsfor then usersandin a syn-
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chronous-CDMAapplication,with m chipsperbaud,the columnsof H representhe sig-
naturesequencesf then usersAs in (1-1),x; is avectorof symbolsequencesentby n
independentfinite-alphabettransmitters,r;, is the correspondingrecever obsenation
sequencef dimensionm, andn,, is noise.For thememorylessnodelof (3-1), we assume
thatH hasrankn, which impliesthatthe channelis eithersquareor tall (m = n). We fur-
ther assumethat the signal and noise are independent,zero mean, and satisfy12
Elxyx;,’1=1andEln,n, 1= oI, with o > 0.

The obsenation vectorr, hasdimensionm; therefore the receve spaces C™, the
setof m-dimensionalcomplex vectors.However, becauséd hasrankn, the signalterm

Hx,, is restricted to an-dimensional subspace @f*, referred to as the signal subspace.
Definition 3-1. For ary memorylesshanneimatrix H (3-1), the signal subspaces
is the range or column spanif and thenoise subspac# is left null space oH:
S=rangeH) ={s:s=Hx,x 0 C"} (3-2)
N=nullH)={n:-Hn=0,n0C")}. (3-3)

Thesesubspaceareorthogonacomplements\ = S”, meaninghattheir unionis €™, but
their intersectionis empty:S O N = €™, andS n N = 0. The signalsubspaces closely

tied to the singulavalue decomposition d.

Theorem 3-1. [121] For ary complex m x n matrix H with rank n, thereexists a

singular-value decomposition(SVD) of the form:

H=USV' (3-4)

12. No assumption is made regarding source correlation at nonzero lags E[xkxk_l*], 120.
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n
= 5 suv;, (3-5)
i=1

whereU =[u; ... u,,] andV =[v; ... v,] are(m x m andrn x n) unitary matrices,
S = ﬁ ism xn,andS = diag(sy ... s,) isauniquen x n diagonalmatrix with real
0

and positive ordereddiagonalcomponents; = ... 2 s, >0, referredto asthe sin-

gular values of H.

Although S in (3-4) is unique,the unitary matricesU andV arenot unique.If H =
USV" is avalid SVD thensois (UT)S(VT )" for ary unitarymatricesT andT satisfying

TST" = S. It can be shavn that TST =S if and only if T commuteswith S and

T 0
0 Q
example,but T neednot be diagonalif the singularvaluesare not distinct. An explicit

T = , WhereQ is ary unitary matrix of dimensionm —n. A diagonal’i‘ IS one

description of the SVD ambiguity is prided by the follaving lemma.

Lemma 3-1. SVD Ambiguity. Let H be an m x n matrix with rank » and SVD
H = USV'. Letd < n denotethe numberof distinctsingularvaluessothats; > s, >
... > 84 > 0, andlet p; denotethe multiplicity of s; fori O {1, ..., d}. Any otherSVD

H = USV' is related tdJSV" as follavs:

U= U['i‘ 0] , (3-6)
0Q
V=VT, (3-7)

whereQ is a unitary matrix of dimensionm - n, andwhereT is a block-diagonal

and unitary matrix of dimensionx n:
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b 2
1]

(3-8)

The blocksT; are unitary submatrices of dimensignx ;.

Proof: BecauseT is block-diagonalandthe submatriceof S are proportionalto

the identity S commutes withT';

slT1 0
ST = T8 = 59Ty . (3-9)
0
i saTq
It follows that
USV'=U [T 0} ST*V' =USTT'V' = USV". (3-10)
0Q

Corverselyif (3-8)doesnotholdthen§ andT donotcommuteandUSV * cannot

equalUsv”. [J

In termsof anSVD H = USV, thesignalsubspacés spannedy thefirst» columns
of U. Obsere from (3-4) that
n n
Hx = Z sjujvj*x = z auj, (3-11)
j=1 j=1

wherethe scalarg; satisfiess; = sjvj*x. Thus,thefirst n columns[u; ... u, ] of U form a

basisfor the signalsubspaceConsequentlythelastm — n columnslw,, , | ... w,,]1 forma
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basisfor the noisesubspaceSo,althoughan SVD is not unique,the signalandnoisesub-

spaces are uniguely determined by the keftdrU from ary SVD.

Lemma 3-2. For ary memorylesschannelmatrix H (3-1) with an SVD given by
H = USV", thesignalandnoisesubspacesanbe expressedn termsof the columns
of U=[u; ... u,,] as follons:

S=span{u;...u,} (3-12)

N =span{u,,1 ... uy, }. (3-13)

Becauséhe signalspacds only n-dimensionalwe canconfinethe signalportion of
therecever obsenationto n componentsln otherwords,we candefinea new vectory;,

according to

- Or, (3-14)

r
yp=| "
wy,

whereO is unitary suchthatw;, thelastm — n component®f y,, containsno signalcon-
tributions. All signal contritutions are confinedto r, the first n componentf y,. We
interpretr;, asa projectionof r, onto the signalsubspaceandw, asa projectionof r;,
onto the noisesubspaceThe sequencer, providessufiicient statisticsfor recovering the
channelinput; wy, is irrelevant. Thus,we saythat © separates the subspaces. In general,

we define a subspace-separation matrix asvstlo

Definition 3-2. For them x n memoryleschannelH of (3-1), anm x m unitary
matrix © is a subspace-separatiomatrix if andonly if thelastm —n rows of ©H

are identically zero.
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Lemma 3-2 suggestone obvious solution: © = U". In general,a subspace-separation

matrix is related t&J" as follavs.

Lemma 3-3. For thememorylesshanneH of (3-1), a unitary subspace-separation

matrix must be of the form:

U 0 3
e:[ S U, (3-15)

0 Uy

whereUg and Uy, arearbitrary unitary matricesof dimensionn andm — n respec-

tively, andU is a left fictor of ay valid channel SVH = USV".

Proof: Thelastm —n rows of ©H = OUSV" must be zero. The SVD theorem
impliesthatthelastm — n rows of SV* arealreadyzero,sowe needonly ensurethat
OU passesioneof theenegy from thefirst » inputsto thelastm - n outputs Hence,

©U must be block diagonal and unitaimplying (3-15).L1

Obsenre that if© satisfies (3-15), then (3-14) reduces to

rk = Oka + G)nk
W

= |:I-]E| Xp + Onk, (3'16)
0

wherewe have introducedan n x n matrix H = USQV* with rank n. Theselastm —n
componentgan be usedto estimatethe noisevariance,if desired,or simply discarded,
therebyproducinga squarechannel,as shaovn in Fig. 3-1 (b), with a reducedrecever

obsenation:
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7= Hap, + 1y, 3-17
% E+ Ny (3-17)

whereE[n,n;, 1 = 021 Becauser, is sufficient for estimating;,, ary multiuserdetectoy
blind or otherwise canbe appliedto this new channelH without compromisingperfor-

mance.

3.2 An Adaptive Signal-Noise Subspace Separ ator

We now presentanalgorithmfor adaptvely implementingthe subspacseparato®
of (3-15).0ur approachs basedon thefollowing obsenation: on the onehand,the noise

enegy in thelastm — n component®f y, = Or;, is the samefor ary unitary matrix ©, but

AWGN r——— — — — — — — — A
Subspace
| Separator |
ry | Yr | ~
mXxn | mXxXm nxm |
(a) L 5
Projector

Xp ~ ;k
—» H + '

Figure 3-1. Equivalent models: (a) a tall channel with a signal-space projector

(b)

used as the receiver front end, and (b) an equivalent square channel.
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ontheotherhand,thesignalenegy in thelastm — n component®f y, is minimizedonly
when @ satisfies(3-15). Thuswe canreformulatethe subspaceseparatiomprobleminto
thatof finding a unitary matrix © thatminimizesthe enegy in thelastm — n components

of its output. V& seek a unitary matrix that minimizes the feilog cost function:

El| Gy, - 121 (3-18)
where
G=| 9 (3-19)
00

In other words, we seek to rotatg by a matrix® such thay, = Or, is close tdGyy,.

In amannersimilar to thatusedby multidimensionaPLL of [117], we canadaptan

estimate oP iteratively by accumulating unitary matrices that partially roGge to y,:

O+ 1= RNGyp— y.)" 6. (3-20)

Following [117], we define a rotation from x to y as a unitary matrix X satisfying

Rﬁ = ﬁ andR z = z for all z orthogonato span{x, y} (thetwo-dimensionakubspace

spanned by andy). A closed-form &pression forx_ is given by

-pP
p-1 l—lA/1-|p|2 *
Rx-y)=1+ |u v p [ “ } (3-21)
1

J1-1pl? Ipl—1

wherep is the normalizedinner product,p = % and where{u, v} is a basisfor

spanix,y} u = % and3v = #Z12L=P¥% A partial rotation® ? is then defined as

E] e

13. For the case when x and y are colinear (Ip|= 1), we take v = 0 in (3-21).
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RMNx - 9)= R(x - Ay + (1 -Nx). (3-22)

In otherwords,a partial rotation ® * from « to y is arotation ®_from x to a aninterme-
diatevectorAy + (1 -\)x lying betweenx andy. The simplerecursionof (3-20) with G
definedby (3-19) definesour proposedadaptve subspaceeparatarA block diagramof
the adaptve separatoiis shovn in Fig. 3-2. The block labeledG takesthe placeof the
decisiondevice' in the conventionalMPLL. The vectorGy,, caninterpretedasa projec-
tion onto an estimateof the signalspaceS. Only valid subspaceeparator®, satisfying

(3-15), minimize the projection ertor

The recursionof (3-20) requiresthe multiplication of two m x m matricesat each
iteration.The compleity canbereducedevenfurtherby manipulating(3-20)into the fol-

lowing form:

r, —» 6,

¢ » Y

G

vy

Rotation
Detector

Figure 3-2. An adaptive signal-noise subspace separator.

14. Observe that the structure of the adaptive subspace separator resembles that of the classical
Bussgang algorithms, except that G of (3-19) is linear, rather than nonlinear.
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Or 1= O+ RGyi- 3" -1 |0 (3-23)

Obsene thatthe rank-two matrix within the squarebracletsis the sumof four outerprod-
ucts; therefore,this realization of the algorithm requiresthe multiplication of only a
rank-two matrix with anm x m matrix, andis thuslesscomple than(3-20)whenm > 2.
We remarkthatunlike mary of the subspacestimationor trackingalgorithms[122-125],
the recursionof (3-20) or (3-23) provides a preciselyorthonormalestimateof both the
signalandnoisesubspaceat eachiteration.We demonstrateornvergenceof the adaptve

subspace separator of (3-23) by the feitay example.

Experiment 3-1. Consider a memorylesssystem(3-1) with m = 10 sensorsand
n = 2 users.Accordingto (3-16), in orderto shav that (3-23) corvergesto a sub-
spaceseparatgrwe needonly demonstrataéhat the last m — n rows of the sepa-
ratOFchannelcascadeI:)kH cornvergeto zero.Fig. 3-3 shavs the enegy in eachrow
of ékH asafunctionof time &, averagedover 100 randomlyselectecchannelsFor
eachtrial, the elements:; ; of the channelmatrix areselectedndependentlyfrom a
zero-meanuynit-variance complex Gaussiardistribution, andthenscaledsuchthat
the SNR; = Z']n: I h;,:1%/0® of eachuseri is fixedat 27 dB. (Theloop gainis A =
0.1(27%/309) i (3-23).)We seethatthe enegy in eachof the lasteightrows of 6, H

converges quickly to leels of —40 dB or less.

Experiment3-1 certainly doesnot prove corvergence.Neverthelesswe make the

following conjecture.
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Figure 3-3. Convergence of the subspace separator: energy in the rows of

the separator-channel cascade (:JkH versus time k.
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Conjecture 3-1. Therecursionof (3-20)and(3-23) with G definedby (3-19) con-
vergesto a valid subspace-separatianatrix as definedby (3-15) for sufficiently

small loop @inA.

Heuristic supportof this conjectureis offeredin Appendix 3-2, and more experimental
resultsregardingthe subspaceseparatocanbe foundin chapterd, whereit is usedin the

front end of a blind multiuser detector

3.3 Adaptive Singular-Value Decomposition

Consideragain the m-sensom-usersystemof (3-1). Accordingto Conjecture3-1,

the algorithm of (3-20) with G definedby (3-19) corvergesto a subspaceseparator

©= U’, asdefinedby Lemma3-3. The block-diagonalambiguity can be prob-

UN
lematicfor someapplicationswherean estimateof U itself is preferredor required.We

now proposea simplemodificationto the subspace-separatiatgorithmthat producesan
estimateof U”, without ary ambiguity otherthanthat describecby Lemma3-1. In other
words,we force Ug to betheidentity. (TheotherambiguityU, canbeabsorbedspartof
U’, in light of Lemma3-1.) OnceU is estimatedit is easyto estimateS andV, leadingto

an adaptie SVD algorithm.

Recall from (3-19) that the first n diagonalelementsof G, correspondingo the
signalsubspaceareall one,andthe lastm - n diagonalelementscorrespondingo the
noisesubspaceareall zero.The structureof G in effect forcesthe recursionof (3-20) to
decomposehe receve spacento a “large enegy” signalsubspacanda “small enegy”
noisesubspaceBut we neednot have only two subspaced-or example,if the singular

valuesare distinct, then the n-dimensionalsignal subspaces = span{u; ... u,} canbe
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furtherdecomposethto n one-dimensionadubspaces; = span{u;} 0i 0 {1, ..., n}. We
candistinguishamongthesesmallersubspacesn the basisof the signalenegy s;2 within
each.In general,the signal subspaces canbe decomposednto d < n subspaces; of
dimensiony; O ¢ O {1, ..., d}, whered is the number of distinct singular values
s1> 89 > ... > sg, andwherey; is the multiplicity of s;. In otherwords,whereaghe sub-
spaceseparato® of (3-15) decomposethe receve spaceanto two subspacesynesignal
andone noise,the factorU" decomposethe receie spaceinto d+1 subspaces] signal
andonenoise;we call this a complete subspace decomposition. By modifying the diag-
onalelementof G, we canperforma completesubspacelecompositiorandestimateU”
or U directly. Specifically we defineG suchthatthefirst n elementsrestrictly decreasing

and strictly greater than the remainimg- n elements:
G =diag(gy ... &)

g1>82>...>8,>g;20070{n+1... m}. (3-24)

The estimate oU is then updated according to
Ui, 1= URNGy, - yp)
= Uy + O R Gy - 91 (3-25)

wherey, = U,,"r,. Theblock diagramof this adaptve rotatoris identicalto Fig. 3-2 except

that U," replaces®,, andG is defined by (3-24) rather than (3-19).

A demonstratiomf the corvergenceof (3-25)is givenin Experiment3-2 laterin this
section,andagain, althoughthis experimentis not a proof, we statethe following conjec-

ture.
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Conjecture 3-2. Therecursionof (3-25) with G definedby (3-24) cornvergesto a

left factorU in a \alid channel SVIH = USV" for suficiently small loop gin .

Conjecture3-2 doesnot suggesthat(3-25) corvergesto a uniquesolution,but ratheronly
to a U correspondindo oneof mary possiblesingularvaluedecompositiond = USV".

See Appendix 3-2 for more discussiogasling conergence.

Invoking Conjecture3-2, the rotator output convergesto y,, = U'ry,, which canbe

written as

Yr =
w, 0

r k] = [H} x,+U'ny, (3-26)

whereH = SV*. The autocorrelation of, is then gven by
* a2
®, =SS +0°L. (3-27)

Therefore, the engy in thei-th component o, is

2+0% i0{1,..,n)

»n

e = El1y,®12] = (3-28)

[

o2 i0{n+l, ..., m}

Theseenepgiesarein factthe eigevaluesof ®,. = E[r,r, 1 = HH" + ¢%1. Thefollowing
algorithmcanbe usedfor calculatingthe singularvaluesof thechannelH. At eachtime %,
form an estimateék(i) of the enegy in the i-th componenty,” of y,, usinga simple

first-order recursion:

8 =ag) + (1) ly, @12, (3-29)
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whereO < a < 1 is asmoothingfactor Then,estimatethe singularvaluess; of H andthe

noise enagy o2 as follaws:

m
~2 1 ~ (i
Gr=— 3 & (3-30)
i=n+1
;)= (8 — 6212, (3-31)

In summarytheadaptve SVD algorithmis describedy (3-25)and(3-29)through(3-31).

We nav demonstrate the algorithm with a computgreximent.

Experiment 3-2. Considera 4-userQPSK systemwith 10 sensorsmodeledby a
randomlygenerateadthannelH of dimension10 x 4, with noisevarianceo? = 0.01.
Let G be diagonalwith linearly decreasinglementsG = diag(1, 89, ..., /9, 0).
We estimateU accordingto (3-25)with A = 2.27%/590 \We demonstrateonvergence
of U, (3-25) in Fig. 3-4(a), where we plot the diagonal elementsof ﬁk*¢rﬁk

versustime k. We caninterpretthesediagonalelementsasthe true enegy in the
componentsof y, = ka*rk. We expect that as U, approachesU, the matrix
ﬁk*¢rﬁk shouldapproachSS™ + o?I. Fig. 3-4(a) verifies that this is indeedthe
case.We demonstrateornvergenceof ék(i) (3-29) in Fig. 3-4(b), wherewe plot the
estimatesék(i) = E[ 1y, 12] versustime with a = 1 — 0.05/(1 + £/90). We seethat
the simplealgorithmis ableto accuratelyestimatethe singularvaluesin only a few

hundred iterations.

The blind adaptve SVD describedn this sectionis usedasa building block in the blind

implementations of the MMSE and the ZF detectors of thewollp sections.
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3.4 MMSE Detection

Consideragain the memorylessnultiusercommunicatiorsystemry, = Hx;, + n;, of
(3-1). A linearmultiuserdetectorprocessetherecever obsenationwith ann x m matrix
C, producingz;, = Cry,. The resultingMSE for useri is MSE; = E[12,® —x,912]. The
“best” linear detectoris generally consideredto be the minimum-mean-square-error

(MMSE) detector; that is, the detector that minimizes the MSE for each user

Definition 3-3. Theminimum-MSE detecta Cj,sx for thechannebf (3-1)is the

n x m matrix C that minimizes the MSE sufi{||Cry, - x;, |21.

Expressiongor the MMSE detectorhave beenderivedin [126] and[127]. Thefollowing
lemmaexpresseshe MMSE detectorin termsof the memorylessnodelof (3-1). It also

suggests an implementation procedure.

Lemma 3-4. For channelH of (3-1) with ¢ > 0, the MMSE detectorcan be

expressed in three egalent ways:

Cyusg = HHH" + o)1 (3-32)
=(H'H + ¢’I)"'H" (3-33)
=VDU’, (3-34)

whereV and U are unitary factorsof a channelSVD H = USV", andwhereD =
S*(SS™ + 0%I)2 is a positive diagonalgain matrix of dimensiorn x m. The MMSE

detector is unique.

Proof: See Appendix 3-1.
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Note thatD canbe decomposeinto theform D = [D 01, whereD = S(S? + o2I)2 is

diagonal.

The lastequialence(3-34) suggesta realizationof the MMSE detectorconsisting
of the cascadef threefilters: first, the unitary U", secondthe diagonalD, andlast, the
unitary V. In section3.3 we have alreadypresented blind methodthat implementsthe
first filter U”. Furthermorewe have alsopresented blind methodfor estimatingthe sin-
gularvaluesS andnoisepower o2; see(3-29)through(3-31). Thus,the secondilter D =

S*(SS™ + 0?1y can also be implemented blindly

A blind implementatiorof the entireMMSE detectoris now apparentits block dia-
gramis shawn in Fig. 3-5. The detectoris basedon a rotate-scale-rotate architectureThe
first stepis to rotatethe obserationwith anm x m unitaryfilter ﬁk adaptechccordingto
(3-25). The secondstepis to scalethe outputof U,, by the diagonaln x m matrix D, =
S, (8,8, + 6,2, where§, and 6; areestimatef S ando? adaptedaccordingto
(3-29) through(3-31). The final stepis to rotatethe outputof f)k by an estimateof the
n x n unitary matrix V. Although the SVD in (3-34) is not unique, oncethe front-end
rotator U,, convergesto a particular U, the correspondindactorV is uniquely specified.
(To seethis substituteCys5 for H in Lemma3-1.) OnceD hasalsocorverged prop-
erly, its outputis w;, = DUr,. Hence,of all unitary matricesV, only V =V minimizes
the MSE sumEl|| Vwk — x| 21. But the problemof finding the bestunitary matrix to min-
imize this MSE sumis preciselythe problemfor whichthe MPLL wasdesignedThenwe

can estimat& according to the MPLL recursion [117]:
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Vi = RNEy, - 2"V,
= ‘A’k + [K.)\(‘%k — zk)*— I:|Vk, (3'35)

wherez;, = V,w,, andwhere x,, = dec(z;,) is a decisionvector Eachcomponentt;,® of
%, is quantizedndependentlsuchthat ,® = dec;(y,?) is the pointin the constellation

of useri closest tay, ().

Becauseof the ambiguitiesinherentin ary fully blind detectionalgorithm, (3-35)
may not corvergeto V exactly. Identically distributedusersarestatisticallyindistinguish-
able,sothey arearbitrarily labeledat the outputof ary fully blind detectorMoreover, the
constellationof each user has rotational symmetriesthat cannotbe blindly resohed.
Rotatingarny squareQAM constellationby aninteger multiple of 90', for example,does
not changeits statistics.In practice,theseambiguitiesare of little consequenceéyecause
they canberesohed by othermeanst® Thereforejt is generallysatishctoryif xp, = Kxy,
whereK = KpKp, is then x n productof a permutatiormatrix Kp anda diagonalunitary
matrix Kg = diag(ej 5 ), andwherethe anglesd; aredeterminedy therotationalsymme-
tries of constellationi. If all userstransmit16-QAM, for example,thenK is a complex
permutatiormatrix, i.e. a matrix with exactly onenonzeroelementrom {£1, + j} perrow
and per column. The following simulation experimentsupportsthe conjecturethat the

MPLL converges to
V = KV. (3-36)

It also demonstrates cagrgence of the entire blind MMSE detector

15. For example, differential encoding renders absolute phase irrelevant.
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Experiment 3-3. Considera 10-elementinear antennaarraywith half-wavelength
spacing,with two independenQPSK transmittersincident at angles6; = 0" and
8y = 20°, asmeasuredrom thebroadsideFor thisarrangementhe channeimodelis
given by (3-1) with Hyg x o = %VB whereV;; = exp{ ;¥ (i-1sin(8)) } [99], and
B = diag(B; B,), and where B;? is the receved power of the i-th user We set
SNR; = 10dB andSNR, = 30dB, sothatthe signal-to-interferenceatio for userl
is SIR; = —-20dB. Fig. 3-6(a)shaws a plot of the MSE for userl versustime for the
proposedlind MMSE detectorof Fig. 3-5, averagedover 100input andnoisereal-
izations.(The effect of the ambiguouspermutationis removed for eachtrial.) The
ideal minimum-MSE benchmarkis shovn for comparison.Fig. 3-6(b) shavs the
constellationgrom time 4000to time 50000f the lasttrial. We seethatthe proposed
algorithm approacheshe performanceof the minimum-MSEdetectoy evenin the
presencef severenearfarinterferencewithoutthe needfor atrainingsequencand
without knowledgeof eitherthe channelH or useof transmittertraining sequences.

(Thereceier parametergre A, = 0.527%/1000) in (3-25), A, = 0.5/(1 + /800 in

(3-35), andx = 0.95 in (3-29).)

3.5 Zero-Forcing Detection

The MMSE linear multiuserdetectordoesnot completelyeliminatemultiuserinter-
ference but ratherfinds the bestcompromisebetweeninterferenceandnoise;it is analo-
gous to the MMSE linear equalizerin the single-usercontect, which finds the best
compromisebetweenintersymbolinterferenceand noise. Completeelimination of mul-

tiuser (or intersymbol)interferenceis generallynot a good idea becauseat canleadto
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excessve noiseenhancementt canbe argued,however, thatin somecontets, complete
eliminationof multiuserinterferencas desirableregardlesof noiseenhancemenBucha

detector is called a zero-forcing detector

Definition 3-4. For thechanneH of (3-1),azero-forcing detector C,ris ann x m

matrix satisfyingCH = 1.
The form of a zero-forcing detector ivgn by the follaving lemma.
Lemma 3-5. For the channelH of (3-1), the ZF detectorcanbe expressedn two
equvalent ways:
CZF = HT + N, (3'37)
=VS'U" + N, (3-38)
whereV andU areunitary factorsof an SVD H = USV*, 8T =[S 0], andN*D

null(H). If m > n, then the ZF detector is not unique.

If we take N to be 0, we canblindly implementa (minimum-norm)ZF detectorusingthe
rotate-scale-rotatarchitectureof the previous section.We needonly to replacethe esti-
mateof D with thatof ST. We canestimateS using(3-29) through(3-31) just asbefore,

and then iwert the singularatues to forns".

3.6 Channel Diagonalization

As we discussedh chapterl, therearesomesingle-useapplicationghatcanbecast

into a multiuserframewnork. We nowv changeour focus somavhat and addressone such
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application.Considera single-usemultichannelcommunicatiorsystemconsistingof one
transmitterwith » antennasand one recever with m antennasAn example of sucha
systemis the BLAST [31] systemof Bell Labs.If the signalbandwidthis muchsmaller
thanthe channelbandwidth,the transferfunction from transmitterto recever for sucha
systems memorylessTheobsenrationis givenby r, = Hx;, + n;, of (3-1), but thecompo-
nentsof x;, now correspondo symbolstransmittedby ther antennasiatherthann users.
Strictly speakingthis is not a multiuserproblem,althoughit canbe castinto a multiuser
framework by treatingthe input to eachtransmitterantennaas a virtual user However,
there are important differences:unlike a true multiuser problem, the virtual usersare
co-locatedand thus do not competefor bandwidth.Moreover, they are not necessarily

independent and can iadt easily cooperate.

With the total power, averagedover all transmitantennasgonstrainedaccordingto
Z?: 1E[ 12, 12] < P, we addresshe questionof how to achiese Shannorcapacity Bran-
denlurg and Wyner [128] shaved that capacitycan be approachedy using a channel
diagonalizatiorprocedurelf thechannematrix H wereknown, its SVD H = USV" could
beusedto designbotha transmitteprecoder V andareceier front-end filter U suchthat

the overall system is diagonal:
S=UHV. (3-39)

This systemis illustratedin Fig. 3-7. Becausethe unitary filters are invertible, they are
informationpreserving.The capacityof the resultingdiagonalchannelS is thusidentical
to that of the original channelH. However, because¢he subchannelarenow decoupled,
the transmittercan intelligently (accordingto the well-knowvn waterpouring procedure

[50]) distribute paver and information among them.
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An adaptve implementationof the channeldiagonalizationalgorithmis shavn in
Fig. 3-8.Let U andV (bothunitary)denoteanadaptve receiver front-endfilter andtrans-
mitter precodey respectrely, andlet w; denotethe precoderinput, so that the vector of
symbolstransmittedattime % is x;, = V,wj,. Without lossof generality we take the trans-
mitter power constrainto be P = n. We alsoassumehatprior to the corvergenceof these
filters, the power is equally distributedamongall transmitterantennasandthat the sym-
bolsareuncorrelatedicrossantennasothat E[w,w;, 1 = I. As in section3.3,we canuse

the recursionof (3-25) to updateU”. Becausethe precoderV is always unitary, the

AWGN

Precoder Channel Front-End
xk rk N

nxn mXxn mXm

(@)

P =

AWGN

1

AWGN

wk(n)—> Sp »%—» yk(”)

Figure 3-7. Equivalent models: (a) a memoryless MIMO channel with

(b)

precoder and front-end rotation filter, and (b) decoupled scalar channels.



61

‘wyiioBe uonezijeuobelp-jauueyd aandepe Jo weibelp ¥o0|q v ‘8- ainbi4

1012913
uoneloy
» — A
Joegpse{ —»
D
pu3-1uo.i 1apo2aid \
n H [« Iz | 4m
Gy * 4y ix v
& Y Y
NOMY r D
a5 im
101998189Q

uoneloy




62

second-ordestatisticsof w;, andx;, areidentical. Therefore the front-endfilter U™ con-

verges to a alid U, without rejard to the precoder initialization or transient hétwa
Accordingto Conjecture3-2, the front-endfilter U " convergesto a particularU,
and the output of the front-end filter izvgn by
¥y, = SV*kak + ;lk, (3'40)
whereV is unique,andwheren, = U}, n;, andn, have identicalsecond-ordestatistics.
Theoutputy, canbefed backto thetransmitterwhereit canbeusedto adapthe precoder
Clearly if V=V, theny,, = Sw,, + n,. In particular y, = Jy, is anoisy estimateof éwk =
JSwy, whereJ = [I 0]. So, the transmitter seeks a rotation that njape a \ector:
W, = Sw, (3-41)
Becausehe transmitterhasaccesgo wy, the singularvaluescanbe estimatedgven for
square channels, byeraging as follws:
§i(k+1) = a3 (k) + (1 — o) Re(y,D/w;, D), (3-42)

wherei = 1 ... n, andwhere0 < a < 1 is asmoothingfactor In practice however, estima-
tion of S is not necessaryor diagonalizationjust asin the recever, ary n x n positve
diagonalmatrix with strictly decreasinglementse.g. G = JGJT, canbeusedin placeof

S. Theestimateof V is updatedby accumulatinga matrix thatpartially rotatesy ;, to w j:
Vie1= Vi RNy - @)

=Vt Vo R - o) -1] (3-43)
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Obsenrethaty, andw; in (3-43) play therolesof Gy, andy;,, respectiely, in (3-25);that
is, we accumulatepartial rotationsfrom y ;, to wy, in (3-43),but from Gy, to y;, in (3-25).
Thisrole reversalis a consequencef thefactthat V,, prefiltersthe channelwhereasU,”

postfilters it.

To measurethe effectivenessof this algorithm, we introduce a diagonalization

metric defined as follas:

S o 2
(= 1dU, HV, - S|, (3-44)

)

where' | Hlfv indicatesa Frobeniusnorm. The metric is in effect the squareddistance
betweenJ U, "HV , and S. For perfectdiagonalizationthe metricis zero. The following

experiment demonstrates a@mmence of the algorithm.

Experiment 3-4. We considerrandomly(Gaussiangeneratedchannelsof dimen-
sion10x 4. All 4 transmittersuseQPSK.We conduct50 trials, adaptvely diagonal-
izing eachchannelaccordingto the proposedalgorithm(with A; = 0.51 + (£/700?)
in (3-25)and\, = 0.51 + (k/800?) in (3-43)).Fig. 3-9 shavs the ensembleverage
of the diagonalizationmetric {; versustime k. We seethat the metric quickly

approaches —30 dB.

3.7 Chapter Summary

We have proposedo adapta unitary matrix Q for operationon an obseration r,

according to the folling recursion:

Q. 1= RNGQury, — Q) Qy, (3-45)
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Figure 3-9. Convergence of the diagonalization algorithm: diagonalization

metric {j, versus time k.
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whereR Mx - y) is aunitarymatrix thatrotatesa fraction\ of theway from ﬁ to ﬁ ,as
definedby (3-21) and(3-22). When G is definedby (3-19), then (3-45) implementsthe
adaptve signal-noisesubspaceseparatorof section3.2, and Q; = S , cornvergesto a
matrix © of the form given by (3-15). After corvergence,the first n componentsof
¥, = Q,ry, representhe projectionof r, ontothe signalspaceandthelastm — n compo-
nentsof y;, representhe projectionof r, ontothenoisesubspacerhis meanghatonly the
firstn component®f y, containsignalenepgy, andtheremainingcomponentganbedis-
cardedwithoutlossof information.This subspaceeparators usedin thenext chapterasa

meansfor simultaneouslyeducingcompleity and speedingcorvergenceof the subse-

quent detector stages.

In contrastwhenG is definedby (3-24),then(3-45) implementshetotal subspace
decompositiorof section3.3; the rotatorQ,, = U,” corvergesto a valid U", whereH =
USV' is a channelSVD. The singularvaluesS can then be easily estimatedirom the
enegy of thecomponent®f y,. Usingthis algorithm,we have proposedully blind imple-
mentationsof the minimum-MSE and zero-forcinglinear multiuser detectors offering
goodperformancelow complity, andfastcorvergenceln arelatedapplication we have

also proposed a means to adagii diagonalize a memoryless channel.
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APPENDIX 3-1: DERIVATION OF

THE MM SE LINEAR MULTIUSER DETECTOR

Applying ann x m memorylesgietectorC to the outputof the channeldefinedby

(3-1) produces the MSE swiC) = E[| Cr;— x| %1, which can bexpressed as
J(C) =tr[(CH-T(CH-I)" +2CC"] (3-46)
= tr[(CPC" —CH-H'C '+ 1], (3-47)

whered = HH + ¢1. SinceJ is quadratic irC, we can complete the square:
JOC) =tr[(C-HdHd(C-H'd ) + I-H ¢ H]. (3-48)
For o? > 0, @ is positive definite,so® ! exists. The C thatminimizes is givenby (3-32):
Cymsg = H HH' + o?1) L, (3-49)

and the correspondingminimum-MSE sumiis o,,;,, = tr[I,, - H ®'H]. Applying the

matrix inversion lemma?® we obtain
Cymse = H1072L, - 0 ?H(c2H H+ 1) 'H 072] (3-50)
=[0?H- 0?H'H(c2H ' H+ I,) 'H 0721. (3-51)
Right-factoring(c2H"'H+ L,) 'H 0~ yields
Cymsk = [(02H'H+ 1) - 0 ?H HI(c2H'H+ I,) 'H 072, (3-52)
which simplifies to (3-33):

Cousg = (HH + 0%L ) H”. (3-53)

16. (A1 + BCD) 1 = A - AB(DAB + C"1)"1DA.
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An aternative expression for the minimum-M SE sum is then given by

i = triI - H ©1H] (3-54)
= tr[I - (H'H + 0%L,) 'H H] (3-55)
= tr[((H'H + o’L,)y (H'H + 0°L,) 'TH'H] (3-56)
= o’tr(H H+0%L,) 1. (3-57)

Observe that (3-33) or (3-53) aso holds for o® = 0; it reduces to the minimum-norm

zero-forcing detector:

Cor=HHH =H". [ (3-58)
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APPENDIX 3-2: ON THE CONVERGENCE OF (3-25) AND (3-20)

In this appendixwe presentpartial heuristic evidence that the recursionU,, , ;
= U,R NGy, - y;,) of (3-25), where G is definedby (3-24), corvergesto a valid left
factorU of achannelSVD H = USV". Viewing therecursion®;, , ; = R (Gy;, - y,)" 6,
of (3-20),whereG is definedby (3-19), asa specialcaseof (3-25), we alsoarguethatit
convergesto a valid signal-noisesubspace-separatianatrix © of the form given by
(3-15).

The partialrotation R definedby (3-20)and(3-21)is a function of the normalized

innerproductp = H;):’YH% , Wherez = AGy + (1 - \)y (wherewe have suppressethe sub-

y[Gy

X2 Obsere
Iyl Gyl

scriptsk). We consideffirst thecasewhen) = 1, sothatz = Gy, andp =
thatbecausé is real,p is real;p canbeinterpretedsimply asp = cos(8), the cosineof the
angled betweenGy andy. Certainlyif p is identically1, then®_ = I, andtherecursionof
(3-25) or (3-20) stops.We arguethattheserecursionseekto minimize 6, or equialently
to maximizep. We furtherpostulatehatif the expectednnerproduct(unnormalizedpf y
andGy definedby B = E(y Gy) is maximized thentheserecursionsstopon average This
argumentin factappliesfor ary loop gain 0 < A < 1, becausenaximizingE(y*z), where

z = AGy + (1 - \)y, is equivalentto maximizingE(y Gy). This follows from the obsena-

tion thatE(y*z) = NE(y Gy) + (1 - M) E[| /%1, andE[| y||2] is independent o or @.

We now shaw thatfor the recursionof (3-25),the expectedinner productp is maxi-
mizedonly by valid left factorsU in achannelSVD, andthatfor therecursionof (3-20),

is maximizedby valid subspacseparatorsatisfying(3-15).We denotethe front-endrota-
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tion genericallyas Q, whetherintendedas an estimateof © or U”. The outputy of the

rotator can then be conciselypeessed as
y=QUSV'x + Qn. (3-59)

Obsenethatthe unitary matricesv * andQ have no effect on the second-ordestatisticsof

x andn. Hence, we can further simplify (3-59) as
y=TS% + 7, (3-60)

whereT = QU, ¥ = V'x, andn = Qn. Theexpectedinner productof Gy andy canthen

be epressed as folles:
E(y'Gy) =Etr[(GTSx + Gnr)(TSx + n)’] (3-61)
= tr(GTDT" + 0%G), (3-62)

whereD = SS”, and where we have usedthe independencef the signal and noise.
Becausehenoisetermis irrelevant, it sufiicesto maximize:(GTDT"). We canshaw that
this termis upperbounded:r(GTDT") < i+(GD). Equivalently, we canshawv thatthefol-

lowing cost function is non-gative:
J(T) = tr(GD) — tr(GTDT") = 0. (3-63)

Letg; andd; denotethei-th and;-th diagonalelemeniof G andD, respectiely, andlet?; ;

denote théi,j)-th element ofl so that
2
J = Zgidi - Zzgidj|tixj| . (3-64)
[1 1 J
With some algebraic manipulation, we capress/ as

J=Yegd(1-]t, ] - ¥ ;gidj|ti,j|2. (3-65)
[} T JFL
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Substituting - 1¢; ;1% = zj¢i|ti.j|2 produces

2 2
T =Y &digy |4, 5-Y Y ad)lt |l (3-66)
! J#1 1 J7L
2 2

=2 Z.gidi|ti,j| - Z.gidj| t; (3-67)
1 JF1 EY

=3 Y &ildi—dt; | (3-68)
[N E

Theinnersummatiorcanbe expresseastwo summationspnefor j > i, the otherfor j < i,

as follows:

T=5 Y gild;—d)|t |*+3 Y gld;—d )|, ;|- (3-69)

T j>1 1 j<i

Exploiting the factthat I#; ;1% = I¢; ;1% andreversingthe rolesof i and; in the second

double summation produces

2 2
T=3 3 (gr8)(d;=d))|t; " (3-71)
1 j>1

Obsere that Iti’jl2 20,d;-d;20,andg; -g; 200, > ifor G definedaccordingto
either(3-19) or (3-24).1t follows thatJ(T) = O with equalityif andonly if Iti’jl2 =00
(i,7) correspondingo distinctelementsl; # d; anddistinctelementg; # g;. If d; = d; or g;
= g;, thenthecorrespondingerm I¢; ;| 2 is unconstrainedt cannotcontrituteto the cost.
Therefore,if G satisfies(3-24), then T hasthe form of an SVD ambiguity given by
Lemma3-1,and U is avalid U. Similarly, if G satisfieg3-19),thenT hasthe form of a

subspace-separator ambiguigiven by Lemma 3-3, an@ is a \alid ©. [J
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CHAPTER 4

THE WHITEN-ROTATE
DETECTOR

USEFUL STRATEGY for blind multiuser detectionis to decomposethe
A probleminto two smallertasks:whitening androtation. Whitening,in the context
of (3-1),is simply transformingthe recever obsenrationvectorinto onewhosecovariance
is the identity. Thus, the whitening stepexploits only second-ordestatistics,andit can
easilybe implementedlindly. The rotationstepcanbe implementedy a unitary matrix
chosento restoresomehigherorder statisticalproperty of the channelinput. It is well
known that the whiten-rotatestructurecan perfectly invert a noiselesschannel[129].
Batchtechniquedasedntheideawereproposedn [108,130,131]andanadaptve algo-

rithm for noiseless channelsaw presented in [116].

Following the whiten-rotatestratgy, andagain restrictingattentionto memoryless
channelg3-1), we definea canonical whiten-rotate detector, which minimizesthe MSE of
all usersamongdetectorsn its class.In section4.1, we describethe basicstructureof the
detectorand analyzeits performanceand properties.We shav that the whiten-rotate
detectors informationlosslessandoptimally nearfar resistantwith performanceclosely
approximatingthat of the MMSE detector In sectiond.2, we definean alternatve struc-

turefor the detectobasedon subspac@rojection.In sectiord.3, we detailadaptve blind
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implementation®f thesestructuresusingspatiallinear predictionandthe subspace-sepa-
rationalgorithmof chapter3. Theimplementationsve describeoffer agoodcompromise
between compleity and corvergence speed. We include simulation results for a
linearantenna-arraysystem and a synchronousCDMA system.We generalizethe
whiten-rotatedetectorpresentechereto channelswith memoryin chapter6. (Much of

chapterd appears also in [13P33].)

4.1 Whiten-Rotate Detection

In the context of thesystenof (3-1),ann x m matrix C is saidto beawhitener if the
autocorrelatiorof z, = Cry, is theidentity matrix, C®,C” = I, where®,. = HH" + o%I. We

define the whiten-rotate (WR) detector as the whitener with minimal MSE.

Definition 4-1. Thecanonicalwhiten-rotate detector Cy for thechannebf (3-1)

is then x m whitener that minimizes the MSE sutf| Cry, — x| %1.

Any shortwhitenerC of dimensionz x m canbe expressedasthefirst n rows of a
larger whitener B of dimensionm x m; in particular we can write C = JB, where
J =[I, 0] is ann x m truncationmatrix, and where B®,B" = I,,. Recallthat, for ary
givenm x m whiteningmatrix W, every otherwhiteningmatrix B canbe expressedn the
form B = QW for somem x m unitary matrix Q [121]. Thus,givenary particularm x m
whiteningmatrix W, we canexpressevery n x m whitenerasC = JQW for someunitary
matrix Q. This suggestsa three-stagemplementationof the whiten-rotatedetectoy as

depicted in Fig4-1.
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Obsenre from (3-32) that the MMSE detectorcan be expressedas Cyysg =
H'W'W = (WH) W, wherewe usetheidentity W'W = &, for ary whitenerW. Thus,the
MMSE detectorcould be implementedby following a whitenerW by the n x m filter
(WH)". However, by its definition the whiten-rotatedetectormustfollow a whitenerby a
matrix of theform JQ. It canbe shavn that, ratherthan(WH)", the bestsuchfilter (mini-
mizing total MSE) is the uniqueso-calledpolar factorof (WH)" [134], which is simply

(WH)" with its singular alues replaced by unity:
JQ = UV, (4-1)

whereU andV are(m x m andn x n) unitary factorsin an SVD of WH = USV . Note

thatQ satisfies (4-1) if and only if it is of the form:

Q=

vV o\g (4-2)
0Vy
whereVy; is an arbitrary unitary matrix of dimensionm —n. The rotatorQ of (4-2) per-

formstwo tasks First, it playstherole of the subspaceeparatoof chapter3 by removing

all signalenepgy from thelastm — n componentsf its output.Secondit alsoprovidesthe

AWGN -
Whiten Rotate k
ry U Y
x, —» H + » Wl —>» Q —>» J —>»
m Xn mXxm mXxm nxm

Figure 4-1. The structure of the whiten-rotate detector as applied to a

memoryless multiuser channel.
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bestunitary separatiorof userswithin the signalspaceln otherwords,Q separatesignal

from noise, and signal from signal.

The folloving lemma summarizes the form of the whiten-rotate detector

Lemma 4-1. The whiten-rotatedetectorof Definition 4-1 is unique,andit canbe

expressed in three egailent ways:

CWR = JQW (4_3)
= VJ(SS™ + o’I) V2U" (4-4)
= V(S 2+ 021 12JU", (4-5)

In (4-3), W is ary m x m whitener (satisfyingW®, W™ = I), Q satisfies(4-2), and

J =[I 0]. In (4-4) and (4-5)H = USV" is an SVDandS = JS.
Proof: See Appendix 4-1.

Using this lemma, we der seeral properties of the whiten-rotate detector
Property 4-1. The whiten-rotate detector is information lossless.

This follows from (4-5) by observingthatJU" discardsno signalenegy, andthatbothV

and(S2 + o2I) 12 are ivertible.
Property 4-2. The whiten-rotatedetectorapproacheshe zero-forcing(or decorre-
lating) detector in the limit as the noise ajyegoes to zero:

im Cwyg=VS1JU" =VvsU*=H (4-6)

og-0"
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Property 4-3. The whiten-rotate detector is optimally néar resistant [53].
Optimal neaffar resistance is inherited from the zero-forcing detector

Lemma 4-2. The MSE for the i-th userof the whiten-rotatedetectorand MMSE

detectoyrespectiely, can be gpressed as
MSE;"E = 20,1 - (S2 + 02I) 28 In;, (4-7)
MSEMMSE - 62 *(S2 + 02D lv, (4-8)
whereu; is thei-th column ofV".
Proof: See Appendix 4-2.

Using this lemma, we aue at the folloving property of the whiten-rotate detector

Property 4-4. The MSE of thewhiten-rotatedetectorapproachethatof the MMSE

detector in the limit as the noise egyegoes to zero:

. MSE,)'" ) -9
m —_— =, -
o . ot MSEMMSE

Proof: The prooffollows from (4-7) and(4-8) anda straightforvard applicationof

I'H opital’s rule.

In the following experiment,we use(4-7) and(4-8) to comparethe theoreticalper-

formance of the whiten-rotate detector to that of the MMSE detector
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Experiment 4-1. Givenareceverwith m = 10 sensorsye considertwo casesn =
2 usersand 10 users.In Fig. 4-2, we plot MSE; versusSNR; = z;n: R |2/02,
averagedover 1000channelsof dimensionl0 x n. The coeficientsof eachchannel
areselectedndependentlyfrom a zero-meanunit-variance complex Gaussiardis-
tribution, and thenthe channelcolumnsare scaledso that all odd-numberedisers
have enegy 10 dB below thatof even-numberedisers.The curvesfor the two-user
caseshaw thateven for alow SNR; of —10dB, userl incursonly a modest2-dB
MSE penaltyfor usingthe WR detectorinsteadof the MMSE detector Moreover,
for SNR; > 10dB, the performancedifferencebetweenthe WR and MMSE detec-
torsis negligible. For the ten-usercase the performancef both detectorslegrades;

however, the performancalifferencebetweerthetwo detectorsvidensonly slightly.

The previous experimentsuggestshatthe MSE performancef the whiten-rotatedetector
is nearto that of the MMSE detectoy especiallyfor very tall channelgm >> n) andhigh

signal-to-noise ratios.

4.2 A Project-First Architecture

We canusethe subspaceseparatoof chapter3 to definean alternatve structurefor
thewhiten-rotatedetectorlt is oftendesirableto separatsubspacebeforewhitening,i.e.
at therecever front end,by immediatelyprojectingthe m-dimensionakecever obsena-
tion ontothe n-dimensionakignalspaceusinga unitary matrix ©. The advantagef this
project-firstarchitecturearetwo: first, it allows all subsequergignalprocessingo operate

in n dimensionsratherthan m, which reducesthe recever compleity; and second,it



WR
0
—_ -5
m
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—
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Figure 4-2. A comparison of the whiten-rotate detector with the minimum-MSE
detector: SNR versus MSE.
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reducesthe numberof recever parameterswhich often leadsto fasterrecever corver-

gence.

Recallthatfor the channelof (3-1), a unitary subspace-separatimgatrix mustbe of

theform © = Us 0

U WUX whereUg andUy; arearbitraryunitary matricesof dimension.
N

andm - n respectiely, andwhereU is the left factorof a channelSVD H = USV". Fol-

lowing asubspaceeparatoby atruncationmatrixJ = [I 0] produceghe squarechannel

of Fig. 3-1(b) with reduced obseation:
;‘k = fka + ;"k’ (4'10)

wheref, = J0r;,, H = UgS V", andEl#, 7,1 = 02 Then componentsf thenew obser-
vationvectorr, form asetof sufficient statisticsfor estimatingy,,. Thus,thewhiten-rotate
detectorof section4.1 canbe appliedto this new channelwithout compromisingperfor-

mance.

Theorem 4-1. The cascadeconsistingof a signal-subspacprojectorJ® followed
by a whiten-rotatedetectorC wr designedor the reducedchannelH = JQH pre-

cisely implements the WR detec©Oyyr designed for the original chanriégl

Proof: Theproofappliesto the MMSE (3-34) andZF (3-38) detectorsaswell asto
the WR detector(4-5), since all can be expressedin terms of a channelSVD
H=USV* as C=VDJU*, where D=(S? + o?I)"/2 for the WR detectoy
D = S*(S2 + o%I)! for the MMSE detectoyandD = S' for the ZF detector We
needto shav that the cascadeof JO and an n x n detector C designedfor the

reducedchanneH is eguialentto the sametype of detectordesignedor the orig-
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inal channel . In otherwords,we needto showv that CJO = C. But basedon the

SVD H=UgSV" of the reduced channel, we hae C=VDUg', so that

CJO =VDUg'J . U =VDJU'=C. O

UN
4.3 Blind Adaptive Implementations

In this sectionwe describeadaptve algorithmsfor blind implementationof the
whiten-rotatordetector The adaptve whiteneris basedon spatiallinear prediction,and

the adaptie rotator is based on a simple modification of the MPLL algorithm.

4.3.1 An Adaptive Whitener

A simpleway to whitenis to useadaptve linearprediction.Supposeve wish to pre-
dict the i-th component,”) of r, usinga linear combinationof the “preceding”compo-

nentsr, D ... %=1, yielding an estimate:
f"k = Prk, (4'11)

whereP is a strictly lower-triangular matrix of prediction coeficients. The prediction
erroris e, = (I - P)r,. The bestpredictorin the least-mean-squargensej.e. minimizing

El|le;]?1, is closelylinkedto the Cholesly factorizationof the covariancematrix ®,. of r,.

Lemma 4-3. Generalized Cholesky Factorization. A Hermitian matrix & of

dimensionm x m and ranks: < m can be d&ctored in either of tavways:
®=GG, (4-12)

= MD?M’, (4-13)
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whereG = MD is a uniquem x m lowertriangularmatrix with real, non-ngative
diagonalelementswhereD = diag(G), andwhereM is lower triangularwith ones
on the maindiagonal(monic). The matrix M is uniqueif andonly if thefirstm — 1

rows of @ are linearly independent.
Proof: See Appendix 4-3.

Theorem 4-2. Linear Prediction. Let r bearandomm x 1 vectorwith covariance
matrix ® = E[rr"], andlet e = (I - P)r denotethe errorof alinear predictor where

P is strictly lower triangular TheP that minimize<[||el|?] is
P=I-M1 (4-14)

whereM is ary valid monicfactorin the generalizedCholesly factorization(4-13)
of ®. Thepredictoris uniqueif andonly if M is unique,or equialently, if andonly if

the firstm — 1 rows of @ are linearly independent.
Proof: See Appendix 4-4.

As long asthenoisevarianceis nonzerothecovariance ®,. = HH" + oI is full rank
andthe Cholesly factorization(4-13)andcorrespondingredictor(4-14) areboth unique.
(SeeAppendix4-5 for a discussiorof the noiselessase.)in practice,the estimateof P,

denotedP, can be adapted according to the least-mean-square algorithm:
Py, 1= (P, +pepry) DL, (4-15)

wheree;, = r, — P,r,, is the predictionerror, wherey,, is a stepsize,where'0’ denotesa

component-wis€Schuror Hadamard)product,andwhereL is a mask,with onesbelov
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the main diagonaland zeroselsavhere, that constrainsP to be strictly lower triangular
We remarkthat, becausd4-15) is derived from a quadraticcostfunction, corvergenceto

(4-14) is guaranteed for a §igfently small step sizg,,.

After P convergesto (4-14), the covarianceof the resultingerror e, =1-P)r, is
diagonal: ®, = D2. Therefore,a diagonalgain matrix A = D! corverts the prediction
error ey, into the white signalv, = Ae;, with covariancematrix ®, = I. This gain matrix
can be implementedadaptvely by a bank of independenscalarautomaticgain-control
(AGC) loops, designedo force the enegy at eachoutputto unity. We proposea simple

2 (1) 2 (m)

first-order loop for adapting each component of an estiatediag(A ', ..., A" )

AD 1AV e @122 1, (4-16)

wherev,@ is thei-th componendf v, = Ae;,. In summarythe proposedadaptie whit-
eneris W,= A,(I- P,), where P and A are adaptedaccordingto (4-15) and (4-16),

respectrely.

4.3.2 An Adaptive Rotator

Recall the structure of the whiten-rotate detector of Fig.4-1: C =JQW. Let
v, = W,r;, denotethe whiteneroutputwith W adaptedaccordingto the previous section.
It remainsto specifyanadaptve algorithmto estimateQ of (4-2). Let therotatorQ bean
estimateof Q, andlety, = Q :U, denotethe correspondingotatoroutput.We canmodify
the MPLL to adaptvely implementQ. We needonly modify the decisiondevice. Let x,
denote armugmented decision ector:

& = ["“0(') g} - (4-17)
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Fori <n, £, = dec,(y,”) is the pointin the constellatiorof useri closesto y, "), but for
i >n, %, is setto zero.In effect, the decisionvector &;, is definedasis therewerem
userswith the last m — n of thesetransmittingall zeros.The rotator Q , canthen be

adapted according to the recursion:
Qri1 = RNy, - 3" Qy
= Qi+ | K@ - 90"~ 1| Qs (4-18)

The modified MPLL is illustrated in Fig-3.

As we discussedn section3.4 of the previous chapteythereare unavoidableambi-
guitiesthatcannotbe resoled by any fully blind algorithm.Empirical evidencesupports

the conjecture that the rotator werges to

R (4-19)
0 Im_n
7\ Yk
A - d ° 0 ~
Vp—> Q, '{ “0( )0} X,
Rotation
Detector

Figure 4-3. An adaptive algorithm for implementing the MMSE rotator of (4-2).
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whereQ is given by (4-2), andwhere,asin (3-36),K = KpKp, is then x n productof a

permutation and rotation ambiguity

4.4 Experimental Results

We concludewith several computerexperimentsWe usethe project-firstarchitec-
ture as depictedin Fig.4-4. The subspace-separatiomigorithm, already detailed in
section3.2 of the previous chaptey is usedto producer,. We then apply the adaptve
whitenerandrotator of sections4.3.1and4.3.2to the reducedobsenation r ;. The first
experimentdemonstratesornvergenceof the entireproject-firstWR detectorjn particular
it shavs the contritutionsto MSE from eachof the adaptve stages.The secondexperi-
mentappliesthe WR detectorto an array-processingroblemsimilar to thatin Experi-

ment 3-3. The lastxperiment considers a synchronous CDMA system.

Experiment 4-2. Random Gaussian Channels. We now demonstrateornvergence
of the entire project-firstalgorithmof Fig. 4-4. We considerntwo users,eachtrans-
mitting 16-QAM with 20-dB SNR. Fig. 4-5 shavs MSE; = E[ 12,V - x,(V12] asa
function of time, averagedover 1000realizationsof input, noise,anda 10 x 2 com-
plex Gaussianchannel.There are five curves in all. The bottom curwe, labeled
MMSE, is MSE; for the ideal MMSE equalizer The initial subspaceseparatoiis
adaptve for the curve above that, but all remainingfunctionsare idealized.Simi-
larly, the othercurvesarelabeledto indicatewhich component®f the algorithmare
adaptve. Everythingis adaptve for the top curve, with the effect of the ambiguous
comple permutationmatrix K removed for eachtrial. Thesecurvesillustrate the

MSE contributedby eachstageof the project-firstalgorithm.The subspacseparator



84

*1010819p 8rejol-ualym 1sii-198loid aandepe ue Jo welbelp feuonouny y “y-7 ainbi4

1010919Q
uoneloy
A— A
1010818Q
uoneloy dl D
919/ d SS
N \
- 1D (= 1y = + r |= 10 r€«——
x Uy - ia v 1 Tu ug v 4y




85

convergesvery quickly andhaslittle impacton MSE. Thelinear predictorandAGC
bank also corverge quickly, and the recever eventually closely approximateghe
MMSE solution. (The parametersisedin the recever updatesareasfollows: A\; =
0.025in (3-23), up = 0.03(2%/259) in (4-15), 4 = 0.02(2*/3%0) in (4-16),and), =

0.8(1+ £/200) in (4-18).)

Experiment 4-3. A Linear Antenna Array. Considera 20-sensotinear antenna
arraywith half-wavelengthspacing,and supposdwo signalsareincidentat angles
0; = 0° andB, = 20° (measuredrom broadside)The channelsaregeneratedsin
Experiment3-3with SNR; = 15dB, andSNR, = 35dB. Fig. 4-6(a)shows a plot of
MSE; versustiime, averagedover 100input andnoiserealizationswith the effect of
the complex permutatioremoved. Fig. 4-6(b) shavs constellationgrom time 4000
to time 5000 from the last trial. Once again, we see quick corvergence to
nearMMSE performance(The parametersisedin the recever updatesare asfol-
lows: A; = 0.8/(1 + £/200)in (3-23),up = 0.1/(1 + £/250)in (4-15),p,4 = 0.2(2*/

1000) in (4-16), and\, = 0.8(1+ £/150) in (4-18).)

Experiment 4-4. Synchronous CDMA. Consider now a synchronous
direct-sequence-CDMApplicationwith threeinterfering users,eachtransmitting
16-QAM. Let ¢; O{ +1}32 denotethe binary signaturesequencevith length32 of the
i-th user If the transmitterpulse-shapdilters are Nyquist, and the recever usesa
chip-rate-samplednatchedfilter followed by a serial-to-parallelcorverter the
resulting discrete-timechannelis given by (3-1) with Hgg x 3 = %[cl cg c3]B,

whereBs , 3 = diag(B;, By, Bs) is a matrix of signal amplitudes.The signature

1 'TCJ' Of p1,2 = _1/8, p1,3 = —1/4,

sequencefave normalizedcorrelationsp; ; = 35 Ci
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Figure 4-5. Convergence of the project-first adaptive algorithm of Fig. 4-4,

showing contributions to MSE from each stage.
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Figure 4-6. The adaptive project-first WR detector applied to a linear antenna
array: (a) the MSE learning curve; (b) constellations from the last trial, baud
4000 to 5000.
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Figure 4-7. The adaptive project-first WR detector applied to a synchronous
CDMA system: (a) an MSE learning curve; (b) constellations from the last trial,
baud 4000 to 5000.
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andpgy 3 = 1/4. Fig. 4-7(a) shavs an MSE learningcurve, averagedover 100 input
andnoiserealizationswith SNR; = SNR, = 20 dB andSNR3 = 40 dB. We seethat
the algorithmcorvergesquickly, eventuallycloselyapproximatinghe MMSE solu-
tion. Fig. 4-7(b) shavs constellationsof the last 1000 symbolsfrom the last trial.
(Therecever parametersire; = 0.8/(1 + £/500)in (3-23),up = 0.06(2%/1000) jn

(4-15),u4 = 0.05(2%/1100) in (4-16), and\, = 0.5(1+ £/1000) in (4-18).)

4.5 Chapter Summary

We have defineda multiuserdetectorbasedon a canonicalwhiten-rotatestructure
thatis information preserving,optimally nearfar resistantand hasnearMMSE perfor-
mance.The WR detectoris in fact the whitenerwith minimal MSE. We have presented
two equwalent architecturedor the detectoy namely the whiten-first and project-first
architecturesillustratedin Figs.4-1 and4-4, respectrely. We have detailedblind imple-
mentationdor each.For thewhiten-firstapproachtherecever obserationr,, is whitened
via the cascadef a prediction-erroffilter I - P anda diagonalgain matrix A , where P
and A are updatedaccordingto (4-15) and (4-16), respectiely. The whiteneroutputis
thenrotatedby Q, updatecaccordingo (4-18).For theproject-firstapproachthe obsena-
tion r;, is projectedontothe signalspaceto producethe reducedobsenrationry, = J rik,
whereQ is updatedvia (3-23). The whiteningandrotationalgorithmsarethenappliedto
r.. In either architecture,the second-orderstatistics of the transmitted signals are
exploited first. The higherorder statisticsare exploited only at the last step (4-18) by

finding a unitary matrix that bestrestoreshe discretenatureof the channelinputs. The
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benefitsof this statisticallydecoupledapproachandof linear predictionin particularare

dramatically illustrated in the rechapter
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APPENDIX 4-1: PROOF OF LEMMA 4-1

Substitutingan SVD H =USV" into ®,. = HH" + 0?1 yields ®, = UAU", where
A =8SS"+0%l is diagonal. It follows that W=A"1"20" is a whitener satisfying
Wo, W' =1, andthat WH = A"1/28V". Replacingthe singularvaluesof WH by unity
producests polar factord 7V, From section4.1, the WR detectoris then Cy g = JQW,
where JQ is the polar factor of (WH)", or JQ=VJ: thus, we have
Cygr = VIW = VJA Y 2U". This proves (4-4). If we define the diagonal matrix
A = INIT = (82 + 621)-2, then (4-5) follevs from (4-4) and the identityA = A J.

We now establishby contradictionthe uniquenessf the WR detector Suppose
C; = P{W;H}'W; and C, = P{W,H}'W, denotetwo distinct WR detectorsderived
from whitenersW; andWs, respectiely, where?{A} = U4V, denoteghepolarfactorof
A =U,S,V,". SinceW; and W, are both whiteners there exists a unitary Q suchthat
W, = QW,. It followsthatC, = P{QW,H} QW; = (QP{W;H})'QW; = P{W;H}'W; =

C;, a contradiction [
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APPENDIX 4-2: PROOF OF LEMMA 4-2

Using (4-5), we canx@ress the error of the whiten-rotate detector as
e, =(CwrH -Dxp, + Cyrn,
=VIAS -IIV'x, + VAJU n,, (4-20)
whereA = (S2+ 621)-V2. The covarianced, = Elee," ] of this error is gien by

®, =VIAS -T2V'+ G2VA2V*

“VIA2S2+1-2AS + 02A 2IV*

~ o~ %

= V[I- ASIV" (4-21)

The MSE of the-th userE[ le,?12] is then gien by (4-7).
Similarly, using (3-33), we carxpress the error of the MMSE detector as
e, = (CypseH — Dy, + CppprsEny,
=[(H'H+0’)'H'H-Ilx, + HH+0’I) 'H'n,
=(H'H + o’ [H'H- (H'H + 0’Dlx;, + HH + 0’2l 'H'n,
= - 02VA2V'x, + VA2S'U'n,, (4-22)
The cwariance of this error is
®, =VIo*AL G2A4S 2V
= B2VA 2V, (4-23)

and the corresponding MSE of thth user is then gen by (4-8).[]
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APPENDIX 4-3: PROOF OF LEMMA 4-3

Given a Hermitian matrix @ of dimensionm x m and rankn < m, there exists a
square-roomatrix S suchthatSS™ = ®. Since® hasrankn, therows{sy, sy, ..., s,,,} Of S
spananrn-dimensionakpaceS. Performingthe Gram-Schmidbrthonormalizatiorproce-
dureon the orderedrows of S producesa setof m row vectors{vy, v, ..., v,,}, exactly
m —n of which arezero,andn of which form an orthonormalbasisof S. Thus,we can

write
S=FV, (4-24)

where the rars of V are the ectorsv;, 1 <i <m, andF is a Gram matrix:

_F }
1,1
0

F= Foq1 Fy o , (4-25)

Foo1Fpo . F

m, m|

with F; ; = [$;,v,C. Thereexists a setof m — n unit-normvectors{vy, vy, ...0 p,_p}
orthogonato then non-zerarows of V. Let \% beaunitarymatrix formedby replacingthe
zerorows of V with this setof vectors.Becausehe columnsof F multiplying the zero

rows of V in (4-24) arealsozero,it follows thatS = FV . BecauseF may have comple

. . F. . ~ F. .
diagonalelementsyve defineG = F diag%F—_“f‘g andU=V diagaFf"_‘g. It follows thatS

= GU and that

® = GG (4-26)
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Thefactorizationin (4-26)is uniquebecausdor ary othersquareroot S # 8, thereexists

a unitary matrixQ such tha = SQ = GUQ = GfJ, whereU is also unitary

The factor G can be decomposeds G = MD, whereM is lower triangularand

monic, and wher® = diag(G), such that
® = MD?*M". (4-27)

If ary of thefirst m - 1 diagonalelementsD; ;, wherej O {1, ..., m — 1} of D, arezero,
thenthe elementsy; ;for i > j of M arenot unique.Therefore M is uniqueif andonly if
thefirst m — 1 rows of S arelinearly independentor equialently, if andonly if the first

m - 1 rows (or columns) ofp are linearly independerit]
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APPENDIX 4-4. PROOF OF THEOREM 4-2

Givenastrictly lower-triangularpredictorP andpredictionerrore;, = (I — P)ry, the
mean-square erreof = E[||ek||2] can be gpressed as
J = tr[(I- P)®I - P)], (4-28)
where® = E[r,r," 1. Applying the ctorization in (4-13) yields
J = tr[d - PMD?M'( - P)"]. (4-29)
Because€l - P)M is monicandlower triangular it canbe expressedslI + B, whereB is
strictly lower triangular Thus, the cost function in termsBfis
J =tr[I + B)DXI + B)']
= tr[D? + BD’B” + BD? + D?B"]. (4-30)
Becaus@B is strictly lower triangular thetracesof BD? andD?B” arebothzeroin (4-30).
Furthermorethetraceof D? is independenof B. Thus,it suficesto minimizetr(BD?B”),
which is clearlyaccomplishedy ary strictly Iower-triangularf; in the left null spaceof
D. The best predictor can thus begressed as
P=-1-1I+B)M, (4-31)
with B sodefined.Obsere that(I + BI)M ! is both monicandlower triangular andthatit

diagonalizesb:

[+ B)M o[ M)A+ B)' 1=+ B)D2(I + B)’= D2 (4-32)

Hence for ary inversegeneralizedCholesly factorM ™1, the product(I + BM l=M1is

the irverse of some other Cholgstactor Thus (4-31) reduces to (4-14)
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APPENDIX 4-5:

A WHITEN-ROTATE DETECTOR FOR NOISELESS CHANNELS

Both the whiten-rotatestructureof section4.1 andits adaptve implementationof
sectiond4.3 arederived underthe assumptiorof nonzeronoise.Although a goodassump-
tion in practice the specialcaseof zeronoiseis alsoof interestbecausét providesinsight
into the behaior of the whiten-rotatedetectorin the limit of high SNR. Therefore this
appendixcontainsa brief summaryof a whiten-rotatedetectorfor channelsvithout noise.
We emphasizethat the discussionthat follows appliesto the whiten-first stratey of
section4.1 only; the project-firststratey of sectiond.2 canbe appliedto noiselesshan-

nels without modification.

Without noise, the covariance matrix of the obseration vector r, in (3-1) is
@, = HH" with rank n. Therefore,if the channelis tall (m > n), theredoesnot exist an
m x m whiteningmatrix W. Consequentlythe whiten-firstapproachillustratedin Fig. 4-1
anddescribeduy (4-3) is not valid. Neverthelesstheredoesexist a short n x m whitener
W, satisfying WHH W™ = I, and this identity implies that WH =T for some unitary
matrix T. Hence the whiten-rotatefilter TW achieveszeroMSE, which is certainlymin-
imal. In fact, ary zero-forcingdetectorof the form C,z = H' + N, whereN 0 null(H),
canbeinterpretedasa whiten-rotatedetectoiwhenit is factoredaccordingo the QR-fac-
torization theorem[121]: C,r = QW. Thus, in the absenceof noise,the whiten-rotate

detector is not unique.

Accordingto (4-13) and (4-14), the least-mean-squareear predictionerrore;, =

(I - P)r;, hasa diagonalcovariancematrix ®, = D2, whereHH" = MD?M" is a general-
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izedCholesly factorizationBecausé@ hasrankn, exactlym — n of thediagonalelements
of D arezero,which impliesthatthe correspondingomponent®f theerrorsignale,, are
identically zero. Clearly we lose nothing by discardingthesezeros,therebyproducinga

reducedvectore ;, of dimensiom. LetdJ denotethen x m matrix thatextractsthenonzero
componentsof ey, so that e, = Je, has covariancematrix ®; = JD2J" = D2, where
D =JDisafull-rankn x n diagonalmatrix containingall of the nonzerocomponent®f

D. The diagonalfilter D~ then whitensthe reducederror signal. An n x m whitening

matrix can thus bexpressed aW = D—1J(I - P).

The precedingdevelopmentsuggests methodfor blind adaptve implementatiorof
W for the caseof low noise.The adaptve predictorof (4-15)is guaranteedio cornvergeto
a solutionof theform (4-14). After corvergence them — n component®f the prediction
error that are nearly zero can be discarded.The n remainingerror componentsan be
adaptvely scaledaccordingto (4-16). (The MPLL can be appliedwithout modification

after the whiteney
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CHAPTER 5

LINEAR PREDICTION

HE CONCEPT of usinglinear prediction(LP) for blind channelidentification
T and equalizationoriginatedwith Slock and colleagueq94-96] in the context of
fractionally spacedequalizationwherea fractionally (7'/m) spacedsamplerproducesa
baud-space®IMO channelof dimensionm x 1. (Recall Fig. 2-5.) Abed-Meraim[91]
usedtheseideasto develop analgorithmfor identificationof SIMO channelsUseof LP
was extendedto tall MIMO channelsby Gorokhor et al. [15][118], Delfosseand Lou-
baton[135], andlcartandGautier[119]. All of thesealgorithmsarebatch-orientedwhere
a block of datais collectedand usedto estimatean autocorrelatiormatrix, and thena
Yule-Walker or similar equationis solved, perhapsby usingthe Levinson-Durbin[136]
algorithm. In contrast,the techniqueswe detail in this chapterare adaptve with com-
plexity ontheorderof LMS or oneof thevariousCMA extensionsMoreover, our express
goalis alwaysconstrainedMMSE detection;thatis, our detectorsare designedo mini-

mize the MSE of all users subject to a set of architectural constraints.

We broadenconsiderationin this chapterto include channelswith memory as
describedy (1-1), andwe presenta family of detectorsdasedon linear spatio-temporal
prediction. These detectorscan be viewed as extensions of the prediction-based

whiten-rotatedetectorof chapter4; they take the form of a WR detectomprecededy one
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or moretemporalprediction-errofilters. TemporalLP is usedto eliminateor nearlyelim-
inate the channelmemory prior to applicationof spatial methods.This approachonce
again conformsto our philosoply of maximal exploitation of second-ordesstatistics;
higherorder statisticsare exploited only at the last stepto estimatea unitary matrix. The
virtuesof this approachdataefficiency andinsensitvity to thechanneinputdistributions,

are well documented in this chapter

In section5.1, we discussequialentrepresentationfor the FIR channelof (1-1),
includingmoving-average autorg@ressve, andothermodels.In section5.2, we extendthe
notion of minimum phaseto MIMO channelsWe arguethatalmostall tall MIMO chan-
nelshave this minimum-phaseroperty In section5.3,we discusghenecessarandsuffi-
cientconditionsfor the modelsof section5.1 to exist. We attemptto developinsightinto
the physicalmeaningof theseconditions.In section5.4,we discusgemporalpredictionin
a noiselesernvironment.We definethreepredictorarchitectureseachclosely relatedto
one of the channelmodelsof section5.1. In section5.5, we formally define multiuser
detectorshasedon linear prediction.We characterizeéheir behaior and performancean
the presencef noise,anddiscussmary of their propertiesin section5.6, we detail blind
adaptve implementationsof the detectorsand demonstrateapplications,including an

adaptve fractionally spacedequalizer(FSE)for single-usesystemsausinghighly shaped

signal constellations and a blind multiuser detector for asynchronous CDMA systems.

5.1 Equivalent Channel Models

We again considerchannelsvith memoryasdescribedy (1-1) but examinefirst the

noiseless case, for which the reegiobseration is gven by
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M

rp= 5 Haxp (5-1)
i=0

We assumethat the channelis strictly tall m > n, and the input sequenceas white:
Elxx;, ;1= 15, Fromlinearsystemtheory ry, is known asa moving-average (MA) pro-
cesspecausd is aweightedaverageof samplegrom awhite processWe make oneaddi-

tional assumption:

rank[Hy,] = rank[H(z)] = n for all z including . (5-2)

Includingz = « implies that H, alsohasfull columnrank. Tall FIR channelssatisfying
(5-2) have mary remarkablepropertiesFor example,the outputof sucha channelis not
only moving average,asin (5-1), but is alsofinitely autorgressve (AR), which, among
otherthings,impliestheexistenceof anFIR inverse (RecallExample2-3.) Thisis in stark
contrastto SISO channelsfor which an FIR channelcan never have an FIR inverse.
Throughouthis thesis we usethelabels“moving average”and“autoreggressve” andsim-
ilar termsto referto the channelitself, not merelyto its output,becauseheseequivalent
modelsareinnatepropertiesof the channel;the stochasticor deterministicnatureof the
signalshas no relevance. The following sectiondescribesthe first of three equvalent

models for (5-1), all of which are intimately related to linear prediction.

5.1.1 An Autoregressive Channel Model

It is possibleto modelatall MA channel5-1) satisfying(5-2) by thefeedbackstruc-

ture of Fig.5-1(b). The channel output can be written as

N
rp = z Airk_i + Hoxk, (5-3)
1=1
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wherethe feedbacHilter A(z) = va: 1Aiz ~iis squargm x m) andstrictly causal Sucha
processs calledautoregressive (AR), becauséhe outputcanbe expressedn termsof its
past. The existenceof this modelimplies that an FIR filter caninvert an FIR channel.
Obsene thatthe transferfunction of the linear feedbacksystemis [I - A(z)T!; therefore,
H(z) = [I- A(z)I"'H,, or equivalently [I - A(z)JH(z) = H,. As shavn by the following
theoremthememoryN of thefeedbacKilter depend®n thechanneimemoryM, butit is

always finite whenn > n.

Theorem 5-1. [15] Let the channelH(z) of (5-1) with m > n satisfy (5-2). If N >

( Mn 1 thenthereexists anm x m FIR filter A(z) = ZN_

m-—n

Az with memoryN
1

such thatI - A(z)JH(z) = H,,

(@) x, —> H@) >

Xy, — HO + > ry,
.
mXn A(Z)

Figure 5-1. Equivalent models for a tall MIMO channel: (a) moving average (MA)

and (b) autoregressive (AR).



102

Proof: [15] We can gpresdI - A(z)1H(z) = H, in block-matrix form as follws:
[T -A; .. -Ay1Hy,1 =[Hy Op xnarem]s (5-4)
whereHy, 1 is anm(N+1) x n(M+N+1) block-Toeplitz matrix:
H,H, ..H;; 0 ... 0
HN+1 = 0 HO Hl . HM - O . (5_5)
0 .. 0 Hy H, ... Hy,
SubtractindI,, 0, x n.,]1# .1 from both sides of (5-4) yields
[0,,xm —A1 ... -AN1HNw1=—10,5m Hy ... Hpr 0,5 N 1, (5-6)
or equvalently,
[A) ... Ay1Hy=[Hy ... Hy; 0, ny, ] (5-7)
This is a systemof mn(M+N) scalarequationswith m2N unknavns. From Forney
[137], we know thatif (5-2)is satisfiedthen #y is full rankfor all N, andthe equa-

tions are linearly independentTherefore,the systemhas a solution if m2N >

mn(M+N), or equvalently if N > (&1 [

m-—n

The coeficients {A;} of A(z) in (5-3) and Theorem5-1 are called AR parameters;
they, togethemwith Hy,, provide a completedescriptionof the channel Lik ewise, the coef-

ficients{H;} of H(z) in (5-1) are called/A parameters.

Corollary 5-1.1. The coeficients{A;} of A(z) = zN

1=

lAiz‘i are gven by

[A;...Ay]1=[H; .. Hy 0, cn,1H +V, (5-8)
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whereH = Hy, andfor ary V* O null(H ). The coeficientsareuniqueif andonly

Mn

it M7 s an intger andV = :
m-—n m-—n

Proof: The proof follavs immediately by erifying that (5-8) satisfies (5-7):

[A; ... Ay1H =[Hy ... Hy 0, 3y JHTH+ VH
=[H1HM Omen] (5_9)

The solutionis uniqueif andonly if null(H ") is trivial, i.e., if andonly if its dimen-
Mn

sionis zero:dim[ null(H")] = mN — n(M+N) = 0, or equialently N = is an

integer. [J

5.1.2 An ARMA Channel Model

It is also possibleto model a tall MA channel(5-1) satisfying (5-2) by a hybrid
autorgressve-moving-average(ARMA) structure.The modelis illustratedin Fig. 5-2,

whereHL(z) = iLz OHiZ_i is a truncatedversionof H(z), an FIR filter consistingof the
first L 0{0, 1, ..., M} tapsof H(z), and AL(z) = ZN+L

. — i X
i 1+LA‘Z is a square(m x m) and

strictly causal feedback filteFhe obserationr;, can thus bexpressed as

x, —> Hi(z) »(ﬁ > 1,
mXn AL(Z)

mXm

A

Figure 5-2. An ARMA model for a tall MIMO channel.
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L+N L
rp= Y Ar,_; + 5 Haxp, ;. (5-10)
i=L+1 1=0

The ARMA modelreducego the AR modelwhenL = 0. Obsene thatthelinearfeedback
systemhasatransferfunctiongivenby [I - AL(z)1™%, whichimpliesthat[I — AL(z)H(z) =
HL(z). Again, therequirednumberN of nonzeraapsin thefeedbacKilter is alwaysfinite

whenm > n.

Theorem 5-2. Let the channelH(z) of (5-1) with m > n satisfy (5-2), and let

L0O{0,1,.. M} If N> ( Mn w then there exists an m x m FIR filter AL(z) =

m-—n

L+N

. HiZ_i.
i=L+1

Az such thall - A"@)HE) = 5 °_

Proof: The proof is similar to that for Theorem 5-1. See Appendix 5-1.

Corollary 5-2.1. The coeficients{A;} of AL(z) =ZiL:£v+ 1Aiz‘i are gven by

[Af .1 Ap,n]=[Hp 1 . Hy 0w v+ I H T+ V. (5-11)

Mn
m-n'

They are unique if and only IV =

Proof: See Appendix 5-1.

5.1.3 An Autoprogressive M odel
In additionto the MA, AR, and ARMA modelsof Fig. 5-1 andFig. 5-2, atall MA
channel(5-1) satisfying(5-2) can also be modeledasillustratedin Fig. 5-3, wherethe

recever obseration is gven by

N
rp= Y ALrp.i + Hyxp (5-12)
i=1
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We inventthetermautoprogressive (AP) to describehis modelbecauséhe presenbutput
is expressedn termsof future outputs;the feedbackilter A~1(z) = vaz 1A_,-zi is strictly
anti-causal(We denotea negative one stepwith the superscript~1' ratherthan‘-1’ to
avoid confusionwith aninverse.)Althoughthemodelis somavhatunusualjt is in noway
contradictory The linear feedbacksection[I - A~1(z)I! is anti-causalyet the overall
channelmodel H(z) = [I-A™1(z)]"'Hy;z™ is causal.lt follows that the FIR filter
[I- A~l(z)] can be usedto isolate the last tap: [I- A~1(z)]H(z) = HyzM. Although
[I- A~1(z)] is anti-causalandthuscannotbe realized a delayedversion[I - A~1(z)]z 7,

which is causal, can be implemented such[thatA~1(z)]z~VH(z) = Hy;z~ Y-V,

Theorem 5-3. LetthechanneH(z) of (5-1) with m > n satisfy(5-2).I1f N > (_1‘_4”_} :
m-—n

thenthereexistsanm x m FIR filter A~1(z) = ZN 1A_izi with memoryN suchthat
1 =

[1-A"Y2)]zVH(z) = Hyz M-V,

Proof: See Appendix 5-2.

x, —>HyzM %% > 7,
mXn ANl(Z) J

mXxXm

Figure 5-3. An autoprogressive model for a tall MIMO channel.
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Corollary 5-3.1. The coeficients ofA~1(z) = va: lA_izi are gven by

[AyN..A1=00, Ny Hy... Hy 1H +V. (5-13)
They are unique if and only IV = nzf_”n

Proof. See Appendix 5-2.

5.2 Minimum-Phase Channels

From traditionallinear systemtheory we saythat a SISOfilter or channelH(z) is
minimum phaseif all its poles and zeros are located inside the unit circle. A min-
imum-phasechannelhasmary desirableproperties.For example,it alwayshasa causal
stableinverse (A channelwith all zerosinsidethe unit circle hasaninversewith all poles
inside.)A minimum-phasehanneklsohasthe propertythatits enegy is maximally con-
centratedat its zero-thtap. In other words, amongall channelswith identical spectra
| H(e/®) 12, the minimum-phasechannelhasthe minimum group delay (negative phase
derwvative) [33]. Delfousseextendsthe conceptof minimum phaseto MIMO channels

[135] as follavs.

Definition 5-1. A MIMO channelH(z) is called minimum phaseif andonly if

there gists a causal stable leftvierse.

This definition reducesto the usual SISO definition whenm = n = 1. However, a min-
imum-phaseMIMO channeldoesnot have all of the propertiesof aminimum-phas&iSO
channellts enegy is not necessarilyconcentratedh its zero-thtap. Furthermorea frac-

tionally spacecchannethatis not minimum phasan the SISOsensecanbe soaccording
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to Definition 5-1, whenviewed as a baud-space@&IMO channel.lt might be lesscon-
fusingto saythata channelis “minimum phasen the MIMO sense’or thatit is “causal

stable left-iwvertible” Nevertheless, we use Definition 5-1, as stated, for its simplicity

Considera tall FIR transferfunction H(z) satisfying(5-2) and an associatedAR
modelwith FIR feedbacKilter A(z) suchthat[I — A(z)|H(z) = H,,. It followsthatH(z) has
aleft-inverseC(z) satisfyingC(z)H(z) = I; in particular C(z) = H,'[I - A(z)], whereH,'
= (H, Hy)'H, . Theleft-inverseC(z) is causalandFIR, just like A(z), andbecaussét is
FIR, it is stable.Therefore, Theorem5-1 implies that every tall FIR channelH(z) satis-
fying (5-2) is minimum phase.

Of courseachanneineednot betall to be minimum phaseasillustratedby thefol-

lowing example.

Example5-1. Consider a % 2 channeF(z) with memoryM = 2:

2 1

FG) = [2 tzo oz ] . (5-14)

1
z 1

Obsenre thatdet[F(z)] = 2 + 22 — 27121 = 2 is nonzeroeverywhere Therefore an

inverse &ists, and is gien by

-z 2+z

Flz) = %{ 1 =2 ] (5-15)

Obsere thatF~(z) is both causal and stable, B@) is minimum phase.

Channelssuchasthosein the previous examplebelongto animportantclassof channels

known as unimodal channels, all of which are minimum phase.
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Definition 5-2. [34] A squareFIR channelF(z) = zM_ OFiZ_i is calledunimodal if

det[F(z)] is nonzero for alt, including .
Lemma 5-1. All unimodal channels are minimum phase.

Proof: All unimodal channelsF(z) have an inversebecausedet[F(z)] # 0. The
inverseis causabndFIR, andthereforestable becaus&achelemenin theinverseis

proportional to a cafctor ofF(z), all of which are FIR and stablel

In fact,any FIR channeltall or squarethatsatisfieg5-2) is minimumphaseThere
is an importantdistinction, however, betweensquareand tall channels:amost all tall
channels are minimum phase, and almost all square channels are not. In otherwords, if
we wereto selectat randont’ a singletall channeH(z) = Zf‘l: OHiZ_i from the setof all
suchchannelsjt would satisfy (5-2) with probability one.In contrast,a squarechannel
Gz) = sz: OGiz_i selectedn thesamemannemwould satisfy(5-2) with probabilityzero.
In general,det[G(z)] would be a polynomial of degree M and thereforewould have M
zeros.The channelG(z) would be minimum-phaseonly if det[G(z)] were a constanta
zero-probabilityevent. It is this distinctionthatmakestall channelsemarkableOf course,
it canbe arguedthat“real-world” channelsarenot generatedn thisway. A naturalques-

tion to askis, “What typesof channelssatisfy(5-2)?” In the next section,we addresghis

guestion and attempt towddop some insight into the psical meaning of (5-2).

17. For a given M, select each element of each coefficient H; uniformly and independently from

the set of complex numbers |zl < 1.
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5.3 Necessary and Suftient Conditions

We have seenthat (5-2) is sufficient for a tall (or square)channelto be minimum
phase but we have not addressedthe physical significanceof (5-2). Supposeve have an
n x n. channelG(z) thatis not minimum phase We could follow G(z) with atall m xn
minimum-phasdilter H(z) suchthat the cascadecombinationis tall: H(z) = H(z)G(z).
However, asintuition might suggestH(z) doesnot inherit the minimum-phaseroperty
from H(z). ExaminingH(z) morerigorously we seethatsinceG(z) is notminimumphase,
it is not unimodal,sothereexistsaz = z (possibly) for which det[G(zy)]1 = 0. Conse-
quently H(zy) is notfull rank,andH(z) doesnot satisfy (5-2). We concludethatin order
for atall channelH(z) to satisfy (5-2), therecanbe no squarechannelsptherthanmin-

imum-phase channels, hidden within it. Such a channel is said to be irreducible [34].

Definition 5-3. An m x n channelH(z) with m > n is saidto be irr educibleif all
squareright-factorsare minimum phaselt is saidto be reducible if thereexists a

right-factor that is not minimum phase.

We excludeminimum-phasdactors becauseary tall channeH(z) canbeexpressedasthe
productof someothertall channelH(z) anda minimum-phase&hannelF(z) accordingto
H(z) = He)F(). This otherminimum-phas&hanne[f{(z) is guaranteedo exist because
F(z) is left-invertible: H(z) = H)F (). Thereare infinitely mary suchfactorizations.
Irreducibility is thus a generalizatiorof the second-orderdentifiability condition origi-
nally given by Slock[94] for SIMO channelspamelythat the subchannelsanhave no
commonzeros(no commonSISOfactors) Obsere thatanirreduciblechannelH(z) is full

rank for all nonzeroz including «, becauseahe determinanof all squareright-factorsis
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identically nonzero.However, irreducibility doesnot imply thatH(0) or H,, is full rank,
and thus does not alone satisfy (5-2).

To investigatethe rank of H;, we needto review thefinal valuetheoremfor MIMO

systems [34] as well as the concept of column-reduced channels.

Lemma 5-2. Initial and Final Values For the channelH(z) of (5-1), the initial

coeficientH, is given by

H, = H(®) = lim H(). (5-16)

zZ — 00
If the subchannels of all usersvkamemoryM, the final codfcientH,, is given by

H,, =H0) = lim Hg)z™M. (5-17)

z -0

If the subchannels do notveathe same memarthen

H(0) = lim H(z)diag(z" ... 2", (5-18)

z -0

is a matrix whosei-th columnis thatof H,, , whereM; is the memoryin thei-th

column ofH(z).

Definition 5-4. [34] The channelH(z) of (5-1) is saidto be column reducedif its
columnsare linearly independentij.e. if Hz)D(z) = 0 = D(z) = 0 whereD(z) =

zw Dizisn xn.
1=0

For the specialcaseof squarecolumn-reduceadhannelsthe degreeof the determinanis
equalto thesumof thememorief theusersdeg[detH(z)] = Z?: 1Mi' Thekey property

of column-reduced channels is thatytlaee full column rank at= 0.
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Lemma 5-3. [34] ThechannelH(z) of (5-1) is column reduced if andonly if it is

full column rank at = 0.

From Lemmas5-2 and5-3, we concludetwo things:first, the leadingtap H,, of an
irreduciblechanneis full rank,andsecondthefinal tapH,, of acolumn-reduced¢hannel

is full rankprovidedthatall usershave memoryM. Thus,we arrive atthefollowing result.

Theorem 5-4. ThechannelH(z) of (5-1) satisfieg5-2) if andonly if it satisfiesall

of the folloving conditions:

1. H(z) is irreducible
2. H(z) is column reduced

3. All users hae memoryM. (5-19)

We stresgsthat while either (5-2) or (5-19) is suflicient for a tall channelH(z) to be
minimum phaseneitheris necessaryFor example,Gorokhor et al. [15] have shavn that
evenif all usersdo not have identicalmemory therestill existsaninteger N < z:‘: 1Mi
suchthatan AR modelexists. In Example5-1, the usersdo not have identical memory
andyetthe correspondinghanneis minimum phaseln fact,the channein thatexample
is neithercolumnreducednor tall. Of the threecriteriain (5-19), only the first, irreduc-

ibility, is necessary for a tall channel to be minimum phase.

If a channelis reducible,then only the irreducible factor can be identified from
second-ordestatistics Supposefor example,thatH(z) is tall, but reducible andthusnot
minimum phase We canalwaysfactorthe channelasH(z) = H(z)U(2), suchthat H(z) is
minimum phaseand U(z) is allpass:U(z)U"(1/z%) = L. The channelsH(z) and H(z) are

indistinguishable from their second-orderoutput statistics; i.e, HEH (1/z%) =
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H (2)H “(1/2*). Any second-ordemlgorithm for equalizationor identification of H(z)

would behae asif H(z) were the channel.Thereforeit follows that ary suchalgorithm

couldthusbe usedto identify or equalizef{(z), theirreduciblepartof H(z). Thisis ade-

guateif the allpassterm U(z) is inconsequentiabr if it canbe resohed by othermeans.

Consider the folleving example.

5.4

Example 5-2. Supposethat a channelH(z) satisfies(5-2) and is thus minimum
phaseThis meanghereexistsa causalktablefilter C(z) suchthatC(z)H(z) = I. Now

defineH(z) = H(z)U(z), whereU(z) is a diagonal delay:

UG) = diag(z "t 277, (5-20)

for integersD; > 0. Thediagonaldelayis notunimodalbecauseée:[U(z)] is zeroatz
= o, Clearly the only left-inverseof U(z) is anti-causal.So U(z) is hot minimum
phase Hence,H(z) is neitherirreduciblenor minimum phase.Yet the filter C(z) is
still aviable detectotbecausét leavesonly the diagonaldelayterm,which is harm-

less:C(z)H(z) = U(z).

Temporal Linear Prediction

Considera SISO channelwith a white input andwith a frequeng responseH(e’®).

The power spectrumof the output | H(e/®) 12 corveys no informationaboutthe phaseof

thechanneljmplying thatsecond-ordestatistic§ SOS)areinsuficient for channeidenti-

fication. However, if the channelweresomehav known to be minimum phasethenSOS

would be sufficient. In particular we could uselinear prediction. We could estimatethe

presentobsenation r, from pastobserationsaccordingto 7, = z:"_ \PiTh—i with the
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coeficients{p;} of the predictorP(z) = Z:”_ ) p;2~ choserto minimizethe variances? of

the predictionerrore;, = r;, — 7. We couldthenrecover the minimum-phaseransferfunc-

o
1-P(2)

H(z) by only an arbitrary complex constant/® with unit magnitude but this ambiguity

tion (up to a constantfactor)via H(z) = . The resulting H(z) would differ from

would usually not be problematic. (It could be handled at carrieveegdor example.)

5.4.1 One-Step Prediction

Considemow atall MIMO channelwhich is almostalwaysminimum phasein the
senseof Definition 5-1. As we now shav, SOSaresufiicient for channeidentification,up
to anarbitrarymemorylesainitary matrix U. Again, we canuselinear prediction.We can
predict the presentobsenation vector r;, using a linear combinationof the previous N
obsenrations:r, = vaz Pire—is wherethe coeficients{P;} areof dimensionn x m. We

definethe one-steredictorof orderN asP(z) = ZN

1=

1Piz—i. Thepredictionerroris then
e, = r, —r . If we chooseN sufiiciently large,thenwe canuseary valid AR representa-

tion of (5-3) to &press the error as

N
e, = Hoxk + z (Ai — Pi)rk —i- (5-21)
i=1
Th dicti Ellleyl?1= E N "1 is th
e mean-square prediction eréct E[ | e[| ] = [Hrk_zizlpirk—i } is then
N N
E=trHoHy +tr 5 S (A —P)ELr,_,_; JA;-P)". (5-22)
i=1j=1

The doublesummationis positive semi-definite so its traceis always non-ngative. We
canforceit to beidenticallyzeroby choosingP; = A, for all i O {1, ..., N}. Thereforethe

minimum mean-squar@redictionerroris &, = tr(HyH,"). In fact, the only solutions
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that minimize & are P(z) = A(z) for ary valid feedbackiilter (satisfying(5-8)) in an AR
channelmodel.The correspondindinear predictionerroris e, = Hyx;. The channelthus

reduces to a memoryless channel, the subject of chapters 3 and 4.

Theorem 5-5. LetthechannelH(z) of (5-1) with m > n satisfy(5-2),andlet P(z) =

vaz lPiz‘i denotea one-steppredictorof orderN > ( Mn ]Thecoeficients{Pi},

m-—n

minimizing & = E[H r,- vaz 1Pirk—i 2} , are gven by (5-8)

[Py ... PyI=[H; .. Hy 0, «n,JH +V, (5-23)

Mn
m-n

whereV" 0 null(#"). The coeficients are unique if and only ¥ =

Let = be ary m xn squareroot of the error autocorrelationmatrix ®, =
Elere;, 1= HoH,', satisfyingZX" = HyH,". Thisimpliesthat> = H,U for someunitary
matrix U. Thenthelinear predictionchannelestimatds H(z) = [I - P(z)]'Z. (Noticethe
similarity to the SISOestimateof H(z) = T _;(z) .) SinceP(z) = A(z) andZ = H,,U, it fol-
lows that H(z) = [I - P(z)]"'H,U, andthus H (z) differs from H(z) = [I - P(z)]"'H,, by

only aunitary matrix. Souseof second-ordeoutputstatisticsnamelylinearprediction,is

sufficient for channel identification up to some arbitrary unitary matrix.

5.4.2 Multiple-Step Prediction

Multiple-steppredictionis the estimatiorof the presenbbsenationvectorr;, usinga

. . . . N L+N .
linear combination of older obserations: 7, = > L+1Pirk—i- We define the
1=

(L+1)-steppredictorof orderN asPL(z) = Zf—+iv+ 1Piz = If L = 0, this reducesto a
one-steppredictor ProvidedN is suficiently large,we canuseary valid ARMA represen-

tation of (5-10), to xpress the prediction error as
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L L+N
e, = z Hixk _; + z (Ai - Pi)rk - (5'24)
1=0 i=L+1

The mean-square prediction eréct E[| e,|| 21 is given by

L L+N L+N '
E=tr Z HiHi* +ir z Z (A; —P)E[r, _;rp, _;](Aj - Pj)*- (5-25)
i=0 i=L+1 j=L+1

As before,we canforcethesummando zeroandthusminimize§ by choosingP; = A, for
alli 0{L+1, ..., L+N}, yieldingaminimumof & ,,;, = ¢r ZL— 0 H;H,". Thus,thelinear
predictoris identicalto thefeedbacKilter in the ARMA modelof Fig. 5-2, PL(z) = AL(z),

and the corresponding prediction erroe;s= Zf_ 0Hixk_i.

Theorem 5-6. Let the channelH(z) of (5-1) with m > n satisfy(5-2), andlet PL(z)

=ZiL=+£V+ 1Piz_i denote an (L+1)-step predictor of order N = (&} where

m-—n

L0O{0,1,..., M}. The optimal predictor coeficients {P;} minimizing &=

L+N 2 .
E[H r,— Zi :L . 1Pirk _i } are gven by (5-11)
[Pryt - Pray]l=[Hpy .. Hy 0y vappd T+, (5-26)
whereV" O null(H"). They are unique if and only IV = n];’l_”n

5.4.3 Backward Prediction

We can also estimatethe presentobsenration r;, using future obserations: 7, =
zl_l: N P;r,_;. WecallP~(z) = zl_l: _NPiZ_i aone-stefbackward“predictor” of order
N for lack of abettername.lf N is sufficiently large,we canusethe AP representatioof

(5-12) to e&press the prediction error as
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1
ep=Hpyxp_y+ 5 (A-Pry_, (5-27)
i=-N

The mean-square prediction error is

-1 -1
E = trHMHM* +ir z z (Al — PZ)E[rk _il'p _Jx](Aj — PJ)*, (5'28)
i=-N j=-N
and choosingP; = A; for all i O {-N, ..., -1}, yields a minimumof & ,,,;,, = trHy/H,, .

Thus,the optimalbackward predictoris identicalto the feedbacKilter in the AP modelof
Fig. 5-3: P~1(z) = A~1(2). The correspondingredictionerroris e, = Hyx;,_j,. Although
we cannotimplementthe predictorP~1(z) becauset is anti-causalwe canimplement
2" NP~1(z) with a correspondinglelayedpredictionerrorgivenby e, _n = Hyxp, 37 n. AS
was the casewith the one-stepforward predictor the effective channelis memoryless;

however, the last tap is isolated, rather than the first.

Theorem 5-7. LetthechannelH(z) of (5-1) with m > n satisfy(5-2),andlet P~1(z)

= z:l_ NPiz—i denotea one-stefackwardtemporalpredictorof orderN > (M}
- m-—n
. i . - 2

The optimal coeficients {P;}, minimizing & = E[H '“k-Z N Pr,_. } are

i=-1 1

given by (5-13)

[Py...P 1=00,, Ny, Hy... Hyy 1 1H 4V, (5-29)

Mn
m-n’

whereV" O null(H"). They are unique if and only i¥ =
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5.5 Multiuser Detection Using Linear Prediction

In thefollowing sectionswve presenta family of multiuserdetectorgshatcombinethe
temporalLP conceptsof section5.4 andthe spatialLP ideasof chapterd. The first and
simplestof theseusesa one-stegorwardtemporalpredictor In section5.5.1,we formally
definethe forward LP detectorand analyzeits performancedn the presenceof noise.In
section5.5.2,we definea generalizedorward-backvard LP detectoywhich usesthe cas-
cadeof aforwardanda backwardlinear predictor andwhich in generahasbetterperfor-

mance, bt at the gpense of increased compity.

5.5.1 The Forward LP Detector

Sofarin this chaptey we have considerednly noiselesschannelsWe have shavn
that, for the channelH(z) of (5-1), temporalpredictioncanbe usedto eliminatechannel

memory:[I - P(z)JH(z) = H,, whereP(z) = ZN

P, asdefinedby (5-23).Moreover,
we have shavn in chapter4 that spatialwhiteningandrotation canbe usedto invert the
remainingmemorylesshannel Recallthat,if W is arny n x m spatialwhitener satisfying
in this caseWHyH, W" = I, thenthereexists a unitary matrix U suchthat UWH,, = I.
Spatialpredictioncanbe usedto implementW. (SeeAppendix4-5.) Therefore for noise-

less channels we can perfectly remothe channel input.

The precedingdiscussiornsuggestsan architecturefor multiuserdetection.The for-
ward linear-predictive (FLP) detector, illustratedin Fig. 5-4, consistof severalstagesthe
first of which is a one-stepforward temporal prediction-errorfilter I — P(z) of order
N>z (.ﬂi’l_w . Theforward predictionerroris givenby e, = r;, — zfv: [Ptk i wherethe

m-—n

coeficients{P;} arechoserto minimize the mean-squareredictionerroré = E[| e 21.
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For nonzeronoise,the optimalcoeficientsarenotthoseof (5-23);they aregivenbelow in
Theorem5-8 as a function of the noisevariances®. The next stageof the detectoris a
memorylessspatial prediction-errorfilter I — P. The spatial error is e, = (I - I3)ek,
whereP is astrictly lower-triangularm x m matrix with elementhoserto minimizeé =
Ellle| 2]. Thethird stageis a diagonalgain A chosensuchthat eachcomponenbf its
outputw), = Ae;, hasunit enegy: E[ w,w), 1 = I. Hence the cascadaV = A(I — P)is an
m x m spatialwhitener The fourth stageof the detectoris a unitary rotation matrix Q
chosento minimize the MSE of all usersE[|JQuwy, — x| %], where x), = [x}el_)Dl,
ng_)Dz ) e x,g”_)Dn 17, andwhereD; is the delayfor useri, alsochoserto minimize MSE.

We shaw laterin this sectionthat, surprisingly the optimaldelaysmaynot alwaysbezero.

The last stage of the detector is thmiliarn x m truncation matrixJ = [I 0].

A full understandin@f the propertiesandperformancef the FLP detectorequires
additionalanalysis We beagin by solvingfor the optimaltemporalpredictorcoeficientsin

noise.

ry »? AP Q> J —>
mXxXm mXm
L L ~ Gain Rotator
P(2) P
Forward Spatial
Predictor Predictor

Figure 5-4. A block diagram of the forward LP detector.
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Theorem 5-8. LetthechannelH(z) of (1-1) with m > n ando > 0 satisfy(5-2),and

let P(z) = N P,z denotea one-steredictorof orderN = [ Mn_]. The coefi-
i=1 "¢ m-n

2} , are uniguely gien by

cients{P;}, minimizing& = E[H r,— Z_N Pr, .

i=-11
P=[P;..Pyl=KH HH" + 1)’ (5-30)
=KH H+ o2 1H", (5-31)

whereK = [H; ... Hy; 0,, « n,, -
Proof: See Appendix 5-3.

Obsere that (5-31) is consistenwith (5-23). Because lim (H H+ o?I)1H" = HT,
g — 0+
the predictorcoeficientsfor the noisy channelapproachthe minimum-normsolutionfor

the noiseless channel as the no@eance goes to zero.

We refer to the cascadéF(z) = [I - P(z)]H(z) of the forward prediction-erroffilter
andthechannelstheforward cascade. We canderive anexpressiorfor it usingTheorem

5-8.

M+N
F

i=0 2z = [I - P(z) [H() has

Corollary 5-8.1. The forward cascadeF(z) = >
coeficients gven by
F=[F,F;.. Fy,=[Hy | [Hy.. Hy0,,n,]V, (5-32)

whereW = o2(H" H + o2I)"L. Furthermorethe predictionerrore;, = Z?{+N Fx),_;

has c@ariance matrix gien by

®,=Ele,e,’ 1=HoH, + 0%l + KVK". (5-33)

Proof: See Appendix 5-3.
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Again, (5-32) confirmsresultsfor the noiselessasetheforward cascadeeducego
H, wheno = 0 becauséd goesto zerowith a. In generalhowever, the effect of the pre-
diction error filter is to “scale” the trailing coeficientsK = [H; ... Hy; 0,, « 5, ] Dy the
matrix W, while keepingH,, asthe leadingtap. For ¢ > 0, the cascades not memoryless,
but hasmemoryM + N. Thestructureof W hasinterestingmplicationsfor the behaior of

the FLP detector; we discuss this in more depth later in this section.

Using (5-33), we can derive expressionsfor the remaining stagesof the FLP
detectorFromTheoremd-2, the optimalspatialpredictor minimizing E[ | (I — 13)ek 121, is
P =I- M, whereM is atermin the Cholesly factorization(4-13)of ®, = MD2M". The

diagonal @in isA = DL. Anm x m spatial whitener is theW = A(I- P) = D" 1M1,

Recallthatw;, = A(I - I3)ek is the whiteneroutput, and assumefor now that the
optimaldelayis zerofor all userssothat x ;, = x;,. (This assumptiornis relaxedlaterin this
section.)The bestunitary matrix Q,, minimizing E[|| JQuwy, — x; || 21, canthenbe foundin
amannersimilar to thatin chapter. Giventhatthe detectorfront endis I — P(z) andthat
the correspondingemporalpredictionerror is e, we first find the » x m matrix C, that

minimizes the zero-delay MSE suifi| Cey, — x| 2].

M

Lemma 5-4. Lete, = =+ON Fxx, + v,, wherex;, and v, are independentwith

covariancesl and @,, respectrely. The uniquen x m matrix Cp minimizing the

D-delay MSE sunkl[| Cey, — x;,_pl %1is
Cp=Fp®, 1, (5-34)

whered, = zjw;oN F;F, + O,

Proof: See Appendix 5-4.
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So for a delay of zero,we have C, = F, ®,”! = H,"®, .. Furthermoresince ®,~! =
W'W, it follows that C, canbe implementediollowing the spatialwhitenerby the short
filter (WH,)" = (D~'M~1H,))". Following the discussiorof section4.1,we canexpressQ,

in terms of the polaraictor of this short filter:
JQ, = P (DM H,), (5-35)

whered =[I 0]. We are nw in a position to formally define the zero-delay FLP detector

Definition 5-5. LetthechanneH(z) of (1-1)with m > n ando > 0 satisfy(5-2). The

n x m zero-delay FLP detector of orderN > ( Mn w for H(z) is uniquelydefinedas

m-—n

CrLpo(2) = JQD'M[1 - P()], (5-36)

whereP(z) is givenby (5-31),whereMD?M is a Cholesk factorizatiorof ®@,, given

by (5-33), and wherQ,, satisfies (5-35).

The FLP detectorcould of coursebe definedin termsof ary squarespatialwhitener
W, but aswe have shawvn in chapter4, the spatialwhitenerbasedon linear predictionW =
D 'M-! hasimportantimplementatioradvantagesMoreover, in the context of (5-36), it
hasa certainconceptuakleganceaswell. The cascadef the spatialandtemporalpredic-

tion-error filters can be interpreted as a sirsphtio-temporal prediction error filter:

I-Pe) =[I- PI[I-P()]=M1I-PQ)l. (5-37)

This spatio-temporad)redictorf’(z) minimizesg = E[ “ r,- ZN Of’irk _;

1=

2 ~
} whereP,

is strictly lover triangular
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It is of interestto comparethe performanceof the zero-delayLP detectorto that of

the zero-delay MMSE detectdt can be shon that the tw detectors are closely related.

Lemma 5-5. For them x n channelH(z) of (1-1), satisfying(5-2), with m > n and
0>0,letCylz) = zfvz 0 Cz~* denotetheuniquen x m (N+1)-tapzero-delayMMSE

N 2 :
=y Cirr_i } . This detectorcan be factoredas

detectoy minimizing EH

follows:

Co2) = ColI - P(2)], (5-38)

whereP(z) is the optimal one-stegemporalpredictorof orderN definedby (5-31)
with predictionerrore;,, andwhereC, = H, ®,! is the memoryless: x m matrix

minimizing E[ | Ce;, — x| 21.
Proof: See Appendix 5-5.

In otherwords, zero-delay MMSE detection is equivalent to optimal temporal prediction
followed by memoryless MMSE detection. The implication of Lemma5-5 is that the
zero-delayFLP andMMSE detectorshouldcomparemuchin the sameway thatthe WR
andMMSE detectorccomparefor memorylesshannelsThis is indeedthe caseasillus-

trated by the follawing computer gperiment.

Experiment 5-1. For asystermwith n = 2 userswe considetwo recevers:onewith
m = 3 sensorsandthe otherwith m = 10. In Fig. 5-5, we plot MSE; versusSNR; =
Z?: . I hg-l) | /o2, where hg.l) denotesthe first column of the j-th channeltap.
The curvesarethe ensembleaverageof 100004-tapchannelgM = 3) of dimension

m x 2. The elementsof the channelcoeficients are selectedndependentlyfrom a
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zero-meanpnit-variancecomplex Gaussiardistribution, and the channelcolumns
arethenscaledsothatuserl hasenegy 10 dB below thatof user2. Thecurvescom-

parethe MSE performancef the zero-delayFLP andMMSE detectorsegachwith 7

taps(N = ( Mn } = 6). Theresultsillustrate that the performanceof the zero-delay
m-—n
FLP detectoris nearto that of the zero-delayMMSE detectorespeciallyfor high

SNR and for ery tall channelsng >> n).

Obsene that Fig. 5-5 is similar to Fig. 4-2 from Experiment4-1. A closecomparisorof
thesefiguresrevealsthat, for a given SNR, the detectordor channelsvith memoryhave
significantlyhigherMSE thanthosefor channelsvithoutmemory Thereasorfor this per-
formancedifferenceis that,for channelsvith memory enengy is distributedover multiple
taps, and the temporal predictor essentiallydiscardsenegy associatedwith taps H;
throughH,,. In Experiments-1, thereare4 channeltaps,eachhaving, on average 1/4 of
thetotal channekenepgy. Hence the zero-delay-LP detectoressentiallydiscards3/4 of the
channekenegy. Thisis truefor the zero-delayMMSE detectoraswell, in light of Lemma
5-5. Theperformancef bothdetectordor useri is in facthighly dependentiponthefrac-
tion of enegy associated with thieth user that is contained in the zero-th tap:
11

vy = (5-39)

M >

@2
5 a1
7=0

where hg.i) denotesthe i-th column of the j-th channeltap. The next example demon-

strates this dependence more clearly
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Figure 5-5. A comparison of the zero-delay FLP and MMSE detectors.
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Experiment 5-2. In this experimentwe analyzethe performanceof the zero-delay
FLP detectorasa function of y(Ol) , the fraction of user1’s enegy containedn the
zero-thtap. We considerl000random3-tap (M = 2) channelsof dimension5 x 2.
(The coeficients are selectedndependentlyfrom a zero-mearunit-varianceGaus-
sian distribution, and then hgl) is scaledto control y(ol), while keepingthe total
enegy associatedwvith user1 at unity.) The predictor order is N = (n%} =2.
Fig. 5-6 plots MSE;, averagedover the 1000trials, versusSNR; for differentvalues
of ygl). Obsene thatfor ygl) = 1, theslopeof thecurve is approximately-1, but for
yél) = 0, the slopeof the curve is approximatelyd. Obviously, the performances

highly dependent upon the eggrfraction.

It might seemlogical to concludethatif H, is vanishinglysmall,thenthe temporal
predictorwould discardessentiallyall of the channelenegy. However, thisis notthe case
provided that 6® > 0. Recallfrom Corollary 5-8.1 that the cascadeF(z) of the temporal
prediction-erroffilter I — P(z) andthe channelH(z) hascoeficientsgivenby [H, KWY],
whereK = [H; ... Hy; 0,, « x,,], andW = o2(H " H + 0?1y L. The structureof W hasinter-
estingimplicationsfor the behaior of thetemporalpredictorif theleadingcoeficientH,

is suficiently small. W& can gpressW as follows:

* 9 % ~ -1

Y=g : (5-40)

~ % o~

~ %k 2
K H, H H+0'1

whereK = [Hy ... Hy 0,, « nov_1), andwhere # is an m(N-1) x n(M+N-1) block

Toeplitz matrix gven by
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m =5 sensors
—25 - memory M =2
1000 channels
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Figure 5-6. Performance of the zero-delay FLP detector as a function of y,?,

the fraction of user 1's energy in the zero-th tap.
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H H,. . H, 0 .. 0
}lz 0 Hl H2 sa HM... 0 . (5_41)

0 ... 0 H, H, ... Hy,

Taking the limit of¥ asH,, goes to zero yields

-1
2 I 0 I ., 0
lim w=0*|T 0 =| e, =] (54
H), -0 0 H H+01 0 0 (H H+0'T) 0o v

Therefore, in the limit, the forard cascad®(z) becomes

Hlim [Hy [H; ... Hy 0, xn, ] W] =10, «, Hy [Hy ... Hy 0, «n,]-P1,(5-43)
o — 0

and H,, ratherthan Hy,, playsthe role of leadingtap. From (5-40), we obsere that if

H,H," is naligible relative toc?I, then
[Hy [H; ... Hy 0]-W]=[0 H, [Hy..Hy 0]-¥]. (5-44)

In otherwords,H,, is essentiallyignoredby the predictorif its enegy is below the noise
floor: tr(HyH,) << 02, the predictorbehaesasif the channelwere H (z) = ZM L sz‘f.
J =

For high SNRj.e. (H" H+ o2y 14" = #7, we hae thatF(z) = Hz 1.

This behaior can be describedmore generally First, it generalizeso multiple
leadingtaps.If theenegy in the L leadingtapsis belav thenoisefloor, tr Zf;(l)HjHj* <<
02, thenthe predictoressentiallyignoresall L taps.In this case the predictorbehaesasif
the channelwere H (z) = zj”z Lsz—f suchthatF(z) = H;zL for high SNR. Secondthe
behaior in responséo eachuseris independentf theenegy in thei-th columnof theL;

leadingtaps,correspondingo useri, is belov thenoisefloor, zIf_(l) [ hg.i) |? << 02, then
] =
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the predictorignoresthei-th columnof thesetaps.Thefollowing theoremformally states

the result in its most general form.

Theorem 5-9. LetthechanneH(z) of (1-1), with m > n ando > 0, satisfy(5-2),and
let hg.i) denotethe i-th column of the j-th channeltap H;. For eachuseri, let L;
{0, ..., M} denotethe length of the precursor I';, definedasT’; = [hg) h(li)
hg)} forL;>0o0rasl;=0,,« ;forL;=0.Letl' =[I"; ... [',,] denotethetotal pre-

cursor. Let P(z) bethe optimalone-stegemporalpredictorof orderN > ( Mn } for
m-—n

H(z), defined by (5-31). The folleing holds:

lim Iim [I-PE)IHE) =
c-0"T -0

(B0 8P ] diog[ L] (e

Proof: See Appendix 5-6.

Theoremb-9 canberoughly paraphrasedsfollows: for eat user precuisors with ener-

giesbelowthenoisefloor areignored If the precursorenepy of user, yg) =tr(F;1;0), is
below the noisefloor, yg) << 02, thenthe predictorbehaesasif thei-th columnof the

M

; :L.hs-i)z‘f, andif useri hassuficiently high SNR, thenthe

channelwere h(i) @)= Z

i-th columnf(i) (2) of F(z) approachehg) z_Li .

Considernow a channelfor which the enegy in Hy is belov the noise floor,
tr(HoH, ") << 02, but for whichthe SNRof all usersis high, (%" #+ o?) 14" = #', such
that F(z) = H;z~1. For this channelthe zero-delayLP detectorCg; py(z), as definedby
(5-36), performspoorly. It makesmoresensan this caseto definea delay-1LP detector

Crrpi(2) = JQ;DIM[I-P(2)], whereall termsare definedasin (5-36) exceptQ;,
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which is now chosento minimize the delay-1MSE sum E[|| Qw;, — x;_4|l 2], wherewe
recall thatwy, is the spatiallywhitenedtemporalpredictionerrorw;, = We;, = D-'Mle,,.
As before,Q; canbederivedfrom the delay-1memorylessietectorC; given by (5-34).
FromLemma5-4, C; = F,"®,~! = F,"W*W. Hence,Q; satisfiesIQ; = ? (D"'M"'F,).
In the following simulationexperimentswe shav thatasthe enegy in Hy becomewan-
ishingly small,thedelay-1detectoibeginsto outperformthe zero-delaydetectorConsider

the folloving experiments.

Experiment 5-3. We essentiallyrepeatExperiments-2 here,exceptwe implement
both the delay-1andthe delay-OFLP detectors(We considerl000 random3-tap
channelsof dimension5 x 2, generatedas before; again, N = 2.) The resultsare
showvn in Fig. 5-7,wherethe solid curvesarefor thedelay-1detectoyandthedashed
curves are for the delay-Odetector The curves clearly shav regionsin which the
delay-1ldetectomoutperformghedelay-Odetectorfor instancewhenygl) <0.0l1and

SNR; < 24 dB (see point A) or wheyf)l) < 0.1 and SNR< 10 dB(see point B).

Experiment 5-4. In this experimentwe fix the SNR of userl at 20 dB, andthen
vary the zero-thtap enegy fraction ygl) . We considerl000,2-tap(M = 1) Gaussian

channelf dimensiorb x 2. The SNRof user2 is set10dB greaterthanthatof user

1, so SIR; = —10dB. The predictororderis N = ( Mn 1 = 1. Fig. 5-8 plots MSE,,
m-—n

averagedover the 1000trials, versusSNR, for both the delay-Oand delay-1FLP

detectorsObsenre thatthe curvesintersectwhen ygl) ~ SNR; . To theright of this

intersection, the delay-1 detector outperforms the delay-0 detector
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Theseexamplesdemonstratéhat thereexists an optimal delay D; for eachuseri,
which depend®n the enepy in the precursottapscorrespondingo thatuser Sothe uni-
tary rotation Q should be defined accordingly We take x, = [x,(el_)Dl, x}f_)Dz,
x,i”_)Dn]T anddefineF asam x n matrix whosei-th columnis the i-th column of Fp.

(RecallthatF(z) = [I — P(z)]H(z).) The unitary matrix Q that minimizesthe MSE sum

El|| JQuw,, — x .|| %] satisfies
JQ = P (D M1F). (5-46)

The definition of the FLP detector with optimal delays is based on the o;ﬁimal

Definition 5-6. LetthechanneH(z) of (1-1)with m > n ando > 0 satisfy(5-2). The
(optimal delay) forward LP detector of order N = (MW for H(z) is uniquely
m-—n

defined as
Cprp(2) = JQD M-I - P(2)], (5-47)

whereP(z) is given by (5-31), where MD?M is the Cholesly factorizationof R,,

given by (5-33), and wherQ satisfies (5-46)

In the adaptve implementatiorthat follows, Q is implementedwith a decision-directed
MPLL. It implicitly findstheoptimaldelaysassociateavith Q, becausg¢hesearetheones

that produce the smallest slicer error

Evenwith optimaldelaysthe FLP detectormaynot performwell if theenegy in the
zero-thtap ygl) is small,yetalsosignificantrelative to the noise.For instancejn Example
5-4theaverageMSE; is unacceptabléor boththe delay-Oandthe delay-1FLP detectors

if yél) is nearSNRl‘l. Onesolutionto this problemis to modify the linear predictorto
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isolate,not the zero-thtap Hy,, but the L-th tap H;,, andto chooseL suchthatit corre-
spondsto the tap of greatesenegy: tr(H; H; ") = tr(HjHj*) 0 # L. This canbe accom-
plishedby extendingthe SIMO forward-backvardpredictionconcepimentionedn [96] to
MIMO channelsA generalizegrediction-basedetectorbasedon this ideais presented

in the net section.

5.5.2 The Forward-Backward LP Detector

We have shavn that a noiselessFIR channelH(z) = ZM_ OHiZ_i with memoryM

(5-1) canbeequalizedo atruncatedversionH(z) = ZM_ OHiz‘i with memoryL by using

an (L+1)-step forward linear predictor We have also shovn that an FIR channel

HL(z) = zM Hz with memoryL canbe equalizedto its last tap H;z by usinga

i=0
one-steackwardlinear predictor Clearly, the cascad®f a (L + 1)-stepforward predictor
anda one-stefbackward predictorisolatesthe L-th tapH;, of the original channelsothat
the outputof the backward prediction-erroffilter is b, = Hyx;, _ ;. Spatialwhiteningand

rotation can then be used toént H; .

The previous discussiornsuggestsa generalizedarchitecturefor a prediction-based
detector Theforward-backward LP detector, or simply the LP detector, consistdirst of an

(L+1)-stepforward temporalprediction-errorfilter I — PZ(z) of order N = (Mw The

m-—n

- o L+N .
forward predictionerror is given by e, = r, — > 41 Filh—i wherethe coeficients
1=

{P;} arechoserto minimizethe mean-squargredictionerrorE[| ey | 21. Thenext stageis

aone-stepbackvxardtemporalerrorfilter[I—P‘(z)]z_N of orderN z( Ln ](Thedelay

m-—n

term 2 ensures causality) The backward prediction error is given by b, =

-N . N 9
R VN (LS wherethe coeficientsarechoserto minimize E[ | .| 21. The

subsequenstagesijn ordetr area memorylesspatialprediction-erroffilter I — f’, adiag-
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onal gain A, a unitary rotation matrix Q, anda truncationmatrix J = [I 0]. Theseare
choserto spatiallywhitenandoptimally rotateb,, in amannerexactly lik e thatfor thefor-

ward LP detector

We now work towardaformal definitionof thegeneralized.P detectorWe begin by

solving for the optimal L +1)-step forvard predictor coditients in noise.

Theorem 5-10. LetthechanneH(z) of (1-1) with m > n ando > 0 satisfy(5-2),and

let P(z) = Zf:zzﬂ lPiz—i denote a (L+1)-step temporal predictor of order

N> (JL@_} where L {0, 1, ..., M}. The optimal coeficients {P;}, minimizing

m-—n
L+N 2 .
E[H r,— Zi . 1Pirk i } , are gven by
[P,y ..PL.n1=KEH(HH + o%1)T (5-48)

=KLH H+ 211 H ™, (5-49)

whereKL = [Hy 1 ... Hy 0, « (2, + Mn)-
Proof: Appendix 5-3.

Using Theorem 5-10 we can dexian gpression for the forerd cascade.

M

Corollary 5-10.1. Theforwardcascadd’(z) = > o

Fz7 =[ I - PL(z)]H(2), with

memoryM = M+L+N, has codicients{F;} given by
Fl=[FoF; ... Fyl=[Hy ... Hy [Hp,y ... Hy 0 vy pnl W1, (5-50)

whereW = o2(H " H + o21)L.

Proof: See Appendix 5-3.
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Noticethatthe cascadef (5-50)is similar to thatof (5-32);taps0 thoughL arethe
sameasthoseof the original channel put tapsL + 1 throughM aremodifiedby W. There-
fore, Corollary 5-10.1implies that the (L +1)-step predictor and the one-steppredictor

exhibit the same behéor in response toanishingly small leading taps.

The output of the forard cascade is the foand prediction errgmgiven by

M
e, = z Fixk _; + Uy, (5'51)
1=0

wherevy, = nj, — zf:é\l 1Pink _; Thebackward predictorthusseesa channelkimilar to

that of (1-1) exceptthat the noiseis colored. The optimal coeficients for the backward
predictor giventhe obsenratione;, cannow be determinedFirst, we definethe following

block-Toeplitzmatricesormedfrom theforward cascad@ndtheforwardprediction-error

filter:
FoF, .. F. 0
0 I o -P .. P 0
.~ = L+1 L+N -
Ty =, . " . D (5-53)
o . 0 I 0 P, .-P .n

which have dimensionsof m Nx n(N+M), and mN x m(N+N+L), respectrely. The

subscript,indicating the numberof block rows, is suppresseavhen equalto N, sothat
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F=5%5 and £ = Ey, - We cannow conciselyexpressthe optimal backward predictor

coeficients as follavs:

Theorem 5-11. For the systemof (5-51), let P~1(z) = z‘l NPiz—i denotea

1 =—

one-stepbackward temporalpredictorof order N > ( Ln } The coeficients {P;}
m-—n

L 2 . .
minimizing E[ } are uniquely gien by

1
€= . . _iFiCh-i

Pl=[Pj .. P l=®pF "+ KgENFF" +?EE", (5-54)
where

Kr =[0,, xnvFo...Fpr_11 (5-55)

Kg =[0m xmN L Opy x . —Pre1 - —Pran_1l- (5-56)

Proof: See Appendix 5-7.

Thetotal tempoal prediction-eror filter is given by

N+N .
Te)= § Tz =[1-PEII-PE)] (5-57)
1=0

We refer to the cascadeBfz) and the channé&l(z), as thbadkward cascade
M+N .
Bz)= Y Be'=II- P~ ) -PLlz)HG). (5-58)

1=0

Unfortunately the coeficientsof B(z) cannotbe expressedn termsof the channelcoefi-
cientsaselegantly asthosefor F(z) in (5-32) or (5-50). Neverthelessa closed-formsolu-

tion is gven by
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B=[B; By .. Bjr+y1=[-Py .. -P; L, 1%, . (5-59)
Similarly, the codficients ofT(z) are gven by

T=[T;Ty.. Ty+51=[-Pf ...-P L1E; . (5-60)

The covarianceof the backward predictionerror b, = e, —Z_l & P,e, _, canthenbe
1 =—

expressed in terms @ andT as
®, = E[byb, 1= BB + 0°TT" . (5-61)

All thatremainsis to specifythe spatialwhitenerandthe rotationmatrix. Usingthe
Cholesly factorizationof @, = MD?M, we candefinea prediction-baseshitenerasW =
D 'M-1. We canthenderive the optimal rotatorasbefore.We defineB suchthatits i-th
columnis thatof BDi , WwhereD; is the optimaldelayfor thei-th user The optimalrotation

Q then satisfies
JQ = P'(D'MB). (5-62)

The generalized LP detector is formally defined asvidlo

Definition 5-7. LetthechanneH(z) of (1-1)with m > n ando > 0 satisfy(5-2). The

(forward-backvard)LP detectorofindex L 0 {0, 1, ..., M} andorder(N, J§/’), satis-

fying N > (Mw andN > ( Ln } is uniquely defined as

m-n m-n

Crp(2) =JQD M 1N [I-P~1 () ][I- Pl2)], (5-63)

wherePL(z) is givenby (5-49),whereP~! (z) is givenby (5-54),whereMD?M" is a

Cholesly factorization ofd, given by (5-61), and wheré satisfies (5-62).



138

Obsere that for the specialcaseof L = 0, thereis no backward predictor andthe LP
detectoreduceso theforwardLP detectorof Definition 5-6: C; p(z) = Cgrp(2). Similarly,
for the specialcaseof L = M, thereis no forward predictor andthe LP detectoreducego

thebackward LP detector: Cyp(z) = Cpyp(2). This case is westicated in Appendix 5-8.

We nawv attempt to quantify the performance of the LP detector with some computer
experimentsRecallfrom Experiments-4 thatfor 2-tapchannelsthe FLP detectoanLP
detectowith L = 0) producesan unacceptabl®ISE; wheneer the enegy fractiony,® is
closeto 1/SNR;, regardlessof the detectordelay Thenext experimentconsiderghe same

2-tap channels,ut applies an LP detector with afdifent inde L, namelyL = 1.

Experiment 5-5. We again consider1000, 2-tap Gaussiarchannelsof dimension
5 x 2, asin Experiments-4. We vary the zero-thtap enepy fraction ygl) for SNRs
fixed at SNR; = 20 dB and SNR, = 30 dB, sothat SIR; = —10dB. The predictor
orderis N = (%w = 1. Fig. 5-9, like Fig. 5-8, shavs the averageMSE; versus
SNR; for the delay-Oanddelay-1FLP detectorsput it addsan additionalcurve for
the LP detectorwith index L = 1 anddelayD = M +N = 2. Obsenre thatthe worst
caseMSE; is lessthan—-13 dB, occurringwhen ygl) = —4 dB. Regardlessof ygl) :

there alvays «ists an LP detector with good performance.

Thenext experimentmoregenerallyquantifieghe performancef the LP detectorlt
compareghe performancenf an LP detectomwith optimalindex L anddelayD to that of

an MMSE detector with the same memory

Experiment 5-6. We considerrandom3-tap (M = 2) channelsof dimension6 x 2.

The elementsof eachtap aredravn independentlfrom a complex Gaussiardistri-
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bution andthenthe columnsare scaledto control the SNR of userl. The SNR of
user2 is alwaysset10 dB above thatof userl, sothatSIR; = —10dB. We consider
10000channelsateachSNR point. For eachchannelwe implementthe optimalmin-
imum-orderLP detectoyi.e. consideringall possibleindicesL O {0, 1, M = 2} and
all possibledelaysD 00 {0, 1, ..., M+L+N}, andusingN = N =1 whenthecorre-
spondingpredictorexists. Therefore countingthe spatialpredictor the LP detector
containsat most 3 taps. As a benchmark,we also implementthe optimal 3-tap
MMSE detector Fig. 5-10 compareghe performanceof the bestLP detectorwith
thatof the bestMMSE detector Fromthe horizontalgap betweerthe curves,we see
thatthe LP detectorsuffersan SNR penaltyrelative to the MMSE detector Thesize
of this penaltyin high SNRis roughly equvalentto the amountof enegy discarded
by the temporal predictors.If the enegy were evenly distributed amongthe 3
channeltaps, we would expect the LP detectorto keep only about 33% of the
channelenegy. However, for this example,the largesttap on averagecontains36%

of the total channel ergy, so the werage penalty is /10.36= 4.44 dB.

Of coursethe performanceof the optimal LP detectorfor ary particularchanneldepends
on the distribution of channelenegy. The performancas bestif the channelmemoryis

small or if a significant fraction of the channel eyeis concentrated in a single tap.

We now briefly discusssomeof the propertiesof the LP detector We stressthat
thesepropertieshold for ary index L {0, 1, ..., M} andfor ary order (%, N) satisfying

N> (MW andN = (ﬂw

m-—n m-—n
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Property 5-1. The LP detectorapproaches delayedzero-forcingdetectorin the
limit as noise engly goes to zero.

lim Crpz)=H 2 " "N [1- A1) - AL@)), (5-64)

o-0"

whereAL(z) is given by (5-26),and A ~1(z) is given by (5-13), substitutingHZ(z) =

L OHiZ_i for H(z).

1=

Property5-1 can be aguedwithout mathematicatigor by consideringC; p(z) for very
small positive noisevarianceo?. In this case,all predictorsare approximatelyequalto
their respectre minimum-normsolutions. Specifically (5-49) is approximately(5-26),
and(5-54)is approximately(5-13)with H(z) = HX(z). It follows that ®;, = HLHL* (5-61);
@, remainsfull rank, althoughpossibly poorly conditioned.Hence,M! in (5-63) is
approximatelyequalto the minimum-normmonicfactorin ageneralizedCholesl factor-
ization(4-13)of HLHL*. (M1 is well definedwith or without noise.)For very smallo, the
termD~! in (5-63) hasexactly m — n very large values yetthe productJQD M~ = H, '
is well behaed. We remarkthat C;p(z) as definedin (5-63) doesnot exist for o = 0
becauseD™! is undefined;however, the detector definition can be extendedto the

zero-noise case by simply substitutid§for D1.
Property 5-2. The LP detector is optimally netar resistant.
Optimal neaifar resistance is inherited from the zero-forcing detector

Property 5-3. For o > 0, the outputof the LP detectoris spatially white, but not

temporally white. Br o = 0, the output is spatio-temporally white.
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Property 5-3 follavs from inspection of (5-61).
Property 5-4. TheLP detectolis informationlosslessip to thetruncationmatrix.J.

Property5-4 follows becauseall detectoroperationsgxceptthe truncationmatrix J, are
full columnrank on the unit circle, and thus invertible. Although in general,inversion
would require an infinite numberof taps, this property does suggestthat other blind

detector architectures might be designed using linear prediction as a front end.

5.6 Blind Adaptive Implementations

A block diagramof a blind adaptve LP detectoris shavn in Fig. 5-11. The predic-
tors aredeterminecdadaptvely by minimizing their respectre predictionerrors.The first
stageis an (L+1)-stepforward temporalpredictorof orderN: PL(z) = Zfi'ﬁr 1f)iz—i.
LetR, ;I=[r,_;_ 1% ... r,_z_n"] of dimensionmN x 1, denotea stacked and
delayed(by L +1) obserationvector andlet PL(%) = [P} , ; ... P, , 1, of dimensionm
x mN, denotethe matrix of predictioncoeficients.(We denotedependencentime & par-
entheticallyfor the coeficientsto avoid confusionwith coeficient indices.) The coefi-
cientscanbeadaptedo minimizethevarianceof thepredictionerrorey, = r, - PL(E)R,, as

follows:
PLk+1) = PLE) + e Ry, . (5-65)

Becausethe updateis derived from a costthatis quadraticin PZ, corvergenceto PL =

[Pr 1. Pzl as defined in (5-49), is guaranteed fofisigntly small step sizg,.
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The secondstageis a delayedone-stepbackward temporalpredictorof order N:

Pl =y

N P;z7N. Obsere that P~1(z)z™" is causal.Let E,T = [e, ;T ...
eL_i T] of dimensionmN x 1 denotea stacled anddelayed(by 1) versionof the forward
predictionerror andlet P ~1(k) = [P_y ... P_11, of dimensionm x mN, denotea matrix of
backward predictorcoeficients. The coeficientscanbe adaptedo minimize the variance

of the backward prediction erroby, = e, — P ~1(2)E, as follaws:
Pl k+1) = P~L(&) + upb,E, . (5-66)

After corvergenceof theforward predictorPZ, convergenceof P ~1 to [P_ ...P_]as

defined in (5-54), is guaranteed for afiigntly small step sizg,.

The final adaptve stagesof the detectorare designedo spatially whiten and opti-
mally rotatethe backward predictionerror b,. Let P, denotea strictly lower-triangular
spatialpredictor This spatialpredictorcanbe adaptedy usinga constrained-MS algo-
rithm designedo minimizedthe varianceof the spatialpredictionerror I;k = by, - P b,

as follows:
Pok+1) = Py (k) +11,b1by, " (5-67)

Pyk+1) = Pyk+1) O L, (5-68)

where,asin chapter4, '0' denotesa component-wis@roduct,andL is anm x m maskthat
properlyconstrainsP. If precedingstagesave converged,thenP, corvergesto I — M1
for asufficiently smallstepsizep,, whereM is avalid factorin the Cholesly factorization

of ®p = E[byb;, 1.
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The last two adaptve stages,namelythe AGC and rotator can be implemented
exactly as explainedin chapter4. Seesection4.3.1 for detailsregarding the AGC, and

section4.3.2 for a discussion of the adaptrotator

There are several variations of this basic implementationoutlined above. For
example,if L = 0, thenthe backward predictor doesnot exist. The updateof (5-66)

becomes unnecessaand we can replace (5-67) with the fallng:
Po(k+1) = Py (k) +p,e,e; (5-69)

wheree,, = e, — Pye,. Similarly, if L = M, thereis no forward predictor The updateof

(5-65) becomes unnecessaagd we can replace (5-66) with the fallng:
P l(k+1) = P~l(k) + pyb R, (5-70)

whereR, T =[r, 1T ... r,_x 71, andb, = r, — P~1(k)R,. As anothewariation,we might
choosdo combinetheimplementatiorof the spatialpredictorwith the backwardtemporal
predictor(or forward temporalpredictorif L = 0). For example,we could definea back-
ward spatio-temporapredictoras P ~1(z)z ™V = zi_]jof’ 27N where Py is strictly
lower triangular Let E,T = ;7 ... e,_x71, of dimensionm(N+1) x 1, denotea stacled
versionof the forward spatio-temporapredictionerror. (Note that I:Ik differsfrom E,, in
(5-66) by inclusionof theterme,,.) Let P~1(%) = [P_xy ... P_; P ], of dimensionm x
m(N+1), denotea matrix of predictioncoeficients. The coeficients can be adaptedto
minimizethe varianceof the spatio-temporabredictionerrorI;k =ep— P -1(z)E,, asfol-

lows:

P-1(k+1)=P-1(k) + upbrE;". (5-71)
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Py (k+1) = Pyk+1) O L. (5-72)

The updateof (5-71) thus combines(5-66) and (5-67). If the stepsizey,, is sufiiciently
small, andthe forward predictorhasproperly converged, then P ~1is guaranteedo con-

verge to
P1=[Py .. P Pl=[ML[P_y ..P_] 1 (I-MD], (5-73)

whereM is atermin a Cholesly factorizationof @ (5-61),andwhere[P_,, ... P_; ] is
definedby (5-54).1n termsof numericalcompleity, the combinedspatio-temporalipdate
is virtually the sameas separatdemporaland spatialupdateshowever, in termsof pro-
gramcompleity, the combinedapproachmay have anadwantage The advantageof sepa-
rate updatesis that the step sizes y, and p, in (5-66) and (5-67) can be chosen

independently to optimize ceargence speed and misadjustment.

5.7 Experimental Results

We now consideradditional computerexperiments.The first of thesecomparesa
fractionally spacedsingle-uselLP-basedequalizer(i.e., an LP detectorwith n = 1) with
the well-known fractionally spacedconstant-moduluglgorithm (FS-CMA) [138]. The
experimentclearly illustratestwo of the primary advantagesof basingblind algorithms
primarily on second-ordestatistics—fastcorvergenceandaninherentcompatibility with
shapecdonstellationsRecallfrom thediscussionn chapter2 thatclassicablind equaliza-
tion techniquesi.e. thosebasedon HOS, are unableto copewith shapedconstellations.
Unshapedystemdransmitall symbolsin the alphabewith equalprobability; the proba-

bility distribution is uniform. In contrastshapedsystemdavor symbolsthatarecloserto
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theorigin; thedistribution is neareito GaussianA blind equalizetbasecbn HOSis bound
to fail for a Gaussiannput distribution, becausesuchdistributionsarecompletelycharac-
terizedby their first and second-ordestatistics.For example,Leblancet al. [139] have
shavn that CMA deterioratesas the kurtosisof the channelinput approacheshat of a
Gaussiardistribution. And yet, a nearGaussiardistribution is a prerequisiteo achiezing
capacity on an AWGN channel. The following experiment demonstrateshis false

dichotomy

Experiment 5-7. LP versus CMA. This experimentcomparesa T/2-spacedCMA

equalizerto al x 2 LP detector(equalizer)for a systemusingshaped4-QAM. The

shapingis implementedby quantizinga complex Gaussiarrandomvariableto its

nearest:onstellationpoint.18 By sodoing, pointscloserto the edgeare usedmore

often,while pointsnearthe origin areusedlessoften. The degreeof shapingis con-

trolled by the varianceof the Gaussiarrandomvariable,andit is quantifiedby the
Ef|x, ")

kurtosisk = %, of the channelinput x;. For anunshaped®4-QAM constella-

tion, k = 1.381,while for a 64-QAM constellationshapedaccordingto the above

procedurek is larger. The kurtosisof a complex Gaussiamandomprocesss k = 2.
Theconstellations scaledto have unit enegy sothatthe modulusparameteusedin
the CMA updateis equalto the kurtosis.We decimatethe outputof the FS-CMA
equalizemwith a baud-ratesamplerandthenappenda first-orderPLL to recover the
comple scalare’® left unresohedby CMA. (An analogou®-dimensionaPLL, fol-

lowedby al x 2 truncationmatrixJ, is usedasanintegral partof the LP equalizey)

18. Strictly speaking, the complex plane is tiled with 64-QAM constellations, and points chosen
from the secondary constellations are mapped isomorphically back to the primary constellation.
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TheLP index is choserto beL = 0, sothereis no backwardpredictor Eachequalizer
spans4 baud.The channelis randomlygeneratedyirtually noiselesg80 dB SNR),
and also spans 4 baud.

We conductthreetrials with varyingdegreesof shaping For thefirst trial, there
is no shaping;all symbolsfrom the 64-QAM constellationare equally likely, as
depictedby the histogran’r9 in Fig. 5-12(a).Thekurtosisof this unshapedonstella-
tion is experimentallydeterminedo bek = 1.386(which is closeto the theoretical
value of 1.381).Also shavn in Fig. 5-12(a) are the outputsof both equalizersat
2500,5000,and10000baud.The upperrow correspondso the LP equalizerwhile
the lower row correspondgo the CMA equalizer We seethat both equalizersare
effective for the unshaped trial, although the LP equalizevergas slightly aster

Thesecondrial usesnmoderateshapingwith ameasuredurtosisof k = 1.595.
We seein Fig.5-12(b) that the corvergencerate of the LP equalizeris virtually
unchanged, while that of the CMA equalizemgosubstantially

Theconstellations heavily shapedor thethird trial. The kurtosisis measured
to bek = 1.857,whichis closeto k = 2, thekurtosisof a complex Gaussiarrandom
variable?® In Fig. 5-12(c)we seethatthe CMA equalizeffails completelyevenafter
10000baud.In contrastthe LP equalizeris still easilyableto recover the shaped
constellationTheexperimenthusdemonstratehe benefitsof theLP equalizerand,

in particular the benefits of minimal reliance on HOS.

19. The histograms in this experiment are for the real part of the symbols only. By symmetry,
the histogram of the imaginary part of the symbols is virtually identical.

20. In the language of Leblanc et al. [137], a distribution with kurtosis equal to that of a Gaussian
distribution is mesokurtic.
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We remarkthat, for eachtrial, the stepsizesin all updatesare optimizedfor
convergencespeedFor the LP equalizerthe stepsizesarethe sameacrossll trials:
u = 0.527%509) andp, = 0.2(1 + £/600) for the temporaland spatial predictors,
respectiely, i, = 0.0627%/790) for the AGC, and\ = 0.5(1 + £/800) for the rotator
In contrastfor the CMA equalizertheinitial stepsizesaredecreasedbr increasing
kurtosisin orderto maintainstability. We usep = 0.0927%/700) |, = 0.0g2%/1200)

—k/1200

andu = 0.05(2 ) for trials 1, 2, and 3, respedtiy.

The previous experimentdemonstratethe benefitsof statisticaldecouplingthatis,
decouplinguseof secondandhigherorderstatisticsandusingHOS minimally only atthe
laststep.The LP equalizerdecomposethe equalizatiortaskinto two stepsithefirst uses
only SOSandthusis not affectedby the Gaussianityof the transmittedsymbols,whereas
the secondusesHOS implicitly, by relying on knowledgeof the finite alphabet.Strictly
speakingthe LP equalizerdoesuseHOS, but only at the last step,andonly to resole a
memorylessunitary ambiguity SOS are enough to perform the initial and more
demandingaskof eliminatingthe channelmemory andit is this initial taskthatis obliv-

ious to the Gaussianity of the symbols.

The next experimentdemonstratethe effectivenesof the LP detectorfor anasyn-
chronouamultiuserCDMA system.The experimentis a generalizatiorof Experimen#-4

to channels with memory

Experiment 5-8. Asynchronous CDMA. We now considerthe 2-userasynchro-

nous CDMA systemiillustrated in Fig.5-13. Both userstransmit QPSK. The

spreadingcodefor thei-th useris givenby () = 27:_ lcj(i)p(t —jT/m), wherethe
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Figure 5-12. Convergence of LP versus CMA: (a) unshaped 64-QAM; (b)

moderately shaped; and (c) heavily shaped.
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sn(tum/T)
(ttm/T)

to half the chip ratem /T. In termsof the chip-ratePAM sequencethis p(¢) is the

chip-pulseshapep(t) = is anideal sincfunctionwith bandwidthequal
idealzero-ecess-bandwidtpulseshapeThechip sequenceScJ-(i), j=0,....,m-1}
areof lengthm = 16 with period equalto one baudinterval 7. They arerandomly

generated:

{efV}={+1-1 41 +1 -1 -1 -1 -1 -1 +1 +1 +1 -1 -1 -1 -1},
(/P ={+1 +1 +1 -1 +1 +1 +1 -1 +1 -1 -1 -1 -1 +1 -1 +1}.  (5-74)

Their normalizedcorrelationis p = —3/8 = —0.375.Both CDMA signalsaresubject
to severechanneldispersionmodeledby a first-orderlow-passfilter A(¢) with 3-dB
bandwidthequalto one-fourththe chip rate, W = 1/4T,. The signalsaredelayedby
1, =0.7T, andty = 6.2 T, respectrely, whereT, = T/m is the chip duration.The
recever front endconsistsof ananti-aliasingfilter, followed by a chip-ratesampley
and a S/P corverter Becausethe transmittershave zero excessbandwidth, the
front-endlow-passdfilter is identicalto the chip-pulseshapep(t). The chip-ratesam-
ples are groupedin blocks of m = 16 to generatethe baud-ratesequencer,. The
equialenttransferfunction H(z) hasdimension 16 x 2. The amplitudesA; andAy
and the noisearianceo? are selected such tH8INR; = 40 dB andSNR,, = 35 dB.
We implementthe blind adaptve LP detectowith index L = 0 andorderN = 1
using ;s = 0.527%/5%) for the forward predictor p, = 0.0527%/6%) for the spatial
predictor p, = 0.1(1 + £/1000 for the AGC, and A = 0.827#/799) for the rotator
Fig.5-14 shawvs the recovered constellationsat steady state (18000 to 20000

baud).
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) AWGN
%D e ) > Ah(t —Ty) . ",
é» e 7 2l s by
P el £yt > Aoh(t —T) 7 m/T mx 1
(@
I
AWGN
X}, melp - H(2) —P&—b"k
(b) mxn

Figure 5-13. (a) A two-user asynchronous CDMA system with a chip-rate

sampling receiver; (b) An equivalent MIMO FIR channel.

Figure 5-14. Recovered constellations for the asynchronous CDMA system of

Experiment 5-8.
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5.8 Chapter Summary

We have shavn that,undermild assumptionghereexist mary equvalentrepresen-
tationsof tall FIR channelsg.g., moving average autorg@ressve, and others.The exist-
enceof afinitely parameterizedR model,in particular impliesthattall channeldave an
FIR, andthereforestable Jeft-inversethus,in this sensethey areminimumphaseHence,
second-ordestatisticsare sufficient to identify or equalizea tall FIR channelup to an
ambiguousunitary ambiguity The minimum-phaseproperty also immediatelysuggests
linear predictionasan effective way to eliminateor to nearlyeliminatechannelmemory
Using this idea,we have presenteda family of blind multiuserdetectorghat exploit the

special properties of tall FIR channels.

The forward LP detectorof Definition 5-6 exploits the AR channelmodel of
section5.1.1. The first stageof the detectoris a one-stepforward prediction-erroffilter.
Without noise,suchafilter effectively corvertsthe channelH(z) of (1-1) into amemory-
lesschannelH,. Although with noise,this conversionis only approximate the spatial
methodsof chapterd canthenneverthelesdeappliedto recover thetransmittedsequence
x,. The blind adaptve implementationwe have proposedhasrelatively low compleity,
fastcorvergence,andan inherentinsensitvity to sourcedistributions. With a zero-delay
constraintthe FLP detectoihasperformanceanearthatof the MMSE detectorHoweverits
performances highly dependentipontheenegy in thezero-thtapH,, assuminghatit is

significant relatre to noise.

The generalized(forward-backvard) LP detectorof Definition 5-7 exploits the
ARMA andAP modelsof sectionsb.1.2and5.1.3,respectrely. The first stageof the LP

detectoris an (L+1)-step forward prediction-errorfilter, which roughly corverts the
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channebf H(z) = H + ... + HyzM of (1-1), which hasmemoryM, into H(z) = Hyy + ...
+ H;zL, which hasmemoryL. The secondstageof the detectoris a one-stefbackward
prediction-error filter, which roughly cornverts HX(z) into a memoryless channel
HLz_L _N. (Recallthat N is the orderof the backward predictor).The spatialmethodsof
chapter arethenappliedto invert H;. The generalized P detectoris in facta family of
detectorspnefor eachindex L, andthe FLP detectorcanbeviewedasthe specialcasefor
which L = 0. Usinganindex otherthanL = O canresultin betterperformancebut at the

expenseof increasedcompleity. Ideally the index L should correspondo the tap of

greatest engy.

Thereis oneremainingdeficieng in the blind implementationof the generalized
detectorIf thechannels unknavn, thenthe channelenepy distribution is alsounknawvn.
Thereforethereis no obviousway to choosehe optimalindex L. Onepossibilityto is try
severalor all possibleindices,eitherseriallyor in parallel.Of course githermethodhasan
associatedost. The serial methodwould increasethe recovery time, while the parallel
methodwould increasethe compleity of the detector A clever methodfor choosingL
remainsan openissue,althoughwe discussone promisingpossibility in the future work

section of chapter.
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APPENDIX 5-1: PROOF OF THEOREM 5-2 AND COROLLARY 5-2.1

(EX1STENCE OF THE ARMA MODEL)

To prove the existenceof an ARMA model,we needto shaw that[I — AL(z)[H(z) =

HL(z) has a solution. Wcan gpress the equation in block-matrix form as fato
[T 0y ot “Ars1 - “ALeNIHNep1 = [Hy ... HL 0« r 4+ A - (5-75)
SubtractindL,, 0,, x v+Lym]Hn.r+1 from both sides of (5-75) yields
[0, x m@+1) “AL+1 - ~AN+LIHNG 141 =10 sy Hryp - Hpr 0 s viryn]  (5-76)
[Ar,1 - Apn1%Hy = [Hr,q . Hyr 0« pvery]- (5-77)

This is a systemof mn(M+N) scalarequationswith m2N unknowns. If (5-2) is satisfied

then#,y is full rankfor all N [137]; therefore the equationsarelinearly independentand

the system has a solutionNf> ( Mn 1 (Theorem 5-2)]

m-—n

We now solwe for the AR parameteref the ARMA model.By substitutingwe see

that (5-11) satisfies (5-77):
[Ar1 - AL n1H =[Hy, . Hyr 0 s uvary)) H I H+ VH
=[Hp,q .- Hyy 0y s nvery - (5-78)

Thesolutionis uniqueif andonly if thedimensionof null( ) is trivial; i.e., if andonly if

mN —n(M+N) = 0. (Corollary 5-2.1Y]1
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APPENDIX 5-2: PROOF OF THEOREM 5-3 AND COROLLARY 5-3.1

(EX1STENCE OF THE AP MODEL)

ExpressindI - A~1(z)1z~VH(z) = Hyz~ - in block-matrix form yields
[-A_y ... “A_; T1Hy,q = [0, « arayn Hal- (5-79)
Subtracting 0,,, « n,,, L,, 1%, from both sides of (5-79) yields
[-A_y...-A1 O, Xm]}[N+1 =—0,,xnn Hy ... Hyy_1 0,, x 11, (5-80)
[Ay ... A%y =10, x xy H ... Hyp 1], (5-81)

This is a systemof mn(M+N) scalarequationswith m2N unknowns. If (5-2) is satisfied

then #,y is full rankfor all N [137]; therefore the equationsarelinearly independentand

the system has a solutionNf> ( Mn 1 (Theorem 5-3} ]

m-—n

We can solve for the AP parameterdy substituting;we seethat (5-13) satisfies

(5-81):
[A ... A 1H=10,, «n, Hy ... Hyy {1H T He VH
= [Om x Nn HO HM—]. ] (5'82)

Thesolutionis uniqueif andonly if thedimensionof null( ) is trivial; i.e., if andonly if

mN - n(M+N) = 0. (Corollary 5-3.1)]
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APPENDIX 5-3: PROOF OF THEOREMS 5-8, 5-10, COROLLARIES 5-8.1,

5-10.1 (OPTIMAL L-STEP FORWARD PREDICTOR)

Applying an (L+1)-stepforward predictorof orderN to the channel(1-1) outputr,

produces a forewd prediction errog;, which can bexpressed as folles:

_pl
ekz[ L | Onxmr | Pre1 —Prig - _PL+Ni| X
KL
_ AL i
HOHl I'IL I'IL+1 . HM 0 0 || xp
0 H,..H; , Hj H, 0 0|
: : ) Xp-L
0 H, | H, .. HA .. H,; 0 .. 0 -’.Vk—L_1 }X
: kL1
H, H, H; H,, 0 %M
OmN><n(L+1)
i 0 H, H, .. H; _ HM_
H =9, /
N }[N+L+1
_nk _
+ L
Rp 11
Ni-r-1
| Br-L-N
L

e, = z Hixk _i + (KL — PL}[)Xk_L_l + ng— PLNk_L_l. (5'83)
i=0
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Using the fact that the signal and noise are white and uncorrelatedwe can expressthe
mean-square prediction erde trEl[ eye;, ] as follows:
L &
§=y tr(HH,) + tr{ (KL — PLH YKL — PLAH) + 021 + o?PLPL7]. (5-84)
i=0
We can nglect terms that are independenP¥f so it sufices to minimize
JPL) = (1/2) trl(RE - PLAH )KL — PLAH) + o?PLPLY. (5-85)

Taking the gradient of(PL) and setting it equal 1, we hae

0J(PL) = PLH - KYH™ + o?PL = PLCHH™ + o?T) - KLH ™ = 0. (5-86)

Sincethe Hessian1?%J(PL) = (HH™ + ¢?I) > 0 is positive definite, the solutionof (5-86)

minimizes (5-85). The optimal cdefients are thus gen by (5-48), restated here:

PL = KEH“(HH™ + 0?1y L. (5-87)
The expressionof (5-49) follows from the identity #“(HH" + oIy = (H H + o?I)!
H*, which is dened in Appendix 3-1(Theorem 5-10)]

Theexpression®f (5-30)and(5-31)follow from (5-48) and(5-49),respectrely, by

simply substitutind. = 0. (Theorem 5-8) |

The coeficients of the forward cascadeF” = [Fy ... Fy;, ;. n] for generalL are

given by the follaving corvolution representation:
Fl=[L, | 0, | “PE1HN,1,1=[ Hy ... H | (KL - PLH)]. (5-88)
Substituting the optimal predictor céiefents (5-49), we obtain

Fl=[H, .. H; | KL-KLH H+?D)1H H)]. (5-89)
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Left-factoringKL(H ™ H + o?I)~! yields
Fl =[H, .. Hy | KYH H+ ?D)HH H+ o?1) - H H}
=[H, ... H; | Klo?(H H+o’D1]
=[Hy ... Hy | [Hy,q ... Hy 0, am -V, (5-90)
which werifies (5-50). (Corollary 5-10.1)

The expressionin (5-32) follows from (5-50) by substitutingL. = 0. We needto
derive (5-33) to completethe proof of Corollary 5-8.1. Using the expressionfor the for-
ward predictionerrore;, givenby (5-83)with L = 0, the forward predictionerror covari-

ance is gien by
D, = El ezep, 1 = HoHy + 0’1 + (K- PH)K - PH)" + o’PP". (5-91)
SubstitutingkW for (K — PH) ando 2KWAH" for P in (5-91) yields
®, = HyH,, + oI + KVYYK" + 020 2KWH HWK o2

=HyH," + 0%l + K¥Y(2DWK 072 + KV(H H)WK 02

=HyH, + 0%l + KW’ + H H)WK o2

=HyH," + 0%l + KYW1YK*

=HyH," + 0%l + KYK', (5-92)

which \erifies (5-33). (Corollary 5-8.1)]
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APPENDIX 5-4: DERIVATION OF LEMMA 5-4

Let e, = wa

®,, respectiely. In matrix notation, we carxpresse;, as

+N . : :
o F;x;, + v, wherex;, andv,, areindependentvith covarianced and

e, = FX;, — vy, 5-93
% ) (5-93)

whereF = [Fy Fy ... Fyp,nl, andX,” = [x,7 x5, 17 ... 25,3, 47). For annx m memory-

less detecto€, the D-delay MSE sum is gen by
J(C) = El| Cey, — x,_p| *1 = E[| CFX}, - Cvj, — x3,_p)|| 1. (5-94)
If DO{0,1, ..., M+N}, then we hee
J(C) = EL|(CF - Ip)X;, - Cu,l 2, (5-95)

wherel, = [0,,x nD I, 0y x nassN-py] SUChthatxy, p = Ip X;. Obsenre thatX; andv, are

independent, so
J(C) = tr{(CF - Ip)CF - Ip)" + C®,C". (5-96)
The gradient off(C) is then
0J(P) = 2(CF - Ip)F" + 2C®, = 0. (5-97)
With I F* = Fp*, we hae

CMMSE = :FD*(:F:F)X< + (Dv)_l = FD*CDe_l. ] (5'98)



162

APPENDIX 5-5:  PROOF OF LEMMA 5-5 (THE RELATIONSHIP BETWEEN

THE FLP AND MM SE DETECTORS AT ZERO-DELAY)

LetC(z) = N C,z  beann x m detectowith N+1 tapsfor the channelof (1-1)
i=0 ¢

with obsenationr;,. We canexpressheoutputz;, = va_ OCirk—i of thisdetectorin matrix

notation as follws:

& K
21 =[Co|Cy .. Cy]| [Ho| Hy .. Hy 0 . 0] . n
N 0|H, H, .. H), : k-1 LS
C
0 0 H, H, HOM_ f’j‘i\i fi—i
Hii1 Xy Ni
2 = C(Hy, X, + Np). (5-99)

The zero-delay detector err@y = z;, — x;, can then bexpressed as
e, = (CHy,; — 19)X;, + CNy, (5-100)
wherely =[1, 0, .z SUch thaty, = I X;. The total MSErElee;, " is then
J(C) = tr(CHy, ; — To (CHy,; — Ip)* + 0%rCC*, (5-101)
Taking the gradient of(C) and setting it equal @ produces

0J(C) =(CHyy, ; — 1) Hyy, ;* + 6%C = 0 (5-102)

C(Hy, 1 Hs,* +02T) = To Hyy, ;" (5-103)



We can partition (5-103) as
* ES 2 %k
HH, +KK +01, KH

HK HH +30°1,

= [HO* 0n><mN]’

which yields the follaving system of equations:
Co(HoH," + KK* + 02T) + C HK* = H,'
CoKH' + C(HH" +02T) = 0.
The solution to (5-106) is
C=—CoKH (HH" +c21)L,
Therefore, the optimal MMSE taps can be written as

C=[I Cl=CyI | -KH (HH" +a2Iy ]

ColI | -P1.
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(5-104)

(5-105)

(5-106)

(5-107)

(5-108)

whereP = [P, ... Pyl is given by (5-30). Hence,the one-stepforward prediction-error

filter is a right-actor of the §y+1)-tap MMSE detector:

CMMSE(Z) = Co[I - P(Z)]

(5-109)

The coeficient C, canbe derived from (5-105), but this is unnecessaryC, mustbe the

n x m matrix thatminimizesthetotal MSE givene,, the forward predictionerror. If there

were anothermatrix D, producingsmallertotal MSE, thenD(z) = Dy[I — P(z)] would

have smaller total MSE tha€,,55(2), @ contradictionl]
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APPENDIX 5-6: PROOF OF THEOREM 5-9

(PRECURSORS BELOW THE NOISE FLOOR ARE | GNORED.)

We can &press the matrix of channel taps as a matrix of colueatovs:
[HoH; ... Hy1=[ hoP . .ho™ 1Ry @D R ™ | 1 By D, Ry, 1. (5-110)

We can thenxpressW¥ as follavs:

14, (1) 2 (I)Df{
h h, +0 h
W= 02 0 0 0 , (5-111)

~ % o~

K" o 9+0"

whereK =[ hy® ... Bg™ 1B,V .. he™1... | hyyV... hyy™ 10, 4 ar, 1, andwhere

is anmN-1x n(M+N)-1 block-Toeplitz matrix gven by

() (n) 5 (1) (n) (n) |

SR YO S 3 N 32 SN |
~ 2) (n) 5 (1) (n) (n)

o .. o Y _ aMaM A% Al

Taking the limit of#¥ asH,, goes to zero yields

-1
2 1 0

H -0 0 H H+0' 0 o’ (H H+0'T)

10

ow

(5-113)

Therefore, a®,” becomes anishingly small, the coffients ofF(z) become
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h(llém , RV ... ™[RV .. By 0, Nyl W] =
0 Ed

[0,,x1 ho® ... Bg™ By D[Ry @ ... k™ . hy™ 0, n,]- Pl (5-114)

Let )(z) denotethei-th columnof H(z) sothatH(z) = [AP(z) ... K™(2)]. An equialent

expression for (5-114) is thenvgin by

lim  [1-P@)IHE) = [1-P@) ][ R V) h2) ... h(2)], (5-115)
Y -0

where & D(z) = Ziw: 1hk(l)z—k. The predictorbehaes as if the channelwere H (z) =
[k De) RP) ... R™(2)], rather thaH(z).

Thesameargumentcanberepeatedor the new effective channeH(z); therefore py

induction, (5-115) generalizes to

lim [I-P)H() = [I-P@)]1[ Z;”_ Lo+ lhk(l)z‘kl r?) ... R™()],  (5-116)
r-o =5

wherel | = [h(()l) h(ll) hgl)] Finally, we aguethat (5-116) musthold for ary useri,
notjustuserl. We canchangehelabelingof usersby right-multiplying H(z) by ary per-
mutation matrix M of our choosing, and becauseH(z)[1 and H(z) have identical

second-order output statistics, the batwaof the predictor is the same. It folls that

lim [I-P@E)]HE) =
r-o

M M
(I-PILY, Py ™2, (5-117)

wherel’ =[I"; [y ... [, ]1is thetotal precursorTakingthelimit of (5-117)asthenoisevari-

ance goes to zeretifies (5-45) L]
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APPENDIX 5-7: PROOF OF THEOREM 5-11

(OPTIMAL BACKWARD PREDICTOR FOLLOWING FORWARD PREDICTOR)

The backvard prediction errob, can be gpressed in matrix notation as folle:

_p-D
b= | Py Py Py | L] x
F=Fx
A X,
. . xp,
F, ... F; F. 0 0
0 .. F F- F- | 0 ||*-M-N+2
0 M-1 " X 7 N+1
0 .0 F Foy | Pl loms |
TN\\ Ky
+
EN+1 E=Ex N,
/—%
1 P P ] ™ |
L0 P, . .. P . n0 0
N [ _N-N+2
0o .. | 0o P ... —P 0
- Lrl LN M L-N-N+1
0. o0 I_ .. .. -P .y Pyl ———
- -L Pp.-L-N-N |
Kg

b,=-P 17 X, +KgX, +Fpx, o &

~-P1EN, +KgN, +P, v n, ; ~ ~.  (5-118)
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Thesignalandnoisearewhite anduncorrelatedsowe canexpresshe mean-squarback-

ward prediction errot = trE[ b,b), ] as follavs:
E=trlF; Fo' +(Kp—P D) Kp—P1F)]
+ 0%tr[PL NPL.N + 02Ky - P 1EKE - P 1E)" 1. (5-119)
We can nglect terms that are independen®Potf, so it sufices to minimize
JPY = trlKp — P 1)Ky - P LF)'+ 02K - P 1B K - P1E)].  (5-120)
Taking the gradient of(P~1) and setting it equal t, we hae
(1/2) 0J(P™Y = K- P 1F)F " + %Ky - P 1E)E”
=P UFF " + ®>EE) - KpF " + ’KgE") = 0. (5-121)

Since FF¥ * + o2EE" > 0, the solutionof (5-121)minimizes(5-120). The optimal coefi-

cients are thus gen by

Pl=KpF" + ?KgE WFF "+ 2EEH L. O (5-122)
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APPENDIX 5-8: A BACKWARD LP DETECTOR

Applying a one-stepbackward predictorof orderN to the channel(1-1) outputr,

produces a baclkavd prediction errob,, which can bexgpressed as folles:

bp=| Py .. Py|1]x

\’—Y—/
P~1
H
H,. H, (H, 0 0[]
0o - .. . : X,
XL_M-—
H, ..H, , H, |0 kaN+1
0 0 H, H, _,|[H, | L =MN
K~1
np
N,
+ Rp_N+1
n,_n
b, = (K1 - P 1H)X, + Hymp, gy v + 0y — P7ING. (5-123)

Using the fact that the signal and noise are white and uncorrelatedwe can expressthe

mean-square prediction eroe trE[ bpb,, 1 as follows:
E=trlK - P 1H)K - P1H)" + HyHy, + 021 + 2P~ 1) 1. (5-124)
We can nglect terms that are independeniPot, so it sufices to minimize
JP) = (1/2) trl( K = P LH YKL - P 1H) '+ o?P~ 1P 1. (5-125)

Taking the gradient of(P~1) and setting it equal #, we hae
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0JPY = P 1H-KHH +0?P 1 =P Y HH" + *I) - K 1H" = 0. (5-126)

SincetheHessiar2J(P~1) = (HH ™ + 02I) > O is positive definite,the solutionof (5-126)

minimizes (5-125). The optimal cdigients are thus gen by
Pl=[Py..P ;] =K'H (HH" + o) (5-127)
=KW H H+ ?D1H", (5-128)

where K1 = [0 H, ...H, ;1, and where we have used the identity

m xnN

H(HH™ + oD = (H H+ ®1y LH”, from Appendix 3-1, in (5-128).

Thecoeficientsof thebackwardcascadaregivenby thefollowing convolutionrep-

resentation:
B=[B,..By, =[P 1II, 1Hy,;=[ 1-P1H) | Hyl (5-129)
Substituting the optimal predictor céiefents of (5-128), we obtain
B=[K1-KYH H+ D)1 H H) 1Hy,l. (5-130)
Left-factoringK~(H " H + o2I)! yields
B = [KYH H+ 21y HH H+ o) - H H} | Hyl
= [K10%(H H+ o?D! | Hyl

=10 H ... Hy ;W | Hy,l (5-131)

m xnN
The backvard prediction-error a@rianced, = E[ b,b,,'1is then gven by the follwving:
®, = HyHy, + 0L + (K1 - P LYK - P~ 1H)" + 2P (P~ 1)". (5-132)

SubstitutingK~!W for (K~1 - P~1#) ando 2K~ W™ for P~1 in (5-132) yields
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®, = HyH,y, + 021 + K 'WYED* + 020 2K 1WH HWYEK 1) 02
=HyH,, + 0%l + KYWEDWE ) 02 + K IWH H)WEK1) 02
=HyH,, + 0%l + K W0o?I + H H)WEK 1) 02
= HyH,, + 01 + KWW TYE-1*
®, = HyHy, + 0?1 + K- TWEK)", (5-133)
Usingthe Cholesly factorizationof @, = MD?M, we candefinea prediction-based
whiteneraccordingto W = D™1M ™%, We canthenderive the optimal rotatorasbefore.We

define B suchthatits i-th columnis the i-th column of By, foralli0{1 2 ..,n}

whereD; is the optimal delay for thieth user The optimal rotatiorQ then satisfies
JQ = 2D M1B). (5-134)
The backvard LP detector is formally defined as fals
Definition 5-8. For them x n channelH(z) of (1-1) with m > n ando > 0, then xm
backward LP detector of orderN is uniquely defined as
Cprp(2) = JQD M-I - P-1(2)], (5-135)

whereP~1(z) is givenby (5-128),whereMD?M is the Choleslk factorizationof d,

given by (5-133), and Whelé satisfies (5-134)
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CHAPTER 6

STACKED DETECTORS

ALL CHANNELS have anotherimportant property which we have yet to
T exploit. In addition to the MA, AR, ARMA, and AP modelsof the previous
chapter tall FIR channelshave a memoryless representationBy stackinga suficient
numberof recever obserationsr;, = Hyx, + Hyix,_1 + ... + Hyxp 3+ ny, (1-1), we can
effectively corvert atall FIR channelH(z) into a tall memorylesslock-Toeplitz channel
H. Thedetectorof chapters3 and4, which aredefinedin termsof amemorylesshannel
r;, = Hx, + n;, (3-1), canthusbe generalizedo channelsvith memory We call thesegen-
eralizationsstacked detectors. They canbe, but arenot always,higherin compleity than
theprediction-basedetectorof chapters; however, they offer betterperformanceMore-
over, the adaptve implementationsve proposeare morefully blind; they do not needto
know or estimatethe channelenengy distribution, nor even needto know, necessarilythe

number of users or the particular constellations being used.

This chapteris organizedasfollows. In section6.1,we show thatif H(z) (1-1)is tall,
we canusestackingto effectively transformit into a memorylesslock-Toeplitzchannel
H thatis alsotall. We then introducedetectorsbasedon this block-Toeplitz model. In
section6.2, we definethe stacked MMSE detector, which hasperformancesquivalentto a

cornventionalN-tap MMSE detectomwith the delayoptimizedfor eachuser In section6.3,
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we definethe stacked ZF detector. The minimum-normrealizationhasperformancequv-
alentto the N-tap MMSE zero-forcingdetectoy that is, the unique detector amongthe
classof zero-forcingdetectorsthat minimizesthe MSE for all users.In section6.4, we
introducethe stacked WR detector, which has performancenearto that of the stacled
MMSE detectoy but which haslower implementationcompleity for somechannelsin
section6.5, we definethe signalandnoisesubspace@andthe subspacseparatqgrn terms
of #. In section6.6, we extendthe channeldiagonalizatiorschemeof chapter3 to chan-
nelswith memory We show that for almostall tall FIR channelsthereexists a lossless
precoderof finite compleity thatcanbe usedto completelyeliminateboth1SI andMUI
in the recever, without noise enhancementln section6.7, we presentblind adaptve
implementationsof the detectors.In section6.8, we provide simulation results for a

antenna-array application with multipath, and an asynchronous-CDMA application.

6.1 A Memoryless Channel Model

We first transformthe channelof (1-1) into an equialentbut higherdimensional

channelwithout memory StackingN consecuiie recever obsenration vectorsr;, from

(1-1) yields
rk_]- - 0 HO H]. e HM E xk—]. + nk—l
rp_N+1 0 .. 0 H, H; .. Hy | [¥-N-M+1 np_nN41
%(—/ \'—Y—/

R, = H x X, + N, , (6-1)
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whereR,;, X;, andN,, arestacledversionsof the channelbutput,input,andnoise,respec-
tively, andwhere 4 is anmN x n(M+N) block-Toeplitz channelmatrix. The model of
(6-1) canbe interpretedasa memorylessystemwith n(M+N) virtual usersandmN vir-

tualsensorslf theoriginal channelH(z) is strictly tall, thentherealwaysexistsa sufficient

Mn

stackingdepth N > suchthat % is alsotall. Equivalent modelsare illustratedin

Fig. 6-1, in which part (a) shavs the FIR channelH(z) of (1-1) followed by a stacking
operationin the recever, andpart (b) shavs the memorylesslock-Toeplitzchannel# of

(6-1) preceded by a stacking operation in the transmitter

AWGN
ry stack
xp, —»  H(2) —>(%—> N ey R,
mXn
(a)
AWGN
stack X,
X, —» —— R
k M+N H k
(b) mN x n(M+N)

Figure 6-1. Equivalent models: (a) an FIR channel followed by receiver
stacking, and (b) a memoryless block-Toeplitz channel preceded by transmitter

stacking.
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Theadwantageof (6-1) is thatit closelyresembleshememorylessnodelr, = Hx, +
n;, of (3-1),usedthroughoutthapters3 and4. Hence theconceptsaanddetectiorstratgies
developedin thosechaptersfor H of (3-1) canbe appliedto # of (6-1), andtherefore
implicitly to H(z) of (1-1). Thedetectorslescribedn chapters3 and4 assumenly thatH
is full columnrank,andthatthe signalandnoiseareindependenandspatiallywhite. So,
likewise,if #is full columnrank,andif the stacledinput andnoisevectorsareindepen-
dentandspatiallywhite, thenthe detectionstratgies of thosechapterscanbe appliedto
. We begin with the assumptiorthat (5-2) holds,implying that #is full columnrank;
however, aswe shaw later, this assumptions not essentialWe alsoassumehatthe signal
and noise are independent,zero mean and satisfy the following: Elx;x;*] = 1,
Elxpx;,_; 1=0for 111 < M+N, Elnyn;, 1= 0%I, whereo > 0, andE[nn;, ;1= 0 for 171
< N. This signalandnoisecanbe white, but this is not necessaryWe make no assump-

tions rgarding the autocorrelation of the signal or noise outside We® gange of lags

6.2 The Stacked MMSE Detector

Let Z, = CR;, be anestimateof the staclked channelinputX,, whereC hasdimen-
sionn(N+M) x mN. We definethe stackkd MMSE detectorasthe detectorthatminimizes

the total mean-square error betw@grandX,,.

Definition 6-1. Thestacked MMSE detector Cysyssg for (6-1) is then(M+N) x mN

matrix C that minimizesE[| CR;, — X, |21,

In a manneranalogougo Lemmag3-4, the stacked MMSE detectorcan be expressedn

terms ofH as follawvs.
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Lemma 6-1. For the channel # of (6-1) with ¢ > 0, the unique stacked MMSE

detector can be expressed in three equivalent ways.

CMMSE = ,’7‘[*(,‘7‘[,7‘[* + 0'21)_1

=(H " H+ o’y 1H”

= VS (SS" + 22U’

where H= U SV " isachannel SVD.

Unlike the channel #{, the detector Cy 5 1S NOt block-Toeplitz.

(6-2)
(6-3)

(6-4)

We can relate the stacked MM SE detector to a set of conventiona MM SE detectors

asfollows. Partition C g into M+N block rows of dimension n x mN:

CMMSE =

Co
C;

Crin-1

(6-5)

Let Cp, denote the D-th block row of 55, and let z,?) denote the corresponding D-th

block row of the output Z,, so that

Observe that the total mean-square error E[|| Z;, - X}, 121 can be expressed as a sum:

2,©
2 ®

zk(M+N— 1

(6-6)
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M+N-1
EllZ,-X %= S Ellz? -2, _pl%
D=0
M+N-1
= S ElCpR: —a,_p . (6-7)
D=0

Thereforethe D-th block row of the C thatminimizesE[| Z;, - X,,|| %1 is then x mN matrix
. N-1

Cp thatminimizesE[| CpRy, - x5 _ pl?1. S02,P) = CpR,, = Si-0 Cp,jre_; wherethe

coeficientsCp ; have dimensiom: x m. It follows thatz;,® is the outputof anN-tapfilter

with transfer functiorCp(z) = z?{:‘ol Cp z7.

Theorem 6-1. The stacked MMSE detector Cj g Of Definition 6-1 simulta-
neouslyimplementsVf + N differentcorventionalN-tap MMSE multiuserdetectors,

Cy(2) throughCy,, n_1(2), correspondingo decisiondelaysD = O throughM + N-1.

Therefore if we stackN obsenation vectorsandimplementthe stacled MMSE detector
C ymsk Of Lemma6-1, thenthe D-th block row of its outputz, ™ is the outputof anN-tap

MMSE detectoiCp(z), minimizing theD-delay MSE of all userB[| z,'?) -, _pl2l.

Of coursea decisiondevice mustfollow C 5. Our approachs to usea bankof
n(N+M) independentlecisiondevices,onefor eachoutput,andto choosefor eachuser
the associatedoutput with smallestmean slicer error, as illustrated in Fig. 6-2. This
approachis equvalentto implementinga corventionaln x m, N-tap MMSE multiuser

detector with the delay optimized for each user
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6.3 The Stacked Zero-Forcing Detector

As we discussedn chapter3, the MMSE linear multiuserdetectordoesnot com-
pletely eliminateinterferenceput ratherfinds the bestcompromisebetweeninterference
and noise. Complete elimination of interferenceis accomplishedwith a zero-forcing

detector

Definition 6-2. For thechannel# of (6-1), a stacked zero-forcing detector C is

ann(M+N) x mN matrix satisfyingC H = 1.

ExtendingLemma3-5 to (6-1), we canexpressthe stacked ZF detectorin termsof the

block-Toeplitz channel matri#{ and its SVD as folls.

Lemma 6-2. For the channel#f of (6-1), a stacked ZF detectorcanbe expressedn

two equvalent ways:
Crr=H"+ N (6-8)

=VSTU + A, (6-9)

Stack

X}, Select
Ty — ey CAIMSE = ’7 =P Best

n(M+N) x mN

Figure 6-2. A block diagram of the stacked MMSE detector.
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whereH = USYV", andwhere A" D null(H"). The stacked ZF detectoris uniqueif

and only ifmN = n(M+N).

We canrelatethe stacled ZF detectorto the corventionalZF detectorasfollows.
Onceagnin partitionthedetectorC 75 into M+ N block rows of dimensiom x mN, andlet
Cp denotethe D-th block row of the detector The D-th block row of the detectoroutput
canthen be expressedas z,'?) = CpR,, = Ziv =_01 Cp, j7i_j» Wherethe coeficients Cp ;
again have dimensiormn x m. By definition C,r completelyeliminatesboth IS andMUI,
S0Z;, = CzpRy, = X}, +CzpN,,. It followsthatz,?) = x;, 1, + CpN,, is the outputof a con-
ventionalN-tap D-delay zero-forcing detecto€p(z) = ziv -1c

o)
=0 D:JZ :

Theorem 6-2. The stacled-ZFdetectorsimultaneouslymplementsM +N different
cornventional delayedzero-forcingmultiuser detectors,Cy(z) throughCy,, n_1(2),

corresponding to decision delaysidt 0 throughD = M + N-1.

The MSE sum corresponding @(z) is proportional to the norm &p:

N-1
E["zk(D)_xk—D”2] =K CD,jrk—j_xk—D
=0

2

J=

N-1

=E| > Cp jmy_;
i=0

2

= 02| Cpllz. (6-10)

Clearly, | Cp II%is a function of D, sotheselower-dimensionalZF detectorsdo not have

the same MSE performance.
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Thereis indeedan optimal N-tap ZF detectorthat minimizesthe MSE of all users

subject to a zero-interference constraint.

Definition 6-3. For the channelof (1-1), let C(z) = zjv:_(}cjz—f denoteann x m,
N-tap detectorwith outputz,. Let& = E[|z, - x, || 2] denotethe total MSE, where
Fp =y ) a1 for delaysD; 0{0... M+N-1},i O{L, ..., n.
The minimum-MSE zero-forcing detector C,;zx(2) is the filter that minimizesg

over all possible delays subject to the constraintghatx, + zi.v:‘ol Ciny_;.

It follows from Theorem6-2 thatif we implementthe stacled ZF detectorof Lemma6-2,
followedby abankof independenslicers,andonceagain, choosefor eachuser the asso-
ciatedoutputwith smallestmeanslicererror, we, in effect, implementCy,,x(z) of Defini-
tion 6-3. Later, in Experimentst-1 and 6-2, we comparethe MSE performanceof the

staclked MMSE andZF detectorsHowever, we first defineoneadditionalstacleddetector

6.4 The Stacked Whiten-Rotate Detector

We can also generalizethe whiten-rotatedetectorof chapter4 to channelswith
memory In the contet of (6-1), ann(N+M) x mN matrix C is saidto beawhitenerif the
covarianceof Z, = CR;, is the identity matrix, C®grC" = I, where®g = E(R;R;,"). We

define the staad whiten-rotate detector as the whitener with minimal MSE.

Definition 6-4. The canonical stacked whiten-rotate detector Cwpg for (6-1) is

then(N+M) x mN whitener that minimizes the MSE s CR;, - X;,| 21
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Using arguments similar to those in section 4.1, it follows that for any mN x mN whitener
W, satisfying ‘W(DR‘W* = |, the stacked whiten-rotate detector can be expressed as
JQwW, where

v 0
0 Vy

a’, (6-11)

where 7 and 9 arefactorsinaSVD of W= 1S9 ", and where 7=[I 0]isatrunca

tion matrix of dimension n(N+M) x mN.

One such whitener 7/, based on linear prediction, is given by
W= D19, (6-12)

where ®g = MD2M " is a Cholesky factorization. (See Lemma 4-3 and Theorem 4-2.)
Although we are free to use any whitener W/, the whitener of (6-12) reveals an interesting
relationship between the stacked WR detector and the prediction-based detectors of
chapter 5. Partition Q. into M+N block rows of dimension n x mN, and partition ¥ of

(6-12) into N block rows of dimension m x mN asfollows:

Qo W,
Q W,
JQ = : , W= : : (6-13)
I QuriN-1 | I Wr_1 |

Let V,= W R, and Z, = 7QV, denote the outputs of the whitener and the detector,
respectively. Let v, denote the i-th block row of V,,, and let z,/” denote the D-th block

row of Z, so that
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vk(O) zk(O)
vk(l) zk(l)
Vk = ) Zk = . (6'14)
vk(N_ 1) zk(M+N— 1)
Obsene that
. N-1 i
vk(l) = Wle = Wi,jrk_j = Wi’jrk_j, (6-15)
j=0 J=0

wherethe coeficients W; ; have dimensionm x m. BecauseW is lower triangularand
monic,sois W; ;. Moreover, W; ; = 0 for j > i; so, thelastsummationin (6-15) doesnot
includetheseterms . Thusw,? is thescaledoredictionerrorfrom a spatio-temporapredic-
tion-errorfilter. Specifically W;(z) is the cascad®f a one-stebackwardtemporalpredic-
tion-errorfilter of orderi, alower-triangularspatialprediction-erroffilter, anda diagonal
gain:
i i
Wi = 5 W, z7=A,0- Y P_¥z7)
j=0 j=0

i
= A(I- PO)I- ¥ P 27, (6-16)
j=1

where A; = diag(W; ; ), and where Py @ is strictly lower triangular Let e,?) = r), —

zi, 0 f’_j(i)rk _;j denotethe predictionerror of the i-th spatio-temporapredictionerror
J =

filter T — z",

. 13_J~(i) 27, and define a staeH error as
J =
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E,=| . (6-17)

Obsene that M ~! minimizesE[| E,||?1, andthusE[| e,® |21 for all i 0 {0 ... N—1}, soit
follows thatthe coeficients P_® in (6-16)alsominimize& = E[| e, 21. The D-th block
row of thedetectooutputz,?’, anestimateof x;,_p,, is thereforea linearcombinationof N

optimal prediction errors:

N-1
2P =QpVi= 3 QpiAie,?, (6-18)
i=0

wherethe coeficients Qp ; have dimensionn x m. We thus arrive at the following the-

orem, which is also represented graphically in Bi§.

Theorem 6-3. ThestaclkedWR detectorsimultaneouslygeneratesstimateg;, ) of
x,_p for all delaysD U {0 ... M+N-1} by usinglinearcombinationf theerrors
from N optimal spatio-temporapredictionerror filters of the form I — ZZJ o l3_j(i)
27, fori = 0 throughi = N-1.

The architectureof Fig. 6-3 is not proposedasan efficient implementationNevertheless,
Theorem6-3 has pedagogicalimportance.lt saysthat spatio-temporalinear predic-
tion-baseddetectioncanbe usedto approachMMSE detectionfor any delay not just for
delayzeroasshavn by Lemmab-5 of the previous chapter The architectureof Fig. 6-3

illustrates this important connection with the detectors of chapter
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Y

= (0)

L P,
L) -
> > P 27
Jj=0
N-1
~ (N-1) —
L z P_S' )ZJ
Jj=0

Qo0
Y
Q; _,9) >z, 0
Qon-1
Qpo
y (D)
QD,i > : —» 2}
A
QpnN-1
QurN-10
v (M+N-1)
Qarin-1,; _’?_’zk -
QuMN-1N -1

Figure 6-3. An interpretation of the stacked WR detector showing its

relationship to the spatio-temporal prediction-based detectors.
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Most of the theoreticaldevelopmentof chapter4 pertainingto the whiten-rotate
detectorCypg of Definition 4-1, is equally valid for the stacled whiten-rotatedetector
Cwr of Definition 6-4. We needonly to make appropriatesubstitutionsX, for x;,, # for
H, etc. Lemmad4-1, for example,which expresseshe WR detectorin termsof a channel
SVD holdsalsofor the stacked WR detector The propertiesof the WR detectorhold for
thestacledWR detectoraswell. Resultan chapterd thatapplyto a particularuseri, such
asLemma4-2 or Property4-4, apply to a particularvirtual userin the contet of (6-1),

where usef at delayD corresponds to virtual use# nD.

It is beneficialto reformulateLemma4-2, in particular to expressthe MSE of the
stacled detectorgn termsof real usersanddelays.Let Z, denotethe outputof a stacled
detectoyeitherMMSE, ZF, or WR, suchthatZ,¢*"? is anestimateof x;_ "), anddefine

MSE,; p = E[1Z,%*"D) - x;,_pV'12] as theD-delay MSE for usex.

Lemma 6-3. The D-delayMSE for useri, denotedMSE; p, of the stacled MMSE,

ZF, and WR detectors, respeftiy, can be epressed as

MSEp MMSE = 624, 0" (5% + 02D Ly, (6-19)
MSEp 7 = 020;,,p" S WWsnp (6-20)
MSEp,"E = 20;,,p 11 - (52 + 62D V25 19;,,p, (6-21)

whereu; is thej-th column of*, from H= USV*, and wheres = 75.

In the following experiments,we use Lemma6-3 to comparethe performanceof the
stacled detectoran termsof MSE. We pay particularattentionto the performancealiffer-

ence between the statkWR and MMSE detectors.
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Experiment 6-1. Considera systemwith n = 2 usersand m = 10 sensorshaving
channel memory M =5. Using a stacking depth of N =2, we compare the
mean-squarerrorsof thestaclkedMMSE, ZF, andWR detectordor bothusersatall
delays O through M+N-1 = 8. We consideronly a single, randomly generated
channel,where the elementsof the eachtap are dravn independentlyfrom a
zero-meanunit-variance Gaussiardistribution, andarethenscaledsuchthat SNR,
= 20 dB andSNRy, = 10dB. Fig. 6-4 shavs thatthe WR detectorsufferslessthana
1-dB penaltyrelative to the MMSE detectoy regardlessof delay or user It also
shawsthat,for all detectortypes,the optimaldelayfor eachusercanbedramatically

different.

Experiment 6-2. Considernow a systemwith n =3 usersandm = 30 sensors
having channelmemoryM = 3. Using a stackingdepthof N = 6, we comparethe
mean-squarerrorsof the stacled detectorsfor eachuserat all delays 0 through
M+N-1 = 8. We consideran ensembleof 10 randomchannelsgeneratedsin the
previous experimentexceptthatthe SNRsfor usersl through3 weresetat 20dB,
10dB, and 0 dB, respectrely. In Fig. 6-5, we seethaton averagethe optimaldelay
is D = 4, independentf detectortype or user We find that, at this delay the average
MSE penaltiesincurred by using the stacled WR detectorinsteadof the stacled
MMSE detectorare 0.0343dB, 0.1332dB, and 0.7513dB for usersl, 2, and 3,

respectrely — less than 1 dB in all cases.

ThestackingdepthNV shouldbe choserto balanceperformancendcompleity. At a

Mn
m-n

minimum,we musthave N > in orderfor # to betall. However, largervaluesof N

resultin betterperformancegspeciallyat low SNR.In Experiment6-1 we usethe min-



MSE (dB)

4 |
2 -
0
2 =
B
Single random channel
-6 L m = 10 sensors
n =2 users
-8 L memory M =5
SNR; =20 dB
-10 . SNRZZ 10dB o~ ..
~._stacking depth N =2
_12 \\ __________ - - -
A\
-14
0 1 2 3 4 5

Figure 6-4. Comparison of the stacked detectors for a single random channel.
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Figure 6-5. Comparison of the stacked detectors: MSE versus delay.
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imum allowablestackingdepthof N = 2, whereasn Experiment6-2, we usea depthof N
= 6, substantiallylarger thanthe necessaryninimum of 1. Using larger valuesof N pro-
ducesbetter performance put eventually with diminishing returns. It is evident from
Fig. 6-4 that a stackingdepth of N =6 is sufficient for Experiment6-2, becausethe
optimal MSE for user: is roughly SNRi‘l. In Fig. 6-5, however, the optimal MSE for
useri is significantly greaterthan SNRi‘l, indicatingthat a larger stackingdepthwould
have beenbeneficialin this case .Thefollowing experimentillustratesthe performanceof

the stackd detectors as a function of the stacking dapth

Experiment 6-3. We againuserandomd-tap(M = 3) channelf dimension30 x 3,
generate@sin Experimen6-2, exceptthatwe vary thestackingdepthfrom N = 1 to
N = 10. We conductlOtrials for eachvalueof N andrecordthe MSE at the optimal
delayfor eachuserandfor eachdetectortype.Obsenre thatFig. 6-6 verifiesthatuse

of larger \alues ofN improves performance,ub with diminishing returns fav > 5.

In thenext experimentwe analyzemorecloselythe MSE penaltyof thestacledWR
detectorelative to the stacked MMSE detectothows the ensembleverageof thesepenal-
ties. Sincethe optimal delayis not always4, the resultingpenaltyis slightly smallerthan

those at delay 4, reported in Experiment 6-2.

Experiment 6-4. We again userandomé-tap(M = 3) channelf dimension30 x 3,
generatedasin Experiment6-2, exceptthat we vary the SNRsof the users;SNR,
rangesfrom O to 20 dB, while SNR, and SNR3 are 10 dB and 20 dB greaterthan
SNR;. We conductl0 trials at eachSNR point andmeasurehe MSE penaltyof the

stacled WR detectorrelative to the staclked MMSE for eachuserat the optimal
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MSE at Optimal Delay (dB)

Stacking Depth N

Figure 6-6. Performance of the stacked detectors as a function of the stacking
depth N.
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delay Fig. 6-7 shavs the ensembleaverageof thesepenalties.Since the optimal
delayis not always4, the resultingpenaltyis slightly smallerthanthoseat delay4,

reported in Experiment 6-2.

We concludethatthe stacked WR detectoyfollowed by abankof independenslicers,per-
forms nearlyaswell asthe stacked MMSE detectoy especiallyfor very tall channelsor
high SNRs,andthusis nearlyequvalentto a corventionalMMSE detectowith thedelay

optimized for each user

6.5 Signal and Noise Subspaces

We now definethesignalandnoisesubspacesndthesubspacseparatom thecon-

text of (6-1). We need only substitut& for H in Definition 3-1.

Definition 6-5. For the block-Toeplitz channel# of (6-1), the signal subspaceis
the rangeor columnspanof #: S = range(#); the noise subspaceis the left null

space ofH: N = SU = null(H").

Thedimensionalityof the signalsubspacés equalto therankof #, whichis n(M+N); the
dimensionalityof the noisesubspacés mN - n(M+N). A subspace-separationatrix is
easilydefinedasin Definition 3-1, but with n(M+N) andmN playingtherolesof n andm,

respectrely.

Definition 6-6. For the mN x n(M+N) channel# of (6-1), anmN x mN unitary
matrix © is a subspace-separatiormatrix if andonly if the lastmN — n(M+N)

rows of ©# are identically zero.
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Figure 6-7. Average MSE penalty of the stacked WR detector relative to the
stacked MMSE detector.
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Lemma3-3, which expresseshe mathematicalorm of a subspace-separatiomatrix

in terms of the leftdctor of a channel SVD, is easilytended.

Lemma 6-4. For # of (6-1), a unitary subspace-separationatrix must be of the

form:

©=

Us 0 u’, (6-22)
0 Uy

where Ug and Uy are arbitrary unitary matricesof dimensionn(M+N) and
mN - n(M+N), respectrely, andwhere U is the left factorof ary channelSVD #

= UsV”.

Following the developmentof section3.1, we seethatif © satisfieq6-22),thenthe

lastmN - n(M+N) components oY, = ©OR,, contain no signal engy:

Yk = [’7(-)[ ]Xk + @Nk, (6-23)

where ﬂ;f = ‘USE V" is of dimensionn(M+N) x n(M+N). Discardingthesenoise-only

components éctively produces a square channel model:
f{k = ]Yk = '{;[Xk + lﬁk? (6-24)

whereE[ﬂIkﬂIk*] = 021, and where #, unlike #, is not block-Toeplitz. The n(M+N)
componentof R 5, aresufiicient for estimatingX,. In particular Theorem4-1 extends,

which we restate here in the coxitef (6-1).
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Theorem 6-4. The cascadeof a signal-subspacerojector 7© and a stacled
detectorc:, either MMSE, ZF, or WR, designedfor the reducedchannelﬂzf, pre-
cisely implementsthe stacled detectorC designedfor the original block-Toeplitz

channel#.

Proof: The proof is identical to that of Theorem 4-1.

6.6 Channel Diagonalization and L ossless Precoding

We can also extendthe channeldiagonalizationdeaof chapter3 to channelswith
memory Consider again, for example, a single-userarray-to-array communication
problemwith n transmitantennasndm receve antennaswherem > n. Sucha system
canbemodeledby r, = Hyxy, + Hixp_; + ... + Hyw,_pr+ ny, Of (1-1). Thei-th component
r.® of r, correspondso the sequenceeceved at the i-th receve antennaand the j-th
componeni;" of x;, correspondso the sequencéransmittecby thej-th transmitantenna.
With the total power, averagedover all transmit antennas,constrainedaccordingto
Z;’: 1E[ka(i)lz] < P, we onceaggin, asin section3.6, addresshe questionof how to

achieve Shannorcapacity GivenH(z) = Hy + Hyz! + ... + Hyz ™, we chooseV > Mn

m-—n

suchthat # of (6-1) is squareor tall. The SVD of H'= USY" canthenbe usedto design

both a transmitterprecoder 4/ and a recever front-end filter 7* suchthat the overall

system is diagonal:
S=UHYV (6-25)

The systemis illustratedin Fig. 6-8. In the transmitter we first form a precoded

vectoraccordingto X; = VW, whereW; is ann(M+N) x 1 vectorof symbolsequences.



194

x

‘[epow [auueyd reuobelp useainb3 (q) ‘sjpuueyd Y4 |re1 o) anbiuyosal uonezijeuobelp-jpuueyd v (8) 'g-9 ainbi4

= ) [ —

19}]14 paydreiN

Serial-to-Parallel

Converter

—He¢—= S < m

#

N+DU x Nu

NOMVY

qu

NOMY

Ux W

(N+I)/°Y erey

AL

A

(®H

ix

Sy arey

Parallel-to-Serial

Converter

—

19p0IJalid

= ‘N

(@

(e)



195

The norm-preservingropertyof 4 ensureshat W; andX; satisfythe samepower con-

n

straint: E[| W;|12] = E[|X;]] = S 1E[ka(i)IQ] < P. We passX; througha parallel-to
serial (P/S) corverterto producex; and transmitit acrossthe channel.We denotethe
symbolrateasR; = 1/7, sothe block rate,i.e. the rateat which the blocks W; aretrans-
mitted,is R, /(M +N). Theinformationbit rateis Ry, = bR,/(M+N), whereb is theaverage
total numberof informationbits conveyed by eachblock W;. In the recever, we passry,

througha serial-to-paralle{S/P)corverterto form R,. We thenrotateR; accordingo Y; =

‘U*Rj. The front-endrotationcanbe interpretedasa matchedilter. Providedthatthe P/S

and S/P corvertersare phasesynchronizedthe effective channelfrom W; to Y; is diag-

onal:

WhereE[ﬁij*] = o%I,,,5. We canthusapproacltcapacityby properlydistributing power

and information among the subchannels [140].

Certainly 2" and %/ can be estimatedadaptvely; however, the truly interesting
aspectof this idealies not in the methodof adaptingthesefilters, but in their existence.
Becauseahesefilters areunitary, they areinvertible,andthusinformationlosslessMore-
over, they have finite compleity. For the specialcaseof n = 1, our precodingtechnique
canbeviewedasageneralizatiorof vectorprecodinganideaproposedy Kasturia[141],
which is similar to discretemultitone modulation(DMT) [23]. What distinguishesour
schemas thatit is designedexpresslyfor tall channelsderived eitherthroughoversam-
pling or throughrecever sensordiversity, andit is thereforeboth losslessand of finite
compleity. In contrastthetechniqueof Kasturiafor baud-spacedhannelsandthe more

well-known Tomlinson-Harashim§l42, 143] technique areeitherlossy[144] or of infi-
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nite compleity. Furthermore our schemeeasily accommodatesultichannelscenarios

(with » > 1) such as array-to-array communication.

6.7 Adaptive Implementations

The adaptve techniquedor subspaceeparationsingularvaluedecompositionand
spatialwhitening,describedn the context of memorylesshannelg3-1), canbe extended
to channelsvith memory(6-1) by makingonly minor modificationsWe canusetheadap-
tive algorithmsdescribedn section3.4 or sectiord.3 to blindly implementthe stacled
MMSE, ZF, or WR detectorby simply replacingr;, with R, n with n = n(M+N), andm

with mN. We summarize the modified algorithms belo

6.7.1 An Adaptive Stacked MM SE or ZF Detector

As suggestedby (6-4) and(6-7), the staclked MMSE andZF detectorcanbeimple-
mentedby using a rotate-scale-rotatarchitecturejn a manneranalogougo the imple-
mentationof the MMSE detectorof Definition 3-3 for memorylesshannelsThefirst step
is to rotatethe stacledobsenationvectorR,, with anmN x mN unitary matrix ‘ﬁ, adapted

according to
Uy, 4 1= UWRNG UpRy ~ UpRy), (6-27)

where G is diagonalwith strictly decreasinglementssatisfyingg; > g9 > ... > g, If
Conjecture3-2 holds, then the recursioncorvergesto U = U, avalid left factorin a

channel SVD¥H = US V", at which point is uniquely specified.

The secondstepis to scalethe outputof the rotation, Y, = ﬁk*Rk, by a diagonal

n x mN matrix 2 definedas Dypysz = S “(SS * + 0?1)~2 for the stacked MMSE detector



197

oras?D,r = ST for thestacked ZF detector Thedimensiorof D isn x mN, wheren is the
columnrankof #, or equivalently, the dimensionof the signalsubspaceHence,in order

to estimateD, the receier must first estimate.

We canblindly estimate, alongwith § ando?, andthusD, by estimatingthe power
in the component®f Y, with equationsanalogougo (3-29) through(3-31).If therecur-

sion of (6-27) has caerged, then the autocorrelation'f = 71,"R;, is given by
By = 55” + 021 (6-28)

The paver in the components &, are the thus eiggalues ofdg:

, Esi2+02 i0{1,...,n}
E[Y,®121= (6-29)
502 i0{n+1, ..., m)
The eigemalues can be estimated recuety:
¢ @) _ 2 () @) 2 -
€, =0ag, 1+ 1 -)1Y,V1% (6-30)

where0 < a < 1 is a smoothingfactor A thresholdcanthenbe usedto estimaten, the
numberof significant eigervalues. (The choice of a thresholdis discussedurther in

section6.8.) Givenn, we canestimatehesingularvaluess; of # andthenoisevariances?

as follows:
2 1 N
A A (1
Ok = mN—r] . z Ek 5 (6'31)
i=n+1

i) = (88 — 612, (6-32)
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Certainly this procedurds proneto inaccuraciesfirst, aninaccurateestimateof U
would violate (6-28); second,noise limits the accurag of the eigervalue estimatesin
(6-30); and third, someof the singularvaluesmay be quite small, and henceit may be
unclearwhich eigervaluescorrespondo noisealoneandwhich correspondo noiseplus
signal.We investicatethe sensitvity of the algorithmsto inaccuraciesn the estimateof n

in section6.8. We shav that the proposed detectors aredatfiery rolust in this respect.

Thefinal stepin implementingthe detectors to rotatethe outputof the gain stage,

W, = QA)Yk, by an x n unitary matrix’I)* adapted according to the MPLL recursion:

‘I)k c1=RMX,, - 2 ’7)/@, (6-33)

whereZ, = 7,W,, andwhereX , = dec(Z;,) is a quantizedecisionvector Therecursion

should cowmerge to‘ up to a permutation ambiguity:

V= KW, (6-34)

We address the implications of the permutation in seétios.

6.7.2 An Adaptive Stacked WR Detector

As suggestedby (6-12),the stacked WR detectorcanbe implementedusingspatial

prediction in a manner analogous to that of seceti@n\We can predicR;,, according to
R, = PRy, (6-35)

where P is an mN x mN strictly lowertriangular matrix of predictioncoeficients. An

estimate ofP can be adapted according to the least-mean-square algorithm:

Py, 1= (P, + UER,) DL, (6-36)
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whereE, = Ry, - @kRk is the predictionerror, wherep is astepsize,where' 0’ denotesa
component-wisgroduct,and £ is a maskthat constrainsi’k to be strictly lower trian-
gular For suficiently small step-sizeu, the predictorconvergesto M 1 of (6-12). Fol-
lowing the predictor by a bank of AGCs, adaptedaccordingto (4-16), completesthe

implementation of the spatial whitener

To implementthefinal stage the outputof the AGC bankis rotatedby anmN x mN

unitary matrixQ adapted according to

Q1= RNXy, - Y Qu (6-37)

wherey,, = QkEk, and where

X, = [de;@) g} Y,. (6-38)

Fori <n, X,® = deci( Y;,) is the pointin the constellatiorof useri closestto Y, (), but
fori > n, X,? is setto zero.Therecursionof (6-37) shouldcornvergeto Q of (6-11)upto

an ambiguous permutation matrix:

Q= [7( 0 JQ (6-39)

6.7.3 An Adaptive Subspace Separator

A subspacaseparatocanbe usedasthe front endof eitherdetectomwithout lossof
ary signalinformation. The subspaceseparatoiis implementedoy a mN x mNN unitary

matrix © adapted according to

Ops1=RMGO4R, ~ O4Ry Oy, (6-40)
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whereg is diagonalwith elementsatisfyingg; ... g5 = 1 andg,1 ... g,,n = 0. Therecur-
sionshouldcorvergeto a subspaceeparatoof theform givenby (6-22). ThelastmN —n

components 0® can be discarded to form the reduced chanmehgby (6-24).

6.7.4 Selection of the Detector Outputs

The last rotationstagein ary of the proposedadaptve stacled detectorscorverges
with a permutationambiguity. We say the decisionsare correct if the slicer outputis
givenby X, = XX,, for somecomple« permutatiormatrix K. Componentsf X,, i.e. vir-
tual userscanthusberelabeledr (assumingQAM constellationsarbitrarily rotatedby a
multiple of 90°. The final stepis to resole the ambiguity K ; this is the function of the
“selectbest” block in Fig. 6-2. This stepentailsfirst determiningan estimater of the
numberof usersandthenassigningof then MPLL outputsto the 2 identifiedusers We

outline seeral techniques belo

Onemethodis to correlatethe slicer outputvector X, with itself atlag 1; i.e. esti-
mate E[X,X,_;]. The stacled channelinput X, has a shifting property that can be

exploited:

EX)X, ;1=| I_0 . (6-41)

In practice,large entriesin E[f(kﬁk_l] indicatewhich outputsbelongto the sameuser

Thebestoutputfor eachusercanthenbe selectedrom amongthe outputsassociateavith
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thatuser As with ary blind multiuserdetectoy thereremainsan arbitraryrelabelingand

phase rotation of th2 usersSee Appendix 6-1 for arxample of this technique.

Anothermethodis to correlatescalerslicer outputsat differenttime lags; uncorre-
latedoutputscorrespondo constellation®of distinctusers.More precisely we first select
the detectoroutputwith the smallestmeanslicer error, therebyrecovering oneuser We
thenconsiderthe detectoroutputwith the next smallestmeanslicererror. If this outputis
uncorrelatedvith thepreviousselectionatall timelagsL O{ -M-N+1 ... M+N-1}, then
we selectit too, therebyrecoveringa seconduser;otherwisewe rejectit. We continuethis
processrejectingall outputscorrelatedo previous selectionsuntil we have recoveredall

users.

A third techniquels to considerthe structureof the stacled detectoritself. Rather
than correlatedetectoroutputsat varioustime lags, rows of the stacled detectorcanbe
correlatedat variousshifts. Rows correspondingo distinctusersarenearlyorthogonalat

all shifts, whereas ms corresponding to identical users are highly correlated.

6.8 Experimental Results

We now presentresultsfrom computerexperimentsthat demonstratehe proposed
blind adaptve implementatiorof the stacked MMSE detector Thefirst experimentof this
sectionis designedo characterizeéhe performanceof the algorithmif the estimateof the
signal subspacalimensionn is inaccurate.Our approachis to implementthe stacled
MMSE detectorasoutlinedin section6.7.1,but to intentionallyoverridethethresholdest
andto usea dimensionestimatethatis eithertoo small or too large. As we demonstrate,

the proposed algorithm i®xy rolust to inaccuracies in the estimate.
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Experiment 6-5. A Linear Array with Multipath. Considerasystemwith 2 trans-
mittersand a recever using a linear array of 10 antennaelementswith half-wave-
lengthspacing.Theantennaarrayrecevesenepgy from eachuseralongtwo paths:a
line-of-sight(LOS) pathandareflectedpath.Eachpathis characterizetyy its ampli-
tudeA, its propagtiondelayt, andtheangleof incidenced. For userl, the parame-
tersare(4, T, 0) = (0.25,-0.2,10°) and(A4, 1, 6) = (0.2,2.3,85°) for the LOS path
andreflectedpath,respectiely. For user2, the parametersire (0.22,-0.1,25°) and
(0.032,2.1,90°). Both usergransmitwith zeroexcessbandwidth whichimpliesthat
thechannememoryis infinite. To distinguishthe usersuserl transmitsQPSK,and
user2 transmitsBPSK. For the describedscenarioSNR; = 20 dB andSNRy = 17
dB. (The recever parametersare as follows: A; =1/ (1 + (£/8002) in (6-27),
a =0.99in (6-30),andA, = 1/(1 + (£/900) in (6-37).) The stackingdepthis N = 4,
so the staakd obseration has dimension 40.

The recursion of (6-30) producesthe eigervalue estimatesillustrated in
Fig. 6-9. Themiddlethresholdjndicatedby thedashedine, producesansignalsub-
spacedimensionestimateof 1 = 12. However, the thresholdmight arguably be set
higheror lower, asshavn by thedottedlines, producingestimate®f thatrangefrom
n = 10 to 14. Someof theserepresentan overestimateof the channelrank, and
some, an underestimation.

We conducts trials, overridingthethresholdtestandforcing the estimateto be
n =10, 11, 12, 13, and 14. The detectoroutputsat steadystate (10000 baud)for
eachcaseare shovn in Fig. 6-10. The constellationsin the first column are the
detectoroutputsfor j = 10. Althoughn > 10, the proposedalgorithmis still ableto

produceat leastone mildly cleanconstellationfor eachuser We seethe cleanest
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constellationsvhenn = 12.For = 13and14,we canseethattheeffect of overes-
timating the signal subspacealimensionis to simply produceextra noisy constella-
tions, which canbe ignored.Regardlessof the dimensionestimate thereis at least

one clean constellation for each user

Thepreviousexperimentdemonstratethatthe proposedalgorithmis not sensitve to
the estimateof the signal subspacealimension.A similar experimentfor an asynchro-
nous-CDMA application,detailedin [145], confirmstheseresultsaswell. Moreover, the
proposedalgorithmdoesnot even needto know the numberof userse, andit needsonly
limited knowledgeaboutthe constellation®f theusers.Theslicerassumeshatbothusers
aretransmittingQPSK.We canin factuseQPSKor quadrantecisionsn (6-38)for prac-

tically all QAM constellationsRemarkablytherecursiornof (6-37)still cornverges.So,the

5 I I I
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Figure 6-9. Estimates of the eigenvalues of ®g in Experiment 6-5 produced by

the recursion of (6-30) at steady state.
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proposedietectorsare very blind indeed.The next experiment,in which one usertrans-

mits QPSK, and the other transmits 16-QAM, demonstrates this idea.

Experiment 6-6. Asynchronous CDMA. We now consideranother2-userasyn-
chronousCDMA system.The systemis identicalto that of Experiment5-8 except
that the amplitudesA; and A, and the noise varianceo? are selectedsuch that
SNR, = 25dB andSNR, = 20dB. We implementthe blind adaptve stackkd MMSE
detectowith thefollowing parametersh; = 1/ (1 + (/500 2) in (6-27),a = 0.99in
(6-30),andAg = 1/(1 + (£/1000) in (6-37). The constellationgor usersl and2 are
16-QAM andQPSK,respectrely. Fig. 6-11shavs the bestoutputsof the detectorat
steadystate(18000to 20000baud)for stackingdepthsof N = 1 and2. We seethat
even a stackingdepthof 1, i.e. no stacking,is sufficient to producegoodresults.A

stacking depth of 2 produces only slight imgment.

We remarkthat, for CDMA applicationsthe stacked MMSE detectoroften requiresno
stacking(V = 1), in which caseit hasboth betterperformanceandlower compleity than

the prediction-based detectors of chapter

6.9 Chapter Summary

We have shavn thatby usinga simplestackingprocedurewe caneffectively corvert
the tall m xn FIR channelH(z) = Hy + Hyiz ! + ... + Hyz™ of (1-1) into the tall
mN x n(M+N) memorylesslock-Toeplitz channel# of (6-1). The algorithmsfor adap-

tive subspaceeparationsingularvaluedecompositionandspatialwhiteningcanthenbe
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easilyextendedo # andthusimplicitly to H(z). We have definedstacled MMSE, ZF, and

WR detectors in terms of.

The stacled MMSE detectoyaccordingto Theorem6-1, implementsM + N corven-
tional MMSE multiuser detectors,one correspondingo eachdecisiondelay 0 though
M+N-1. Following the detectorby a bankof independenslicers,andchoosingfor each
userthe associatedutputwith the smallestmeanslicer error, effectively implementsan
N-tap MMSE multiuserdetectorwith the delay optimizedfor eachuser Although more
comple, in generalthan the detectorsbasedon linear prediction, the staclked MMSE

detector has better performance in noise.

The stacled ZF detectoraccordingto Theoremb-2, implementsM + N corventional
delayedZF detectorspnecorrespondingo eachdelayO thoughM + N-1. Following the
minimum-normdetectorby a bankof independenslicers,andchoosingfor eachuserthe
output with the smallestmeanslicer error, effectively implementsan N-tap multiuser

detector that, among the class of ZF detectors, minimizes the MSE of each user

The stacled WR detectoyaccordingto Theorem6-3, estimateghe channelinput at
eachdelay0 thoughM +N-1 by usinglinear combinationf predictionerrors.It canbe
interpretedas a prediction-basedipproximationto the stacked MMSE detector It has

nearly the same performancet lsan hae lover complegity whenmN = n(M+N).

We have detailedblind adaptve implementation®f thesedetectorsandhave shavn
thatthe stacled MMSE detectoyin particular is anexcellentcandidatfor CDMA appli-
cations.It is robust to inaccuraciesn the estimateof the signal subspacealimension.It
needsonly minimal informationregardingthe numberand constellationsf the users.It

has better performancethan the prediction-basedletectorsof chapters, and can have



208

lower complity. Moreover, the blind algorithmswe have proposedn this chapter like
thoseof chapters, and precedingchaptersexploit primarily second-ordestatisticsand

are thus insensite to channel input distnithions.

As a bonus,we have alsodeveloped,for tall FIR channelsa novel space-timgor
time only) precodetthatis both losslessandof finite compl&ity. It canbe usedto com-
pletely eliminatelSI andMUI in the recever without noiseenhancementherebyfacili-

tating transmission approaching capacity
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APPENDIX 6-1:

AN ALGORITHM FOR RESOLVING THE PERMUTATION X

The last rotation stagefor ary of the proposedstacled detectorscorvergeswith a
permutatiorambiguity &K , suchthat,whendecisionsarecorrect, the sliceroutputis Xk =
KX. In this context, K permutesvirtual users,not just actualusers.To resohe X, we
mustensurethatthe temporalorderingof actualusersis presered, andthattheir relative

comple rotation is zero. Mathematicallgn acceptable permutation must be of the form:
x=| ¥ , (6-42)

whereK is anarbitrarycomplex permutationmatrix of dimensionn x n. Fortunately we

have additional information that can be used to ensureAlsattisfies (6-42).

Unlike x;, the sequenceX,, is not temporallywhite, becausdhe vectorX,, for a
giventimek, is relatedto thevectorX,_; by a shift. More precisely theautocorrelatiorof

X, at lag 1 is ahifting matrix:

0
0 O
EXX, ;1=| I 0 =T. (6-43)
0
I 0

Theterm*“shifting matrix” originatesfrom the propertythatpre-multiplyingary vectorby

T effectively shiftsthe component®f thatvectordown by n. (Thelastn componentsire
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discardedht the bottom,andrn zerosareshiftedin at the top.) Obsene thatfor arny arbi-

trary ambiguityX’, we can leftéctor ambiguities that are detrimental:

K = Kok, (6-44)

wherek satisfieg6-42),andis thusharmlessbut where X doesnot satisfy(6-42).If we
assumehat the decisionsare correct,sothat X, = K X}, thenthe autocorrelatiorof the

outputX,, at lag 1 is gien by

ElX, X, 1= KTK = KoXTK Ko'= KoT Ko (6-45)

The detrimental ambiguity X, can be removed as follows. First, estimate ® =

E[X,X,_;"1, by sampleaveragingand quantizingthe elementsof the averageto the set
{+1, £, 0}. This estimatecanbe deemedvalid by observingthe sizeof the quantization
error, andthe structureof the resultingmatrix. Any valid estimated® canthenbe manipu-

lated to create a shifting matrix, by using a serieswfe@hangeB;:
Br.. BB DB By, .. B =T (6-46)
The productB;...B,B, = K, removesthe detrimentalambiguities.Considerthe fol-

lowing example.

Example 6-1. With n =2 and n(M+N) = 4, supposethat the stacled detector

cornverges with the follaving permutation:

o O

|
=
S O O =

(6-47)

cod o
o o o
2
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Theresultingslicer outputis X, = [ x,?, —jxp 1V, 4,1, x;,_1@1T. Without knowl-
edgeof the permutatiorwe do not know which componentdbelongto which users.

For the gven K, the estimat@b of E[X,X;_;"] should be

0100[[0000/[00-10] (0000

b = K TK*=|0 07 0[[0000/[10 00 _{000f (6-48)
100 0[{1000[[0j 00 (0000
000101000001 (1000

Givenonly the matrix to theright of the equalityin (6-48),we now look for a series
of row exchangedB; that producesa shifting matrix. By inspection the first opera-

tion B; should svap ravs 1 and 2 ofd in order to force nw 2 to be all zeros:

1000/[0000/{1000] [0000
B, 2B, =0010(100,00010 _0000| (6-49)

0100{({0000]|0100O0 0,500
0001/(1000/[0001 1000

Fromtheresult,we seethatthe next operation, shouldmultiply row 3 by -/, and

then svap ravs 3 and 4:

1000[{{0000(|1000 0000

Bo( B, B, yB, = |01 0 0[[0000[10100] _0000| _ (6-50)
0001000000/ |[1000

00-50/(1000/[0010 0100

Obtaining 7 as a result terminatesthe algorithm. Obsere that multiplying the

output of the MPLL byByB; = K, removes the detrimental ambiguities:
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(ByBPKX;, =Ko KX, =

1000/ (0100 0100
0010100-0lx _|-1000g _xx, (651
0001/|-10 0 0 0001
0-j00/|0001 00-10

The residual permutation 17~( which is of the form given by (6-42), is harmless

because it merelyxehanges the user labels andates one user

In practiceonce X, is estimatedwe cancorrecttherotatorof (6-37)accordingto Q , =
K, Q. We thencanstarta new runningestimateof ®, and periodically verify thatthe

new estimate continues to be a shifting matrix:= 7.



213

CHAPTER 7

CONCLUSIONS AND
FUTURE WORK

7.1 Conclusions

We have developedseveral new algorithmsfor blind multiuserdetectionandequal-
ization basedon a philosoply of minimal relianceon higherorderstatistics.Thesealgo-
rithms use adaptve linear prediction and subspaceor singularvalue decompositionto
exploit primarily the second-orderstatisticsof the recever obseration, an approach
which offers significantadvantageover HOS-basear batch-orienteanethods.The pro-
poseddetectorshave goodperformancelow compleity, fastcorvergence andaninnate
compatibility with shapedsignal constellationsWe have demonstratedhe effectiveness
of thesealgorithmsin a wide variety of contets, including multisensorrecevers,

code-dvision multiple-access systems, and fractionally spaced equalizers.

In chapter3, we have proposedsubspace-baseatktectordor memorylesshannels.
We have proposeda blind algorithmfor adaptvely separatinghe signaland noisesub-
spacesBecausdhe subspaceeparatoiis information-losslessit canbe usedasa uni-
versal detectorfront end to reducethe compleity of subsequenprocessingWe have
generalizedhe subspacseparatoto furtherdecomposéhereceve spaceherebyleading

to an algorithmfor adaptve singularvalue decompositiorof the channel.We have pro-
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posedfully blind implementation®f the MMSE andZF multiuserdetectorspasednthe
adaptve SVD. We have alsoproposeda channeldiagonalizatioralgorithm,which facili-
tates transmissionapproachingcapacity in single-usermulti-channelcontets such as

array-to-array communication.

In chapter, we have proposedhe canonicawhiten-rotatedetectorfor memoryless
channelsThe WR detectoris the uniquespatialwhitenerwith minimal MSE. It is infor-
mationlosslesspptimally nearfar resistantandit hasnearMMSE performanceWe have
proposed blind adaptve implementatiorbasedon spatiallinear predictionanda simple
modificationto the MPLL algorithm.We have alsoproposeda project-firstWR architec-
ture that usesthe subspaceseparatoin its front end. The two structuresare mathemati-
cally equvalent, but the project-first approach has lower complity, and faster
convergence,when the dimensionof the recever obsenation is exceedinglylarge. We
have demonstratethe WR detectorfor both widebandsynchronous-CDMAandnarrow-

band lineararray applications.

In chapter5, we have presenteda family of blind multiuserdetectorghat combine
spatialandtemporalpredictionto exploit the uniquepropertiesof tall FIR channelsWe
have shavn that tall channelscan have mary equwvalent representationsge.g., moving
average autorgressve, andothers.The existenceof a finitely parameterizedR model,
in particular implies an FIR, andthereforestable left-inverse.In a sensealmostall tall
FIR channelsare minimum phasea factwhich suggestshe useof linear prediction.We
have proposedthe forward LP detector(Definition 5-6), the first stageof which is a
one-stepforward temporalprediction-errorfilter. The detectorexploits the AR channel

model of section5.1.1to roughly corvert the channelH(z) of (1-1) into a memoryless
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channeH,. Althoughwith noise this descriptionis only approximatethe spatialmethods
of chapterd canthenneverthelesse appliedto recover the transmittedsequenceWith a
zero-delayconstraintthe FLP detectorperformances nearthat of the MMSE detector
However its performancen generalis highly dependentiponthe size of the zero-thtap

H,, provided that this tap is significant relaito noise.

Therefore,we have also proposeda more generalforward-backvard LP detector
(Definition 5-7). The first stageof the LP detectoris an (L+1)-stepforward predic-
tion-errorfilter; the secondstageis a one-stepbackward prediction-erroffilter. Together
theséfilters exploit the ARMA andAP modelsof sectionss.1.2and5.1.3,respectiely, to
roughly corvert the channelH(z) of (1-1) into a memoryless:hanne[HLz_L_N. (Recall
that N is the orderof the backward predictor) The spatialmethodsof chapter arethen
appliedto invert H; . The performanceof the LP detectoris roughly proportionalto the
enegy in H;; thereforethe index L shouldcorrespondo the tap of greatestenegy. In
section5.6, we have detailedblind adaptve implementationf the detectorsand have
demonstrate@pplications,ncluding an adaptve fractionally spacedequalizer(FSE) for
single-usersystemsusing highly shapedsignal constellationsand a blind multiuser

detector for asynchronous CDMA systems.

In chapter6, we have extendedthe algorithmsfor adaptve subspacaseparationsin-
gularvalue decompositionand spatial whitening to channelswith memory We have
shavn thatby usinga simplestackingprocedureye caneffectively convertthetall m x n
FIR channelH(z) of (1-1) into thetall mN x n(M+N) memorylesdlock-Toeplitzchannel
H of (6-1). The algorithmsdesignedor H of (3-1), thenreadily extendto #. We have

definedstaclkedMMSE, ZF, andWR detectorsn termsof #. Thestacked MMSE detector
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implementsM+N corventional MMSE multiuser detectors,and thus can be usedto
implementan N-tap MMSE multiuserdetectorwith the delay optimizedfor eachuser
Althoughmorecomple, in generalthanthe LP-basedletectorof chapters, the stacled
MMSE detectorhasbetterperformancen noise.The stacled ZF detectorcanbe usedto
implementan N-tap multiuserdetectorthat, amongthe classof ZF detectorsminimizes
the MSE of eachuser The stacled WR detectoris a spatio-temporaprediction-based
approximatiorto the stacked MMSE detectorlt hasnearlythe sameperformancebut can
have lower compleity whenmN = n(M+N). We have detailedblind adaptve implemen-

tations of these detectors.

The stacked MMSE detectoris particularlyappealinglt is robustto inaccuraciesn
the estimateof the channelorder needsonly minimal informationregardingthe number
andconstellation®f the usershasbetterperformanceahanthe prediction-basedetectors

of chapter5, and can hea lover complegity in some applications, most notably CDMA.

We have alsodevelopeda novel space-timgrecodelthatis simultaneouslyossless
and of finite compleity. It canbe usedto eliminateinterferencen the recever without

noise enhancement.

7.2 Future Research

We have resenedthefinal sectionof thethesisto discusgemainingopenissuesand
to suggesitdeasfor future researchOpenissuesncludea rigorousproof of corvergence
for thesubspacseparatoandSVD algorithms,a methodfor optimizingthis corvergence,
andamethodfor blind estimationof theindex L usedin thegeneraforward-backvardLP

detector As ideasfor future researchye suggestlternatve LP-basedletectorarchitec-
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turesaswell astechnigquego speedcorvergenceof all detectordor applicationto fading
or othertime-varyingchannelsWe alsoproposeanalgorithmfor blind channeidentifica-
tion basedon adaptve correlationmatching,which may be of interestto researcherm

this field.

7.2.1 SVD Convergence

All simulationresultssuggesthatthe subspace-separati¢®-20) andcompletesub-
space-decompositiof8-25) algorithmsdo indeedcorverge to the desiredsolutionsfor
sufficiently small loop gain A; however, thereis no rigorous proof of corvergence.
Appendix3-2 presentsa heuristicargumentbut provesonly thatthe inner productof Gy
andy, wherey is the rotator output, is maximized when

J=5 Y (g-g)d;-d)|t; ;| (7-1)

1 J>1

is minimized.(Recallfrom Appendix3-2 thatg; andd; arediagonalelementof G andD
=SS, respectiely, for somechannelSVD H = USV", andthatz; ; areelementf T =
QU, whereQ is the rotator) Although (7-1) is aestheticallypleasing,a more rigorous

proof of cowergence is still needed and could be the subject of future research.

It is alsounclearhow the elementsg; shouldbe chosento optimize corvergence
speedalthoughwe have given this topic someconsiderationFor the sale of discussion,
assumehatthe elementsi; areall distinct.(Thechannemustthereforebesquare.)n this
casewe wouldideally like to forceall off-diagonalelements; ; of T to zeroatthe same
rate.A reasonabl@pproactis to try to male the coeficientsof 1¢; ; 12 in (7-1) constant

foralli #J:
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(gi—gj)(d,-—dj) =C (7'2)

or equvalently, try to male
8i—8j=5— =¢,; (7-3)
wherec andc; ; are positie real constants. #\can gpress (7-3) as

cL2 (110 .. 0

81
Ci,j = 1 ..-1
: . ’ (7-4)
| Cm-1m| |0 .. 0 1 -1 gm
;\/—/
c = A g

which is a systemof m(m-1)/2 equationswith m unknavns. For m > 2, the systemis
overdeterminedsothereis no generalsolution.(Form > 3, m(m-1)/2 > m, andfor m =
3, rank(A) = 2.) Furthermorethe least-squaresolutiong = A'e doesnot in generalsat-
isfy theconstrainon g (thattheelementg; mustbedecreasing)Neverthelesswe cansee
from (7-3) that the elementg; shouldhave a roughly reciprocal relationshipto the ele-

mentsd;. The truly optimal choice for the elemegigemains an open issue.

7.2.2 Blind Estimation of the LP Index

Theprimaryshortcomingn theblind implementatiorof thegeneralized.P detector
is how to determinethe optimal index L. The brute-forcetechniqueof testingmultiple
indices,eitherserially or in parallel,substantiallyincreaseghe recovery time (to steady
state)or thecompleity of thedetectorThisincreasein eithercasejs by afactorof M+1

if all possibleindicesare tested.In this section,we outline a promising alternatve for
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low-noiseernvironmentsthatat mostroughly doublesthe recovery time, andonly slightly

increases the detector comyptg.

We first implementthe blind adaptve LP detectorwith index L = 0. After corver-
gence we canusethe detectoritself to estimatethe channeltaps.If the noisevarianceis
small,thenat steadystate the covarianceof thetemporalpredictionerroris approximately

given by
(De =FE ekek*] = H0H0*. (7_5)

Let MD?M" denotethe unique minimum-normgeneralizedCholesly factorizationof
H,H," (whereM is monic, lower triangular and of dimensionm x m, andwhereD is
diagonaland of dimensionm x n). We canusethe LP detectors spatialpredictorf’o to
estimateM accordingo M = (I - Py)~1. ThefactthatI — P, is lower triangularsimplifies
the calculationof its inverse.Similarly, we canusethe LP detectors AGC A to estimate
D. For low noise,exactly m — n of the diagonaltermsin the AGC inverseA 1 arevery
small. Let J denotethen x m matrix thatdiscardsthesesmallterms,sothatD = JA ™%,
An estimateof H, is thengivenby Hy = M D = H,U, whereU is an arbitrary (n x n)
unitary matrix. We canusethe temporalpredictorto estimatethe otherchanneltaps.We
first estimatehe AR parameteras[A; ... Ayl = -[P; ... Pyl. Recallthatthe AR andMA

parameters are related as faik
[A; ... AyIH=[H; ... Hy 0,, . ny, 1. (7-6)

Thereforeusing[A, ... Ayl andH,, we canrecursvely estimatethe otherchanneltaps

as follows:
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1—1
A;_jH; 0i0(1, .., M) (7-7)
0

=
]
nM

J
Theseestimateslike Hy, have anarbitraryunitaryambiguity: H; = H;U. However, U is
normpreservingandthushasno effect on the estimateof the channelenegy distribution:
tr(H;H,") = tr(H;H,). We simply choosetheindex L correspondindo thetap of greatest

enegy tr(H;H;), and then re-adapt the LP detector with thig malex.

Obsene that U alsohasno effect on the estimateof the enegy distribution corre-
spondingto a particularuser;: | izE"') 12 = | hgj) |2 O i, j. Therefore,we might alterna-
tively chooseto implementn separatd_P detectorspnefor eachuser; {1, ..., n}, and
chooseanindex L; for eachcorrespondindo the tap having greateseneqy | hgj) 12 in
columny. This approachoptimizesthe performanceor eachuser but at the expenseof

additional compleity.

The proposedalgorithmis subjectto certaininaccuraciesFirst, theinitial estimates
[A; ... Ayl andH, assumenggligible noise.Secondthe recursionof (7-7) accumulates
errors as i increasesHowever, there are variations of this basic approachthat may
improve the accurag. An estimateof the noise variancemight be used somehw to
improve the accuray of theinitial estimatef [A; ... Ayl and H, . We might alsoesti-
mate the channeltapsin someother order For example, we might start with an LP
detectorof index M, andthen,using[A_l A_N] andH,,, recursiely estimatethe pre-
cedingchanneldaps.We couldin factstartwith an LP detectorof ary index L, estimate
H;, and then devise a recursionto estimatethe other channeltaps from H;. Future
researchmight addresghe viability of theseand othertechniquedor blindly estimating

the LP inde. (See, for gample, correlation matching of sectiér2.5.)
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7.2.3 Alternative LP-Based Architectures

Property5-4, which statesthat the LP detectoris information losslessup to the
n x m truncationmatrix J = [I 0], suggestyet anotherdetectorarchitecture We could
modify the LP detectorof Definition 5-7 (5-63), replacingthe memorylesgsermd by an
n xm filter J(z) of sufficient memorysuchthatthe resultingdetectorC(z) is asymptoti-

cally MMSE for some set of user delays:

-N
1z

Ck2) =J@)QD M1z [I- PV @) 1[1-PLz)], (7-8)

whereall terms,exceptd(z), areasdefinedin Definition 5-7. Blind adaptve estimationof
C(z) is straightforvard. We first initialize onetap of an estimated (z) to J, while initial-
izing its othertapsto zero. Then, holding J (z) fixed, we adaptiely estimatethe other
termsin (7-8) aswe do thosein Cyp(z) of (5-63). After corvergenceof theseterms,the
eye shouldbe opensuficiently for decision-directe@daptation (z). The algorithmthus

provides a seamless transition fr@pp(z) to an MMSE detectoC(z).

There may also exist other viable LP-basedarchitecturesFor example, consider
two-sided prediction.We couldreplacethe seriescascad®f temporalprediction-erroffil-
ters[I—P~1 () I[I-PX(z)]in Cpp(z) of (5-63)with an error filter of the form:

-N N ,
E@)=1- % Pz' - )3 Pz . (7-9)

i
1=-1 1=1

We canthink of (7-9) asthe parallel combinationof two predictors,oneforwardandone
backward, both one-stepTheremay indeedexist predictorcoeficientssuchthatthe cas-
cadeE(z)H(z) is memorylessExistenceof thesecoeficientswould imply thatthe obser-

vationr;, of (1-1) could begressed as



222

N -N
rp = z Pirk A Z Pirk i+ Hka. (7'10)
1=1 1=-1

Unfortunately we cannotsolwve for the coeficients {P;} in termsof the block-Toeplitz
matrix #H aswe canfor the standardAR model.(SeeCorollary 5-1.1(5-8) and Theorem
5-5(5-23).)Hence the necessarandsufficient conditionsfor the existenceof this model,
in termsof the channelH(z), are not known. Neverthelessfurther researchn this vein
might producel P-basedletectorswith lower compleity or betterperformancehanthose

we hare already proposed.

7.2.4 Fading Channels

Futurework mightalsoseekto speedhecornvergenceof the proposedlgorithmsfor
applicationto fading or other rapidly time-varying channels All of the adaptve algo-
rithms we have describedare designedin the spirit of the LMS algorithm. We use an
instantaneougstimateof the gradientin the updatesof the predictorsand AGC, and a
rank-two instantaneousrrorin therotatorupdatesWe couldof courseadopta philosoply
morein the spirit of the recursve least-squarealgorithms.Doing so would necessarily
increasehe numericalcompleity of thealgorithms but it would alsospeedcorvergence,

and etend the utility of the proposed algorithm to rapidly tinagying channels.

7.2.5 Correlation Matching

In this section,we describea techniqueor blindly estimatingthe channelwith indi-
rectapplicationto the multiuserdetectionproblem.A tall channekanbeidentifiedupto a
unitary ambiguity from the second-ordestatisticsof its output. We proposean adaptve

schemebasedon a correlationmatchingprinciple. Considetthe memorylesshanneH of
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(3-1). Supposehereceier hasaninitial estimateof thechannelH andits noisevariance
2. If the correspondinghanneloutput autocorrelatiorestimateH H* + 621 matches
thatof theactualchanneHH" + 02I, thenthe channekestimatés accurateo within auni-

tary ambiguity:
ﬂﬂ*+62I=HH*+G2I < 6'2=C)'2 andﬂ = HU. (7'11)

The squaredFrobeniusdistanceof thesecorrelationmatricessenes as a quadraticcost
functionto develop an adaptve algorithmfor estimatingthe channel With HH" + oI =

El[r,r,"1, a deterministic update isvgin by
ﬁk+l = ﬁk_“(ﬁkﬁk* + 62I—E[rkrk*])I:Ik. (7-12)

We maydropthe expectationoperatoito producea stochasticersion.The estimateof the
noisevariancemustbe provided by othermeanssuchasthe subspaceseparatoiWithout
loss of generality we can restrict H to be lower triangularto reducenumericalcom-
plexity. As describedhis algorithmhasindirect applicationto the blind multiuserdetec-
tion problemin that it can be usedto implementan MMSE, decision-feedbackor
maximume-likelihood detectorfor memorylesschannels.Furthermore,the idea easily
extendsto channelsvith memoryby replacingH and H with # and # asin chapter6.
Correlationmatchingcould also be usefulfor estimatingthe optimalindex L for the LP

detector Future research might seek to fullywd®p these ideas.
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	3.4 MMSE Detection
	Definition 3-3.�� The minimum-MSE detector CMMSE for the channel of (3-1) is the n�¥�m matrix C t...
	Lemma 3-4.�� For channel H of (3-1) with s2 > 0, the MMSE detector can be expressed in three equi...
	� CMMSE = H*(HH* + s2I)–1 (3-32)
	� = (H*H + s2I)–1H* (3-33)
	= VDU*, (3-34)

	Figure 3-5.�� A fully blind, adaptive implementation of the minimum-MSE multiuser detector.
	��k+1� = R�l(k�Æ zk)*k ��� =�k + R�l(k�Æ zk)*- Ik�, (3-35)
	�= KV. (3-36)

	Experiment 3-3.�� Consider a 10-element linear antenna array with half-wavelength spacing, with t...
	Figure 3-6.�� The blind adaptive MMSE detector of Experiment 3-3: (a) an MSE learning curve for u...

	3.5 Zero-Forcing Detection
	Definition 3-4.�� For the channel H of (3-1), a zero-forcing detector CZF�is an n�¥�m matrix sati...
	Lemma 3-5.�� For the channel H of (3-1), the ZF detector can be expressed in two equivalent ways:
	� CZF = H† + N, (3-37)
	� = VS†U* + N, (3-38)


	3.6 Channel Diagonalization
	S = U*HV. (3-39)
	Figure 3-7.�� Equivalent models: (a) a memoryless MIMO channel with precoder and front-end rotati...
	Figure 3-8.�� A block diagram of adaptive channel-diagonalization algorithm.
	yk = SV*kwk + k, (3-40)
	k = wk. (3-41)
	i(k+1) = ai(k) + (1�–�a) Re(��yk(i)/wk(i)), (3-42)
	k�+�1� =�kR�l(k Æ k) =�k + k R�l(k Æ k) – I. (3-43)
	zk = Jk*Hk – , (3-44)

	Experiment 3-4.�� We consider randomly (Gaussian) generated channels of dimension 10�¥�4. All 4 t...
	Figure 3-9.�� Convergence of the diagonalization algorithm: diagonalization metric z�k versus tim...

	3.7 Chapter Summary
	Qk�+�1� =�R�l(GQkrk�Æ Qkrk)*Qk, (3-45)
	Appendix 3-1:�� Derivation of the MMSE Linear Multiuser Detector
	���J(C) = tr[(CH – I)(CH – I)* +s2CC*] (3-46)
	= tr[(CFC* – CH – H*C*+ I], (3-47)
	J(C) = tr[�(C – H*F–1)�F�(C – H*F–1)* + I – H*F–1H�]. (3-48)
	� CMMSE = H*(HH* + s2I)–1, (3-49)
	����CMMSE = H*[�s–2Im – s–2H(s–2H*H+ In)–1H*s–2�] (3-50)
	= [�s–2H*– s–2H*H(s–2H*H+ In)–1H*s–2�]. (3-51)
	CMMSE = [�(s–2H*H+ In) – s–2H*H�](s–2H*H+ In)–1H*s–2, (3-52)
	CMMSE = (H*H + s2In)–1H*. (3-53)
	������Jmin = tr[I – H*F–1H] (3-54)
	= tr[I – (H*H + s2In)–1H*H] (3-55)
	= tr[(H*H + s2In)–1(H*H�+�s2In)–1H*H] (3-56)
	= s2tr(H*H+s2In)–1. (3-57)
	CZF = (H*H)–1H* º H†. o (3-58)

	Appendix 3-2:�� On the Convergence of (3-25) and (3-20)
	y = QUSV*x + Qn. (3-59)
	y = TS + , (3-60)
	���E(��y*Gy�) = E��tr[��(GTS + G)(TS + )*�] (3-61)
	= tr(�GTDT* + s2G�), (3-62)
	J(T) = tr(GD) – tr(GTDT*) ³ 0. (3-63)
	J = – . (3-64)
	J = – . (3-65)
	��J = – (3-66)
	= – (3-67)
	= . (3-68)
	J = . (3-69)
	J = (3-70)
	J = . (3-71)


	The Whiten-Rotate Detector
	4.1 Whiten-Rotate Detection
	Definition 4-1.�� The canonical whiten-rotate detector CWR for the channel of (3-1) is the n�¥�m ...
	Figure 4-1.�� The structure of the whiten-rotate detector as applied to a memoryless multiuser ch...
	JQ�= JT**, (4-1)
	Q = *, (4-2)

	Lemma 4-1.�� The whiten-rotate detector of Definition 4-1 is unique, and it can be expressed in t...
	��CWR =�JQW (4-3)
	= VJ(SS* + s2I) -1/2U* (4-4)
	= V(2 + s2I) -1/2JU*. (4-5)

	Property 4-1.�� The whiten-rotate detector is information lossless.
	Property 4-2.�� The whiten-rotate detector approaches the zero-forcing (or decorrelating) detecto...
	WR = V-1JU* = VS†U* = H†. (4-6)

	Property 4-3.�� The whiten-rotate detector is optimally near-far resistant [53].
	Lemma 4-2.�� The MSE for the i-th user of the whiten-rotate detector and MMSE detector, respectiv...
	��MSEiWR = 2vi*[I - (2 + s2I) -1/2]vi�, (4-7)
	����MSEiMMSE = s2vi*(2 + s2I)-1vi�, (4-8)

	Property 4-4.�� The MSE of the whiten-rotate detector approaches that of the MMSE detector in the...
	= 1. (4-9)

	Experiment 4-1.�� Given a receiver with m = 10 sensors, we consider two cases: n = 2 users and 10...
	Figure 4-2.�� A comparison of the whiten-rotate detector with the minimum-MSE detector: SNR versu...

	4.2 A Project-First Architecture
	k�=�xk�+�k, (4-10)
	Theorem 4-1.�� The cascade consisting of a signal-subspace projector JQ followed by a whiten-rota...

	4.3 Blind Adaptive Implementations
	4.3.1�� An Adaptive Whitener
	k =�Prk, (4-11)
	Lemma 4-3.�� Generalized Cholesky Factorization. A Hermitian matrix F of dimension m�¥�m and rank...
	F = GG*, (4-12)
	��= MD2M*, (4-13)

	Theorem 4-2.�� Linear Prediction. Let r be a random m�¥�1 vector with covariance matrix F�=�E[��r...
	P = I – M–1, (4-14)
	k�+�1 = (k + m�p�ek�rk*)�ƒ�L, (4-15)
	�=�|–�m�a(|vk(i)|2�–�1)|, (4-16)


	4.3.2�� An Adaptive Rotator
	k = yk�. (4-17)
	�������k+1 =�R�l(k�Æ yk)*k =�k+ R�l(k�Æ yk)*- Ik. (4-18)
	Figure 4-3.�� An adaptive algorithm for implementing the MMSE rotator of (4-2).
	� = , (4-19)



	4.4 Experimental Results
	Figure 4-4.�� A functional diagram of an adaptive project-first whiten-rotate detector.
	Experiment 4-2.�� Random Gaussian Channels. We now demonstrate convergence of the entire project-...
	Figure 4-5.�� Convergence of the project-first adaptive algorithm of Fig.�4-4, showing contributi...
	Experiment 4-3.�� A Linear Antenna Array. Consider a 20-sensor linear antenna array with half-wav...
	Figure 4-6.�� The adaptive project-first WR detector applied to a linear antenna array: (a) the M...
	Experiment 4-4.�� Synchronous CDMA. Consider now a synchronous direct-sequence-CDMA application w...
	Figure 4-7.�� The adaptive project-first WR detector applied to a synchronous CDMA system: (a) an...

	4.5 Chapter Summary
	Appendix 4-1:�� Proof of Lemma 4-1
	Appendix 4-2:�� Proof of Lemma 4-2
	ek = (CWRH - I)xk + CWR�nk = V[ - I�]V*xk + VJU*nk, (4-20)
	Fe �= V[ - I�]2 V*+ s2V2V* = V[ 22 + I - 2 + s2 2]V* = 2V[I - ]V*. (4-21)
	ek = (CMMSEH - I)�xk + CMMSEnk = [�(H*H + s2I)–1H*H - I�]xk + (H*H + s2I)–1H*nk = (H*H + s2I)–1[�...
	Fe �= V[�s44+ s242]V* = s2V2V*, (4-23)

	Appendix 4-3:�� Proof of Lemma 4-3
	S = F�V, (4-24)
	F= , (4-25)
	F = GG*. (4-26)
	F = MD2M*. (4-27)

	Appendix 4-4:�� Proof of Theorem 4-2
	J = tr[(I�–�P)�F(I�–�P)*], (4-28)
	J = tr[�(I - P)MD2M*(I - P)*]. (4-29)
	���J = tr[�(I + B)D2(I + B)*�] = tr[�D2 + BD2B* + BD2 + D2B*�]. (4-30)
	P = I - (I + )M-1, (4-31)
	[�(I + )M-1�]�F�[��(M-1)*(I + )*�] = (I + )�D2�(I + )*= D2. (4-32)

	Appendix 4-5:�� A Whiten-Rotate Detector for Noiseless Channels

	Linear Prediction
	5.1 Equivalent Channel Models
	rk = Hixk�–�i. (5-1)
	rank[HM] = rank[H(z)] = n for all z including •. (5-2)
	5.1.1�� An Autoregressive Channel Model
	Figure 5-1.�� Equivalent models for a tall MIMO channel: (a) moving average (MA) and (b) autoregr...
	rk = Airk�–�i + H0�xk�, (5-3)

	Theorem 5-1.�� [15] Let the channel H(z) of (5-1) with m�>�n satisfy (5-2). If N�³ , then there e...
	[�I��–A1 º�–AN��]�H�N+1 = [�H0��0m�¥�n(M+N)�], (5-4)
	�H�N+1 = . (5-5)
	[��0m�¥�m�–A1�º�–AN�]�H�N+1 = –[�0m�¥�m H1 º�HM 0m�¥�Nn�], (5-6)
	[�A1 º�AN�]H�N = [�H1 º�HM 0m�¥�Nn�]. (5-7)

	Corollary 5-1.1.�� The coefficients {�Ai�} of A(z) = Aiz–i are given by
	[�A1 º�AN�] = [�H1 º�HM 0m�¥�Nn�]H�† + V, (5-8)
	[�A1 º�AN�]H �= [�H1 º�HM �0m�¥�Nn�]H�†H�+ VH ������= [�H1 º�HM �0m�¥�Nn�]. (5-9)


	5.1.2�� An ARMA Channel Model
	Figure 5-2.�� An ARMA model for a tall MIMO channel.
	rk = + Hixk�–�i. (5-10)

	Theorem 5-2.�� Let the channel H(z) of (5-1) with m�>�n satisfy (5-2), and let L�Œ{�0,�1,�º, M�}....
	Corollary 5-2.1.�� The coefficients {�Ai�} of AL(z) =Aiz–i are given by
	[�AL�+�1 º�A�L�+�N�] = [�HL�+1 º�HM 0m�¥��n(L�+�N)�]H�† + V. (5-11)


	5.1.3�� An Autoprogressive Model
	rk = A�–irk�+��i �+ HM�xk�–�M. (5-12)
	Figure 5-3.�� An autoprogressive model for a tall MIMO channel.
	Theorem 5-3.�� Let the channel H(z) of (5-1) with m�>�n satisfy (5-2). If N�³�, then there exists...
	Corollary 5-3.1.�� The coefficients of A~1(z) = A�–i�z�i are given by
	[�A�–N º�A�–1�] = [�0m�¥�Nn�H0 º�HM�–�1�]H�† + V. (5-13)



	5.2 Minimum-Phase Channels
	Definition 5-1.�� A MIMO channel H(z) is called minimum phase if and only if there exists a causa...
	Example 5-1.�� Consider a 2�¥�2 channel F(z) with memory M = 2:
	F(z) = . (5-14)
	F–1(z) = . (5-15)

	Definition 5-2.�� [34] A square FIR channel F(z) = Fiz–i is called unimodal if det[�F(z)�] is non...
	Lemma 5-1.�� All unimodal channels are minimum phase.

	5.3 Necessary and Sufficient Conditions
	Definition 5-3.�� An m�¥�n channel H(z) with m�>�n is said to be irreducible if all square right-...
	Lemma 5-2.�� Initial and Final Values. For the channel H(z) of (5-1), the initial coefficient H0 ...
	H0 = H(•) º (z). (5-16)
	HM = H(0)º = º º(z)�z–M. (5-17)
	H(0)º = , (5-18)

	Definition 5-4.�� [34] The channel H(z) of (5-1) is said to be column reduced if its columns are ...
	Lemma 5-3.�� [34] The channel H(z) of (5-1) is column reduced if and only if it is full column ra...
	Theorem 5-4.�� The channel H(z) of (5-1) satisfies (5-2) if and only if it satisfies all of the f...
	1. H(z) is irreducible; 2. H(z) is column reduced; 3. All users have memory M. (5-19)

	Example 5-2.�� Suppose that a channel (z) satisfies (5-2) and is thus minimum phase. This means t...
	U(z) = , (5-20)


	5.4 Temporal Linear Prediction
	5.4.1�� One-Step Prediction
	ek = H0��xk +(Ai�–�Pi)�rk�–�i. (5-21)
	x = trH0H0* + tr(Ai�–�Pi)E[�rk�–�irk�–�j*](Aj�–�Pj)*. (5-22)
	Theorem 5-5.�� Let the channel H(z) of (5-1) with m > n satisfy (5-2), and let P(z) = Piz–�i deno...
	[�P1 º�PN�] =�[�H1 º�HM 0m�¥�Nn�]H�† + V, (5-23)


	5.4.2�� Multiple-Step Prediction
	ek = Hi�xk�–�i �+(Ai�–�Pi)rk�–�i. (5-24)
	x = trHiHi* + tr(Ai�–�Pi)E[rk�–�irk�–�j*](Aj�–�Pj)*. (5-25)
	Theorem 5-6.�� Let the channel H(z) of (5-1) with m > n satisfy (5-2), and let PL(z) =Pi�z–i deno...
	[�PL+1 º PL+N�] =�[�HL+1 º�HM 0m�¥��(N+L)n]H�† + V, (5-26)


	5.4.3�� Backward Prediction
	ek = HMxk�–�M +(Ai�–�Pi)rk�–�i. (5-27)
	x = trHMHM* + tr(Ai�–�Pi)E[rk�–�irk�–�j*](Aj�–�Pj)*, (5-28)
	Theorem 5-7.�� Let the channel H(z) of (5-1) with m > n satisfy (5-2), and let P�~1(z) = Piz–i de...
	[�P–N º�P–1�] = [�0m�¥�Nn�H0 º�HM–1�]H�† + V, (5-29)



	5.5 Multiuser Detection Using Linear Prediction
	5.5.1�� The Forward LP Detector
	Figure 5-4.�� A block diagram of the forward LP detector.
	Theorem 5-8.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2), and let P(z)�=�P...
	P = [�P1 º�PN�] = K�H�*(HH�* + s2I)–1 (5-30)
	��= K(H�*H�+�s2I)–1H�*, (5-31)

	Corollary 5-8.1.�� The forward cascade F(z)�=�Fiz–i�= [�I – P(z)��]H(z) has coefficients given by
	F = [�F0 F1 º FN�+�M�] = [�H0�|�[��H1�º�HM�0m�¥�Nn�]��·Y], (5-32)
	Fe = E[�ekek*] = H0H0* + s2I + KYK*. (5-33)

	Lemma 5-4.�� Let ek�=�Fixk�+�vk, where xk and vk are independent with covariances I and Fv, respe...
	CD = FD*Fe–1, (5-34)
	JQ0 = P *(D–1M–1H0�), (5-35)

	Definition 5-5.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2). The n�¥�m zer...
	CFLP0(z) = JQ0D–1M–1[�I�–�P(z)], (5-36)
	I�–�(z)�=�[�I�–�][�I�–�P(z)�] = M–1[�I�–�P(z)�]. (5-37)

	Lemma 5-5.�� For the m�¥�n channel H(z) of (1-1), satisfying (5-2), with m�>�n and s�>�0, let C0(...
	C0(z) = C0[�I – P(z)�], (5-38)

	Experiment 5-1.�� For a system with n = 2 users, we consider two receivers: one with m�=�3 sensor...
	Figure 5-5.�� A comparison of the zero-delay FLP and MMSE detectors.
	�= , (5-39)

	Experiment 5-2.�� In this experiment we analyze the performance of the zero-delay FLP detector as...
	Figure 5-6.�� Performance of the zero-delay FLP detector as a function of g0(1), the fraction of ...
	Y = , (5-40)
	= . (5-41)
	= =� �º . (5-42)
	[�H0�[H1��º�HM��0m�¥�Nn]�·Y�]�=�[��0m�¥�n�H1�[H2�º�HM��0m�¥�Nn�]�·], (5-43)
	[�H0�[�H1��º�HM��0�]��·Y�]�ª [��0�H1�[�H2�º�HM��0]�·]. (5-44)

	Theorem 5-9.�� Let the channel H(z) of (1-1), with m > n and s > 0, satisfy (5-2), and let denote...
	[�I�–�P(z)�]H(z) = º diag º . (5-45)

	Experiment 5-3.�� We essentially repeat Experiment 5-2 here, except we implement both the delay-1...
	Figure 5-7.�� Comparison of the delay-1 and delay-0 performance as a function of the zero-th tap ...
	Experiment 5-4.�� In this experiment we fix the SNR of user 1 at 20 dB, and then vary the zero-th...
	Figure 5-8.�� Comparison of the delay-0 and delay-1 FLP detectors as a function of the energy fra...
	J = P�*(D–1M–1). (5-46)

	Definition 5-6.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2). The (optimal ...
	CFLP(z) = JD–1M–1[�I�–�P(z)�], (5-47)


	5.5.2�� The Forward-Backward LP Detector
	Theorem 5-10.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2), and let P(z)�= ...
	���[�PL+1 ºPL+N�] = KLH�*(HH�* + s2I)–1 (5-48)
	= KL(H�*H + s2I)–1H�*, (5-49)

	Corollary 5-10.1.�� The forward cascade FL(z) = Fiz–i�=[�I�–�PL(z)]H(z), with memory = M��+�L�+�N...
	FL = [�F0 F1 º F�] = [�H0��º�HL�[�HL+1 º�HM 0m�¥�(N�+��L)n]�·Y�], (5-50)
	ek = Fixk�–�i + vk, (5-51)
	� = (5-52)
	� = , (5-53)

	Theorem 5-11.�� For the system of (5-51), let P~1�(z)�= Piz–i denote a one-step backward temporal...
	P~1� = [�P º�P–1�] = (KFF��*+ s2KEE���*)(FF��* + s2EE��*)�–1, (5-54)
	KF��=�[���0�F0�º�F�] (5-55)
	KE��=�[���0�Im 0m�¥�mL � –PL+1 º� –PL+N�–�1�]. (5-56)
	T(z) = Ti�z–i�= [��I�–�P�~1�(z)�][��I�–�PL(z)��]. (5-57)
	B(z) = Biz–i = [�I�–�P�~1�(z)�][�I�–�PL(z)�]H(z). (5-58)
	B = [�B1 B2 º B�] = [��–P º�–P–1�Im�]. (5-59)
	T�= [�T1 T2 º T�] = [�–P º�–P–1�Im]. (5-60)
	Fb = E[��bkbk*] = BB* + s2TT*. (5-61)
	J = P�*(D–1M–1). (5-62)

	Definition 5-7.�� Let the channel H(z) of (1-1) with m�>�n and s > 0 satisfy (5-2). The (forward-...
	CLP(z) = JD–1M–1[��I�–�P�~1�(z)��][��I�–�PL(z)��], (5-63)

	Experiment 5-5.�� We again consider 1000, 2-tap Gaussian channels of dimension 5�¥�2, as in Exper...
	Figure 5-9.�� Comparison of several LP-based detectors as a function of the energy fraction g0(1)...
	Experiment 5-6.�� We consider random 3-tap (M�=�2) channels of dimension 6�¥�2. The elements of e...
	Figure 5-10.�� A comparison of the optimal LP detector with an MMSE detector with equal memory.
	Property 5-1.�� The LP detector approaches a delayed zero-forcing detector in the limit as noise ...
	LP(z) = HL†[�I�–�~1(z)�][�I�–�AL(z)�], (5-64)

	Property 5-2.�� The LP detector is optimally near-far resistant.
	Property 5-3.�� For s > 0, the output of the LP detector is spatially white, but not temporally w...
	Property 5-4.�� The LP detector is information lossless up to the truncation matrix J.


	5.6 Blind Adaptive Implementations
	Figure 5-11.�� A Blind Adaptive Implementation of the LP Detector.
	L(k�+�1) = L(k) + m�f�ekRk*. (5-65)
	~1(�k�+�1) = ~1(k) + m�b�bkEk*. (5-66)
	(�k�+�1) = (k) +�m�sbk*. (5-67)
	(k+1) = (k+1)�ƒ�L, (5-68)
	�(�k�+�1) = (k) +�m�sek*, (5-69)
	~1�(�k�+�1) = ~1(k) + m�b�bkRk*, (5-70)
	~1�(�k�+�1) = ~1�(k) + m�b*. (5-71)
	(k+1) = (k+1)�ƒ�L. (5-72)
	~1� = [� º � 0] = [���M–1·[�P º �]�| (�I�–�M–1)���], (5-73)


	5.7 Experimental Results
	Experiment 5-7.�� LP versus CMA. This experiment compares a T�/�2-spaced CMA equalizer to a 1�¥�2...
	We conduct three trials with varying degrees of shaping. For the first trial, there is no shaping...
	The second trial uses moderate shaping with a measured kurtosis of k �= 1.595. We see in Fig.�5-1...
	The constellation is heavily shaped for the third trial. The kurtosis is measured to be k�= 1.857...
	We remark that, for each trial, the step sizes in all updates are optimized for convergence speed...
	Figure 5-12.�� Convergence of LP versus CMA: (a) unshaped 64-QAM; (b) moderately shaped; and (c) ...
	Experiment 5-8.�� Asynchronous CDMA. We now consider the 2-user asynchronous CDMA system illustra...
	� �{��cj(1)��}�=�{ +1 –1 +1 +1 –1 –1 –1 –1 –1 +1 +1 +1 –1 –1 –1 –1��}, {��cj(2)���} = { +1 +1 +1 ...

	We implement the blind adaptive LP detector with index L = 0 and order N = 1 using m�f = 0.5(2–k/...
	Figure 5-13.�� (a) A two-user asynchronous CDMA system with a chip-rate sampling receiver; (b) An...
	Figure 5-14.�� Recovered constellations for the asynchronous CDMA system of Experiment 5-8.

	5.8 Chapter Summary
	Appendix 5-1:�� Proof of Theorem 5-2 and Corollary 5-2.1 (Existence of the ARMA Model)
	[��I �0m�¥�mL �–AL+1 º�–AL+N�]HN+L+1 = [�H0 º�HL 0m�¥�n(M�+�N)�]. (5-75)
	[��0m�¥�m(L+1) �–AL+1 º�–AN+L]HN+L+1 = –[��0m�¥�m HL+1 º�HM 0m�¥�(N+L)n�] (5-76)
	[�AL+1 º�AL+N�]HN = [�HL+1 º�HM 0m�¥��n(N+L)�]. (5-77)
	[�AL+1 º�AL+N��]�H �= [��HL+1 º�HM �0m�¥�n(N+L)]�H�†H�+ VH ������ �= [�HL+1 º�HM�0m�¥�n(N+L)���]....

	Appendix 5-2:�� Proof of Theorem 5-3 and Corollary 5-3.1 (Existence of the AP Model)
	[�–A�–N º�–A�–1 �I��]HN+1 = [��0m�¥�(M+N)n HM]. (5-79)
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	Appendix 5-3:�� Proof of Theorems 5-8, 5-10, Corollaries 5-8.1, 5-10.1 (Optimal L-Step Forward Pr...
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	Figure 6-1.�� Equivalent models: (a) an FIR channel followed by receiver stacking, and (b) a memo...

	6.2 The Stacked MMSE Detector
	Definition 6-1.�� The stacked MMSE detector C�MMSE for (6-1) is the n(M+N) ¥ mN matrix C �that mi...
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