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The final verdict will not be in the obituaries. The final verdict will be when the Ph.D.

students dig out the archives, read my old papers, assess what my enemies have said, sift

the evidence and seek the truth.
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SUMMARY

Recent technological advancements in material science and aerospace engineering

have progressed the developments of hypersonic aircraft with air-breathing engines and

in-atmosphere hypersonic weapons. These hypersonic vehicles, which travel at speeds of

Mach five or faster, are expected to change the face of modern naval warfare, due to their

ability to facilitate surgical strikes on well-defended capital ships. To better coordinate

these types of operations on a global scale, modern militaries have a growing interest

in low-earth orbit (LEO) satellite communications. Compared to their geosynchronous

counterparts, LEO satellite communication has significantly lower latency and reduced

deployment costs, which makes them attractive for both military and commercial

application.

The high speeds and rapid movement associated with both LEO satellites and

hypersonic vehicles makes direct-sequence spread-spectrum (DSSS) communication

particularly challenging. Many conventional DSSS acquisition algorithms assume the

Doppler frequency is small and constant, and that the frame length is sufficiently short

that the effects of time-varying channel delays can be ignored. These assumptions hold in

neither the LEO satellite channel nor the hypersonic vehicle channel, both of which are

considered a high-dynamic communication environment due to the presence of both large

time-varying Doppler frequency shifts and time-varying channel delays, and subsequently

conventional algorithms have poor acquisition performance.

Even with the expected introduction of hypersonic aircraft into modern military

arsenals, its task of reconnaissance and intelligence gathering does not change substantially.

One method of performing reconnaissance is to deploy a detector that will determine if

there are DSSS signals buried in a particular frequency band. This is a difficult task when

key parameters such as the spreading sequence and the carrier frequency are unknown.

To further exacerbate the difficulty of the problem, in military applications the spreading
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code period is often so long that the detector cannot exploit autocorrelative properties to

perform detection, which severely limits the number of feasible detection techniques.

This thesis proposes strategies for both the acquisition of DSSS signals in high-dynamic

environments, and the detection DSSS signals in a noncooperative context. In particular,

we propose delay-Doppler efficient exhaustive search (DEES), an algorithm that can

acquire DSSS signals in the presence of both Doppler rate and large Doppler frequency

shifts. For the detection problem, we propose a multi-antenna likelihood-ratio-test detector

that can detect quadrature phase-shift keying (QPSK) coded DSSS signals that does not

require knowledge of the spreading code. While military communications serve as the

chief motivator for this thesis, the detection and synchronization strategies presented are

not limited to military application. For instance, QPSK signal detection has commercial

application in spectrum sensing where a user or node must ascertain whether a portion

of the spectrum is available for use, and reliable DSSS acquisition is a necessity for

satellite-based broadband internet systems that make use of code-division multiple access.

DEES is a computationally efficient algorithm that can acquire direct-sequence

spread-spectrum signals in high-dynamic environments. DEES combines the second-order

keystone transform and the fractional Fourier transform to mitigate the time-varying

effects of the channel, before jointly estimating both the code phase offset and the Doppler

frequency. Based on numerical simulation results, DEES provides improved acquisition

performance over existing FFT-based acquisition algorithms without the computational

complexity of a three-dimensional maximum-likelihood exhaustive search.

For the noncooperative DSSS detection problem, this thesis investigates the advantage

of a multi-antenna detector that knows the signal has QPSK coded chips, when the

spreading sequence is unknown to the detector, and when the spreading code period is

longer than the detector observation window. We propose a likelihood-ratio-test detector

that takes advantage of knowledge of the signal alphabet, whose complexity grows linearly

with the observation window length, and that makes use of multiple antennas. The

xvi



proposed alphabet-aware detector outperforms multi-antenna alphabet-unaware detectors,

especially when the SNR is high, and the observation window is small. However, the

performance advantage is not large, it diminishes further when the SNR is low, and it comes

at the cost of higher computational complexity. In most cases, simpler alphabet-unaware

detectors such as the energy detector provide comparable detection performance with less

complexity.
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CHAPTER 1

INTRODUCTION

The face of warfare and armed conflict is inextricably shaped by the technology of the

time period. The past three decades have seen a rapid development of military technology

to the extent that in some cases their theoretical and conceptual developments outstrip

existing literature on military strategy and tactics [1]. We focus on two main technologies

of interest: the hypersonic vehicle, and low-earth orbit (LEO) satellite constellations.

A hypersonic vehicle refers to an object, typically a missile, spacecraft, or airplane, that

moves at speeds in excess of Mach 5, or speeds five times greater than the speed of sound.

By itself, hypersonic flight is not a new development, with the North American Aviation

X-15 having completed the first successful hypersonic flight in the 1950s, and with other

intermittent developments such as the Boeing X-37, an orbital test vehicle developed in

the early 2000s [2]. Recently, there has been growing interest from militaries to further

develop in-atmosphere hypersonic vehicles due to the massive strategic advantages they

would provide [3, 4].

Broadly speaking, we can categorize hypersonic vehicles into two categories:

hypersonic aircraft and hypersonic weapons. Hypersonic aircraft are capable of achieving

and maintaining hypersonic speeds in-atmosphere without the aid of a mother ship; that

is the aircraft is self-sufficient and do not require an external platform to ferry them to

a certain altitude before they can engage in hypersonic flight. In comparison to their

rocket-boosted cousins, hypersonic aircraft that make use of propulsion systems such as

scramjets or ramjets are lighter weight, as their engines can make use of the oxygen in

the atmosphere which means the aircraft does not have to carry a tank of oxidizer, have

greater maneuverability since they can take advantage of aerodynamic forces and are

not constrained by rocket thrust, and finally air-breathing hypersonic aircraft can sustain
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high speeds for longer as their engines are more fuel efficient [5, 6]. This thesis focuses

exclusively on air-breathing hypersonic aircraft.

Hypersonic aircraft are expected to provide the next generation of military intelligence,

surveillance and reconnaissance due to their ability to penetrate existing air defenses and

with the growing number of counter-stealth technologies that call into the question the

future survivability of existing stealth reconnaissance platforms. However, as of writing,

technical challenges associated with the air-frame and propulsion system have prevented a

hypersonic aircraft from being flown or even constructed [7, 8].

There are three classes of hypersonic weapons: ballistic missiles, boost-glide vehicles,

and cruise missiles [4]. Hypersonic ballistic missiles have been around for decades, and are

launched into space before diving back down to earth to close in on its target. They have

predicable trajectories which makes them relatively easy to track by radar, and they can be

intercepted by other missiles as a defensive measure. On the other hand, recently developed

hypersonic boost-glide vehicles and hypersonic cruise missiles launches are much harder

to detect, and have trajectories that are harder to predict when compared to hypersonic

ballistic missiles.

Similar to hypersonic ballistic missiles, hypersonic boost-glide vehicles are first

launched via rocket or other launch vehicle. However, instead of being launched into

space, boost-glide vehicles are launched into the mesosphere, approximately 50 to 80 km

in altitude, where it can re-enter the upper atmosphere and use aerodynamic lift to glide as

it slowly descends in altitude and travels towards its intended target [3, 4]. One of the key

characteristics of boost-glide vehicles is their exceptional maneuverability. Unlike either

ballistic missiles or cruise missiles, the glider can maneuver in any manner necessary

(energy permitting), which from the defender’s perspective makes it difficult to ascertain

what the boost-glide vehicle’s intended target is and where defense action must take place.

The lethality of hypersonic boost-glide vehicles is further underscored by their low altitude

trajectory, which means they can evade early warning radar systems, and their exceptional

2



Figure 1.1: Typical flight trajectories of hypersonic weapons [4].

speed, which makes them difficult to detect and track by radar [4, 9].

Hypersonic cruise missiles are powered by supersonic ramjet and scramjet engines, and

follow an even lower altitude flight path when compared to the boost-glide vehicle. Like the

ballistic missile, the cruise missile has a relatively predictable trajectory as its travels at a

nearly constant altitude and speed, but its low altitude coupled with its high speed allows it

to skim under early warning radar systems, and by the time it is detected and tracked, there

may be only precious moments to mount a defensive response. A summary of hypersonic

weapon flight trajectories is shown in Fig. 1.1.

Naval warfare is one of the major arenas where both hypersonic weapons and

hypersonic aircraft are expected to have a significant impact [1]. Hypersonic weapons

greatly extend engagement ranges, and dramatically reduce the amount of time naval

officers have to react and engage in defensive strategy. A coordinated and successful

strike of hypersonic weapons against a carrier battlegroup could change the balance of

naval forces in an entire theater in a matter of minutes. Furthermore, hypersonic aircraft

could be used to not only safely perform reconnaissance on well-defended objectives, but

they can also be used to deliver hypersonic weapons to perform surgical strikes on enemy

carrier battlegroups. If aircraft-carrier-based hypersonic aircraft were feasible, they could

3



be deployed from any major body of water and strike high value targets inland that are

deep behind a web of air defenses.

Since hypersonic vehicles expands the scope of naval warfare, and increases time

pressure for executive decision making, it is imperative that a reliable communication

backbone is present such that naval vessels and other military units can coordinate with

one another to mount an effective response. This could consist of coordinate between

reconnaissance aircraft and the carrier battlegroup to determine if enemy forces have

hypersonic cruise missiles that pose a serious threat to naval vessels, and that a preemptive

strike is necessary while friendly forces have the element of surprise. Or it could be

something more time sensitive such as communicating radar tracking information on an

inbound hypersonic cruise missile to the relevant naval vessels within the battlegroup.

While there are commercial communication systems that can be used in remote areas such

as the open ocean, in practice the requirements of military communication systems are

fundamentally different from commercial communication systems, and extend beyond

geographical differences.

For one, it is difficult to predict geographically where exactly the next armed conflict

will arise, so military communication networks are often ad hoc, multihop, rapidly

deployable, and do not have the luxury of relying on well-planned infrastructure as

commercial communication systems can. Military communication systems must also

deal with contested electromagnetic spectrum; it is quite common for hostile forces to

deploy jamming systems in an attempt to disrupt communication systems. Subsequently,

military systems have a focus on low probability of detection (LPD), such that they may

evade detection and deliberate jamming by hostile forces. In the event communication

transmission are detected, the system is expected to have anti-jam and low probability of

intercept (LPI) capabilities so to preserve tactical data links in jamming environments,

and to secure data streams if they are intercepted by an eavesdropper. Finally, as military

operations can span several theaters, communication systems must have a high degree of
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interoperability in joining space, naval, air, and land networks [10].

Satellite communications (satcom) are indispensable for global military operations

due to their wide coverage, nuclear disaster survivability, anti-jamming capabilities,

and their ability to utilize waveforms that have favorable LPD/LPI characteristics [11].

The framework for military satcom systems often consists of several ground stations,

which are responsible for tracking, telemetry and control (TT&C), followed by the space

constellation, which consists of several satellites that communicate with one another via

crosslink and act as a network, and finally the user terminals which are terrestrial in nature,

and can consist of naval vessels, fighter jets, or portable terminals carried by the warfighter.

Historically, the military satcom systems have made use of satellites in geosynchronous

(GEO) orbit. The main advantage of GEO satellites, which have an approximate altitude

of 36, 000 km, is their stability, as their position relative to an observer on earth does not

change, and the large coverage afforded by a single GEO satellite, which can cover entire

geographic regions [11, 12].

This past decade has seen a growing interest in low-earth orbit (LEO) satellites for both

military and commercial application [12, 13, 14, 15, 16, 17]. There are notable advantages

afforded by LEO satellites that neither medium earth orbit (MEO) nor GEO satellites

have. One of the main advantages of LEO satcom is afforded by the low 200 − 2000 km

orbit, which results in significantly lower latencies and reduced pathloss, which reduces

transmit power requirements. This low latency makes LEO satellite a prime candidate

for commercial internet service in areas underserved by terrestrial broadband, while the

reduced transmit power requirements can improve LPD characteristics, making it attractive

for military applications along with the reduced latency [12, 15, 17]. Furthermore,

since radiation exposure is reduced at altitudes below 1000 km, LEO satellites are often

smaller and lighter weight when compared to their MEO and GEO brethren, which lower

constraints on launch vehicles and ultimately reduces deployment costs [13, 17]. LEO

satellites can also be outfitted with a multiple spot beam antenna system, which is a
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system where a single antenna aperture produces multiple beams pointing in different

directions. Along with the frequency reuse and multi-user advantage that this technology

affords, it also improves the anti-jam capabilities of the communication system, as multiple

spot beam satellites can more readily locate interference source compared to traditional

single-beam satellites and respond accordingly [11].

Despite these LEO satellite advantages, there are several unique challenges associated

with LEO satcom. Firstly, while the low altitude does substantially reduce latency, it also

reduces the field of view and coverage of the satellite. This is often remedied by introducing

a constellation of LEO satellites to serve a geographic area. However, unlike GEO or

MEO satellites, LEO satellites have a short visibility window on the order of minutes [18],

which requires that the user terminal rapidly synchronize with the LEO satellite during the

initial transmission before handing off to another satellite as the original satellite leaves

the terminal’s visibility window [15, 19]. Secondly, LEO satellites have high relative

velocities with respect to an observer on earth, which results in large time-varying Doppler

frequency shifts, especially at high carrier frequencies [13, 15, 18, 20, 21]. Furthermore,

the time-varying nature of channel can make it difficult for the transmitter to maintain

accurate channel state information (CSI), which can hamper the performance of massive

multiple input multiple output (MIMO) satellite systems [22]. A similar phenomenon

can be found in the hypersonic vehicle channel [23]. Lastly, the LEO satellite channel

is generally considered a multipath channel that undergoes Rician fading; this is due to the

scattering from objects and physical features around the ground terminal [24, 25, 26, 27].

1.1 The Motivating Scenario

Up until this point, we have described hypersonic vehicles in a modern military context, and

have shown their expected strategic importance in naval warfare. We have also described

the advantages of satcom in military operations, and in-particular have pointed out the

growing interest in LEO satcom. However, this thesis does not aim to discuss the change in
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Figure 1.2: The motivating communication scenario. A naval vessel communicates with
an aircraft performing reconnaissance on an island ahead of the naval fleet. The aircraft
is unaware of the hostile forces on the island. A low-earth orbit satellite is used as a
communication relay in the event the aircraft loses contact with naval command. Figure
not drawn to scale.

strategy, tactic, or military doctrine that accompany these technological changes, nor will it

attempt to evaluate the feasibility of deploying these technologies. Rather, it focuses on the

communication problems that should be present if these technologies were deployed onto

the battlefield, and proposes solutions to them.

Since the scope of any military operation is generally vast, we instead propose a

hypothetical scenario inspired by the previous discussion and analyze the communication

problems that are present.

We consider the hypothetical scenario shown in Fig. 1.2, which depicts a friendly naval

battlegroup on the open ocean in the bottom left-hand corner, a friendly aircraft performing

reconissance very far away from the naval battlegroup, and a friendly LEO satellite passing

above. The enemy forces consist of a submarine and other anti-ship defenses situated on

an island ahead of the naval battle group; the friendly forces are assumed to be unaware of

their presence. The objective of the aircraft is to gather intelligence on the island, determine

whether it is a neutral or contested region, then report its finding back to naval command.

It may do so via a direct line of sight link, or in the event that is unavailable, it can utilize
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the LEO satellite as an intermediary.

Both enemy and friendly forces are assumed to utilize direct-sequence spread-spectrum

(DSSS) communications. Spread-spectrum refers to a set of techniques in which a

narrowband signal is spread in bandwidth in the frequency domain before transmission.

In the case of DSSS, the narrowband signal is modulated by a pseudorandom sequence

known as the spreading code, and the resulting spreaded signal has a lower power spectral

density which makes it difficult to distinguish from noise. A receiver that has knowledge of

the spreading sequence can take advantage of processing gain, which is equal to the ratio

of the bandwidth of the spreaded signal to the bandwidth of the original narrowband signal,

and “boost” the SNR of wideband signal by despreading it and recovering the narrowband

signal in the process. Due to these favorable LPD properties, along with jam and multipath

resistance, DSSS communications is a staple of military communication systems [28,

29]. While DSSS signals have been used in commercial code-division multiple access

(CDMA) cellular systems, military DSSS communication systems generally have much

higher processing gains, with certain signals buried 30 dB below the noise floor, and much

longer spreading code periods; it is not unusual for spreading code periods to be on the

order of 226 or longer [30].

While the reconnaissance aircraft can make use of an active probing technique such

as radar to determine whether hostile forces are present on the island, doing so removes

any element of covertness that the aircraft has, and it could possibly be neutralized without

having delivered mission-vital information back to command. Even if it did manage to

avoid attack, its presence would alert enemy forces and any element of surprise that friendly

forces had would now be lost. An alternative strategy is to utilize a passive detection

technique. For instance, the aircraft may employ a detector that is designed to detect

the presence of DSSS signals. The reasoning here is, if there are hostile forces present

on this island, they are likely communicating with one another, and these communication

signals can be detected. However, since friendly forces are unlikely to know the spreading
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sequence associated with the enemy’s DSSS communication system, the detector is unable

to take advantage of processing gain and “dig up” any potential signals buried in the noise,

which makes this noncooperative detection task particularly difficult.

Nonetheless, once the aircraft has made a determination as to whether enemy

communication signals are present, and subsequently hostile forces should be present

near the island, it must relay this intelligence back to naval command. While the

aircraft now has knowledge of the spreading sequence as it is an authorized user of the

friendly communication system, it still must perform synchronization before it is able to

communicate via the air-to-ship (AtS) channel or via LEO satcom. This can be a difficult

task, as the LEO satellite channel is characterized by a time-varying Doppler frequency

shift and time-varying channel delays. Furthermore, if the reconnaissance aircraft is

traveling at hypersonic speeds, the AtS channel will suffer from similar Doppler effects. In

either case, the naval vessel’s onboard communication system needs to be robust enough

to perform DSSS acquisition even in the face of large, time-varying Doppler frequency

shifts, which is no trivial task.

We have identified two main communication problems in this hypothetical scenario:

noncooperative DSSS detection and DSSS synchronization in high-dynamic environments.

While the scenario depicted in Fig. 1.2 serves as a key motivation for this thesis, a realistic

model that captures the minute details of both the AtS and LEO satellite channel, along

with the intricacies of present or future state-of-the-art military communication systems

is beyond the scope of this thesis. The reasons for this are twofold. Firstly, for obvious

reasons, there is a lack of publicly available information regarding network protocols,

key system parameters, physical waveform aspects and so forth for modern military

communication systems. While there is unclassified information for legacy military

communication systems, these systems are often too dated to provide guidance on more

modern systems. At best, we can only speculate as to what features maybe present in

such systems, and provide an educated guess as to what the relevant system parameters
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are. Secondly, while there have been several attempts to characterize the AtS channel,

including several measurement campaigns, these have been performed with civilian

aircraft which are significantly less agile than their military counterparts and are often

restricted to subsonic speeds. In the case of hypersonic aircraft, there are no empirical

channel measurements as such an aircraft has, as of writing, never even flown. This,

along with the fact electromagnetic or physics-based simulations are beyond the scope of

this thesis, severely dampens our ability to characterized the hypersonic vehicle channel

beyond a surface level. Despite these limitations, we can still proceed in solving both

problems of interest.

The aims of this thesis are as follows:

1. Identify key characteristics and impediments of the air-to-ship channel, with a focus

on those that will greatly affect DSSS acquisition. Understand what additional

channel impediments are present if the aircraft is traveling at hypersonic speeds.

2. Develop an algorithm that can acquire DSSS signals in high-dynamic environments

where time-varying Doppler frequency shifts and time-varying channel delays are

present. The low-earth orbit satellite channel is already known to exhibit these

characteristics, and DSSS acquisition in such an environment becomes even more

challenging with the long spreading codes typically utilized in military systems.

3. Develop a noncooperative DSSS detection technique that is applicable when the

detector observation window length is smaller than the spreading code period,

which is a reasonable assumption in the scenario of interest. In particular, this

thesis investigates the performance advantage of an “alphabet-aware” multi-antenna

detector, and knows the chip modulation scheme.

This thesis is organized as follows: Chapter 2 completes the first task in the previous list

by taking a first-principles approach to gain intuition into the physical phenomena present,

then by surveying existing AtS channel models and measurement campaigns. Chapter 2
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also provides a literature survey of both noncooperative DSSS detection techniques, and

DSSS acquisition techniques, and further elucidates aims two and three of this thesis.

Chapter 3 introduces the core form of DEES, our proposed DSSS acquisition algorithm,

while Chapter 4 augments the core form to be suitable for high-dynamic environments.

Chapters 5 investigates the benefits of alphabet-awareness in noncooperative DSSS

detection, and discusses several detection strategies that are viable when the detector

observation window is short relative to the spreading code period. Finally, Chapters 6

summarizes the main contributions of this thesis and provides future direction.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

This chapter is divided into three sections, each of which addresses one of the aims

of this thesis discussed in the previous chapter. The first section discusses air-to-ship

channel modeling and existing measurement campaigns, before delving into aspects of

the hypersonic vehicle channel. The second and third section discuss direct-sequence

spread-spectrum (DSSS) acquisition and noncooperative DSSS detection, respectively.

For each section, we provide a comprehensive literature survey, along with the necessary

background information needed to better understand the results presented later in this

thesis.

2.1 Maritime Air-to-Ship Channel

To the best of our knowledge, there are no existing channel models for hypersonic

aircraft operating in maritime environments, and due to the fact such aircraft have not yet

been flown, there are no existing empirical measurements. However, there are several

air-to-ship (AtS) channel models that exist if the aircraft is subsonic. We first provide a

brief introduction of electromagnetic scattering theory to better understand the physical

phenomena present in the channel, then move onto simplified multi-ray AtS models and

existing measurement campaigns. Finally, we discuss potential plasma effects that should

be accounted for when communicating with hypersonic vehicles.

As was discussed in the previous chapter, rigorous channel modeling is not an aim of

this thesis. Rather, the goal of this section is to identify key characteristics of the AtS

which will serve as guidance in developing a simplified time-varying channel impulse

response h(t, τ). With a passband h(t, τ), an equivalent baseband channel model relating

the transmit and receive signal samples can then be derived.
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Figure 2.1: Block diagram of transmitter-receiver system model. Since both the source
signal xk and received signal rk are digital, we can model an equivalent baseband channel
with impulse response hk,n.

An example of this is shown in Fig. 2.1; this model which will serve as the basis for

modeling the baseband IQ samples rk at the receiver and eavesdropper, in the case of the

DSSS acquisition and noncooperative DSSS detection problems, respectively. Depending

on the modulating symbol xk, an IQ upconverter (and downconverter) is used in place

of the single in-phase upconverter present in Fig. 2.1. Throughout this thesis, we will

assume the analog to digital converters (ADC) and digital to analog converters (DAC) are

ideal, and make use of ideal sinc pulses. Subsequently, other components present in the

radio-frequency chain such as filter and amplifiers, have been ignored.

2.1.1 Scattering of Electromagnetic Waves from Rough Surfaces

We take a first-principles approach to better understand the physical phenomena that

is present in the AtS channel. Once we have a handle on how electromagnetic waves

propagate and scatter from rough surfaces, we can assess what existing AtS channel

models are appropriate for the scenario in Fig. 1.2. We are particularly interested in rough

surface scattering theory, as the ocean’s surface is not perfectly smooth, and given that the

wavelengths of radio-frequency electromagnetic waves are on the order of centimeters, it

would not be appropriate to approximate them as such.

Consider a harmonic plane wave with unit amplitude incident on a rough surface

described by the height function ζ(x, y). The electric field of the incident wave can be
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Figure 2.2: Scattering geometry with incident plane wave E1 and scattered wave E2.

described as:

E1 = ejωtejk·r, (2.1)

where ω = 2πf is the radian frequency, t is the time variable, r = ⟨x, y, z⟩ is the

observation vector, and k = ⟨kx, ky, kz⟩ is the wavevector. The magnitude of the

wavevector is equal to the wave number |k| =
√
k2x + k2y + k2z = 2π/λ where λ is the

wavelength.

We can characterize the incoming wave as incident on the surface with some angle

θ1, and the reflected wave can be characterized with angles θ2 and θ3. This is shown in

Fig. 2.2. Let P be an observation point a distance R′ away from a point O on the surface

(x0, y0, ζ(x0, y0)). The scattered field E2 at point P is given by the Helmholtz integral [31,

32]:

E2(P ) =
1

4π

∫∫
S

(
E1
∂ψ

∂n
− ψ

∂E1

∂n

)
dS, (2.2)

where S is the reflection surface, n is the surface normal vector, and ψ = e−jk2R′
/R′. A

closed form solution is generally not known for (2.2). However, for the case in which the

14



surface’s height follows a Gaussian distribution, there are closed-form solutions [31, 33].

A Gaussian scattering surface can be characterized by its height standard deviation

σh and its surface correlation length lcorr [31, 33]. We consider a scattering surface of

area A = lxly where lx and ly are large compared to the incident wavelength and surface

correlation length [31, 33]. The scattering coefficient is defined as:

ρ =
E2

Espec
(2.3)

where E2 is the amplitude of the scattered field E2 and Espec is the amplitude of a wave

reflected by a smooth, perfectly conducting surface [31, 32, 33].

For an infinitely conductive surface the averaged scattered power is [31, 32, 33, 34]

⟨⟨ρρ∗⟩⟩ = e−g

(
ρ20 +

πlcorrF
2

A

∞∑
m=0

gm

m!m
e−

v2xyl2corr
4m

)
, (2.4)

where

ρ0 = sinc(vxlx)sinc(vyly), (2.5)

vx = k(sin(θ1)− sin(θ2)cos(θ3)), (2.6)

vy = k(−sin(θ2)sin(θ3)), (2.7)

vxy =
√
v2x + v2y , (2.8)

F =
1 + cos(θ1)cos(θ2)− sin(θ1)sin(θ2)cos(θ3)

cos(θ1)(cos(θ1) + cos(θ2))
, (2.9)

ρ0 = sinc(vxlx)sinc(vyly), (2.10)

and

g = k2σ2
h(cos(θ1) + cos(θ2))2. (2.11)

The ρ20 term in (2.4) describes the power contributions from specular scattering, while the

second term in the sum in (2.4) describes the power contributions from diffuse scattering
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Figure 2.3: Effect of g on scattering electromagnetic wave scattering. The surfaces are: (a)
smooth, (b) slightly rough, (c), moderately rough, and (d) very rough [31].

[33].

(2.11) defines g, a constant proportional to the surface roughness, which determines the

proportion of the scattered wave that is specular or diffuse. For example, in Fig. 2.3, when

g is small most of the scattered wave’s power is from specular reflection. However, when

g is large, the specular component largely disappears, and the scattered wave is dominated

by diffuse scattering.

We have now established the basics of the Beckmann-Spizzichino rough surface

scattering model, which can be used as a basis for simulating the time-varying channel

impulse response h(t, τ). One possible simulation methodology is as follows. The

transmitter and receiver are fixed at their locations of interest, and the surface between

them is divided into a grid made up of equal-sized tiles of area A. Each tile is then excited

with a plane wave whose incident angle is determined by the relative geometry of the tile

of interest and the transmitter; the scattered power for that tile is then calculated at the

receiver. As long as the dimensions of A are larger than the wavelength and correlation
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length, the total electric field at the receiver is the sum of all the contributions from each

of the individual tiles [32, 33]. However, care should be taken such that each tile is

significantly smaller than the distance between the transmitter and receiver, and that each

tile is homogeneous in its electrical properties, e.g. it does not straddle a media boundary

[32].

The aforementioned simulation methodology only represents the channel response at

one particular time instance. The time-varying aspects of the channel can be simulated by

moving the transmitter and receiver at each tick of the simulation clock, and recalculating

the wave propagation and scattering.

2.1.2 Specular Reflection Models

Due to the complexity of the Beckmann-Spizzchino model, along with the computationally

intensive simulations needed to generate the channel response, we now survey other

maritime channel models that apply several simplifying assumptions to reduce model

complexity. For example, several of these models calculate the specular and diffuse

scattering contributions in a binary fashion, instead of having a smooth transition between

the two as (2.4) suggests.

[35] describes an approach for calculating the bistatic microwave reflectivity of the sea

surface at low grazing angles. While [35] does not provide an explicit time-varying channel

impulse response h(t, τ), it does provide an approach for calculating the total received

power in a rough sea environment that accommodates for other second-order effects such

as finite-conductivity, surface curvature effects, and sea wave shadowing.

[35] asserts that along with the established line-of-sight (LoS) component that exists

between the transmit and receive antennas, the none-line-of-sight (NLoS) contributions can

be divided into three sub-categories: 1) specular reflection from the glistening region, 2)

diffuse reflection from the glistening region, and 3) wide angle diffuse scattering. The

glistening region refers to the general area if the LoS vector is projected onto the sea
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surface, and contributes to most of the NLoS power. We specifically focus on the specular

reflection portion of the model, since aside from very rough sea environments most of the

reflected energy is due to specular contributions, and not diffuse [35, 36, 37]. The diffuse

scattering as modeled in [35] has its roots in (2.4); the interested reader is referred to [35]

for further reading.

We now describe a specular reflection model that accommodates for surface roughess,

along with the curvature of the earth’s surface, which must be accounted for when

communicating over longer distances. This reflection model is not exclusive to [35], and

has been discussed in [38, 39]. The specular reflection coefficient is:

Γs = Γ0ρsD (2.12)

where Γ0 is the Fresnel reflection coefficient, ρs is the surface roughness factor, and D is

the spherical divergence factor.

The Fresnel reflection coefficients at a boundary interface for parallel and perpendicular

polarization are [40, 41]:

Γ∥ =
−cos(θ1) +

√
ϵ1
ϵ2

√
1−

(
ϵ1
ϵ2

)
sin2(θ1)

cos(θ1) +
√

ϵ1
ϵ2

√
1−

(
ϵ1
ϵ2

)
sin2(θ1)

, (2.13)

and

Γ⊥ =
cos(θ1) +

√
ϵ2
ϵ1

√
1−

(
ϵ1
ϵ2

)
sin2(θ1)

cos(θ1)−
√

ϵ2
ϵ1

√
1−

(
ϵ1
ϵ2

)
sin2(θ1)

, (2.14)

where θ1 is the incident angle measured from the surface normal to the incoming wave,

where ϵ1 and ϵ2 refers to the complex permittivity of media one and media two, respectively,

and where it was assumed µr = 1 for both media. If media one is free space, then the ratio

ϵ2/ϵ1 can be simplified as:
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ϵ2
ϵ1

≈ ϵr − j60λσ (2.15)

where the approximation 1/2πϵ0c ≈ 60 was used, and where ϵ0 = 8.854 × 10−12 F/m is

the permittivity of free space, and where c = 3 × 108 m/s is the speed of light. While

the relative permittivity and conductivity of sea water will depend on several factors such

as frequency and salinity, in the microwave frequency range they may be approximated as

ϵr = 80 and σ = 4 mho/m [31, 35, 42].

The surface roughness factor is

ρs = e−
p2

2 I0

(
p2

2

)
, (2.16)

where

p =
4πσH
λ

cos(θ1), (2.17)

where I0(x) is the modified Bessel function of the zeroth order, and where σH is the

root-mean-square (rms) wave height [38, 43]. For a calm sea σH is on the order of 0.01 m

while for a rough sea σH is on the order of 1.03 m [31, 35]. From (2.16) and (2.12) it should

be apparent that in this model, an increasingly rough surface attenuates contributions due to

specular reflections. However, since there is no diffuse component in (2.12), a very rough

surface in this model implies there are no reflection contributions. This is in contrast to

the Beckmann-Spizzichino model in (2.4), which asserts that there is a smooth transition

between specular and diffuse scattering depending on the surface roughness.

The spherical divergence factor, which must be accounted for when the separation

between the transmitter and receiver is sufficiently large such that the curvature of the

earth must be taken into account, is

D =

[
1 +

2

Resin(ϕ)
R1R2

R1 +R2

]− 1
2

(2.18)
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where R1 is the distance from transmitter to the specular reflection point, R2 is the distance

from the specular reflection point to the receiver, and Re is the effective radius of the earth.

ϕ is the angle subtended by the distance between the two terminals. The effective radius of

the earth is larger than the actual radius of the earth in the microwave frequency range due

to refraction in the atmosphere, and is Re = 8500 km [35, 38, 39].

The specular reflection coefficient described in (2.12) accounts for surface roughness

effects, finite conductivity, and earth curvature effects. In a calm sea environment, this

specular reflection model when coupled with the LoS component results in a variation of the

well-known two-ray model [44], which only differs from the classic one in the modeling of

the reflection coefficient. There are other multi-ray models such as [45] that accommodate

for evaporation ducts in tropical maritime environments, which increase the range of radio

communications due to the waveguiding effect the duct has, or that accommodate for

the diffuse scattering with a statistical model [46]. However, as will be seen in the next

subsection which discusses empirical measurements, for a calm to mildly rough bodies of

water, the contributions from diffuse scattering are minimal and a two ray model captures

most of the effects.

2.1.3 Existing Channel Measurement Campaigns

In this subsection we briefly discuss the relevant results of several AtS measurement

campaigns.

Several channel sounding campaigns involving a ground station near the shore line

communicating with an aircraft or unmanned aerial vehicle (UAV) over the open ocean

report a multi-ray channel model is consistent with measured data [36, 37, 47, 48]. The

measurement setup in [37, 47] consists of a ground station communicating communicating

with an S-3B fixed wing aircraft flying above the Pacific Ocean near Oxnard, CA. TThe

measurements are performed at L-band (960 − 977 MHz) and (5030 − 5091 MHz). The

aircraft engages in two flight patterns: the first consists of the aircraft flying directly away
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from the ground station in a straight line and at a fixed altitude, while the second consists

of the aircraft flying an oval shaped pattern above the ocean. In both scenarios the aircraft

maintains a fixed altitude of approximately 800 m and a fixed velocity of approximately

90 m/s. The maximum range between the aircraft and ground station is approximately

25 km for the oval shaped flying pattern and approximately 40 km for the straight line

pattern. The angle of elevation from the ground station’s perspective ranges from 2 to 40

degrees, and decreases the further the aircraft is away from the ground station.

The authors in [37, 47] state the channel can be modeled as a two-ray model with an

intermittent third ray. The first ray is the LoS component between the ground station and

the aircraft. The second ray is the specular reflected component from the ocean’s surface,

while the third ray is an intermittent component that arises from the scattering off clutter in

the ocean such as large ships or platforms. The third ray was only present less than 2.5% of

the time in measurement. The delay spread between the LoS component and the specularly

reflected component was on the order of 70 ns but dropped to as low as 10 ns (minimum

channel sounder resolution) as the aircraft flew further away from the ground station [37,

47]. The authors also state that ducting effects, which can reduce propagation loss to

below free space levels, were largely absent during their measurement campaign. This

is substantially different result from [48], which reports not only significantly evaporation

ducting effects, but also reports multipath rays extending up to six rays. The presence of

a significant evaporation duct could be explained due to the warmer climate in which the

measurements were performed, while the multipath rays exceeding four were encountered

a minority of the time (< 1% of measurements) and only when the UAV was operating at

a low altitude of approximately 370 m [48, 49].

[36] reports a similar three ray phenomena as [37, 47] did. The measurement setup

in [36] consisted of an aircraft flying at an altitude of approximately 760 m in a straight

line away from a ground station, above the Pacific Ocean near Point Mugu, CA. The

measurements were performed at 8.0 GHz. There were two sets of measurements taken,
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Figure 2.4: Multipath ray contributions for (a) calm sea and (b) rough sea environments
[36].
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one in which the sea was in a calm state, and the other in a rough state. The calm sea

measurements revealed a three ray phenomena similar to that in [37, 47]. The first multipath

component is reported to have a mean normalized amplitude of 0.68 relative to the LoS

component, while the third ray has a greatly reduced mean relative amplitude 0.06. For

the rough sea measurements, the amplitude of the first multipath reflection is reduced to

0.52, while the third ray becomes more prominent in the power delay profile (PDP) and

stronger in relative amplitude. Other weak multipath components are present in the rough

sea environment due to diffuse scattering as visualized in Fig. 2.4(b). Based on the results

in [36] the calm sea condition results in a more frequency selective channel.

2.1.4 Hypersonic Vehicle Channel

In this section, we discuss the adjustments to the AtS channel if the aerial platform is

now a hypersonic aircraft. Since there are, as of writing, no existing empirical channel

measurements, and the existing literature on in-atmosphere hypersonic aircraft from a

channel modeling is somewhat sparse, there is a great limitation on knowing what physical

phenomena maybe present at hypersonic speeds. However, it is certain that the high

speeds will introduce Doppler effects to the channel, which will be discussed in the next

subsection, while research from space re-entry vehicles suggest the plasma sheath could be

present which will severely disrupt communications.

The plasma sheath refers to the layer of plasma that can form around a body that travels

faster than hypersonic speeds and at high altitudes. The various shock waves that form

at the front of a hypersonic vehicle will compress the surrounding air and heat it. This

effect, coupled with atmospheric drag, can generate enough heat to dissociates and ionize

surrounding molecules, which forms a sheath of plasma around the vehicle [50, 51, 52, 53,

54, 55]. The reader is referred to [56] for more information on how temperature, pressure,

and density are affected due to the shockwaves at hypersonic speeds for a conical body.

One of the primary issues associated with the plasma sheath is communications
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blackout. The plasma sheath has been known to reflect and absorb electromagnetic

radiation to the extent that it becomes impossible to communicate with the vehicle. This

has been well documented with space re-entry vehicles such as the Apollo space capsules

and during communications with the Columbia space shuttle [50, 52]. The attenuation

caused by the plasma sheath can be significantly reduced by increasing the frequency of the

incident electromagnetic wave such that it exceeds the plasma frequency (sometimes called

the plasma resonant frequency or the electron plasma frequency) which is the frequency at

which the electrons in the plasma oscillate at [51, 52, 57]. Even so, the plasma sheath has

more communications impediments than just simple amplitude attenuation. The channel

will experience large scale fading due to previous discussed reflection and absorption from

the thickness of the sheath, and small scale frequency selective fading due to reflection,

refraction, and inhomogenous properties within the plasma sheath itself [51, 57].

Given the adverse effects the plasma sheath has on communication and telemetry,

several solutions have been previously proposed to mitigate plasma sheath effects.

As stated previously, communication at frequencies above the plasma frequency can

significantly reduce plasma sheath signal attenuation. However, the plasma frequency

may be very high and require frequencies far above 15 GHz. As the frequency increases

atmospheric absorption effects may be more pronounced, potentially mitgating “gains”

from subverting the plasma sheath. Furthermore, antenna beamwidths at high frequencies

are narrow, and it may be difficult for a ground station antennas to track the desired

receiver [57]. We briefly discuss four other promising alternatives to high frequency

communications: aerodynamic shaping, applied magnetic field, electrophilic injection,

and plasma sheath matching. Aerodynamic shaping involves adjusting the shape of the

hypersonic vehicle to have a sharper nose instead of a blunt one, thereby reducing the

thickness of the plasma sheath and reducing the attenuation effect. However, this may

not be possible in all cases, since a blunt-nosed hypersonic vehicle has more favorable

thermal protective characteristics [58]. The application of a static magnetic field to
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the plasma sheath is another proposed solution. An externally applied magnetic field

can confine the electrons within the plasma sheath, and create a “magnetic window”

that can be communicated through [51, 52, 58]. However, the required magnetic field

strength is usually quite large, and can be difficult to generate without equipment that

may be impractically large or heavy for certain hypersonic vehicles [58]. Electrophilic

injection involves the addition of gases or liquids that can reduce the plasma frequency

by recombination of free electrons with the electrophilic materials [52]. Liquids such as

water have already been experimentally tested with varying degrees of success [52, 58,

59]. Even so, the addition of large volumes of liquids or gases as a means of countering

plasma sheath effects is still a prohibitive design point for hypersonic vehicles due to

their weight [58]. Finally, [58] proposes a technique to impedance match the hypersonic

vehicle’s antenna to the surrounding plasma sheath. While simulation results suggest in

some conditions the matching technique can mitigate the effects from the plasma sheath

and allow the antenna to radiate or receive freely, the matching bandwidth can severely

constrain the communications bandwidth and induce dispersive effects if the matching

bandwidth is not sufficiently large.

The characteristics of the plasma sheath are a complex function of a variety of factors,

such as vehicle contour, altitude, Mach number, angle of attack, ablation rate, and so forth

[51, 52]. For air-breathing hypersonic vehicles which operate in the Mach 6 − 10 range

and have operating altitudes from 25 − 30 km, a communications blackout is generally

not expected [52, 60]. Although there is a dearth of publicly available information for

plasma sheath characteristics of hypersonic aircraft, they are expected to be relatively

maneuverable, and make use of sharp leading edges which at the speeds and altitudes these

vehicles are expected to operate at, which supposedly make the plasma sheath tenuous at

best [54, 60].
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2.1.5 Doppler Models

The previous discussion centered around multi-ray AtS channel models, but did not

discuss the Doppler effects that would be present when communicating with fast moving

aerial platforms such as hypersonic aircraft. This subsection will not attempt to formally

augment the previously discussed models to accommodate for Doppler, nor will it discuss

time-varying channel modeling in great detail, for which the reader is referred to [61].

Rather, this subsection discusses how time-varying Doppler effects arise for a simple LoS

only channel, and also distinguishes between so-called “narrowband” and “wideband”

Doppler models.

This subsection considers the following geometry for discussion. The transmitter is

assumed to be stationary, while the receiver moves towards the transmitter with some

velocity. Let R(t) represent the instantaneous range between the transmitter and receiver.

If the transmitter sends baseband signal x(t), then the received baseband signal is:

r(t) = x(t− τ(t))e−j2πfcτ(t), (2.19)

where τ(t) is the time-varying channel delay, and fc is the carrier frequency. If we adopt a

second-order range model, then the instantaneous range is:

R(t) = R0 + vt+
1

2
at2, (2.20)

where v is the initial velocity, and a is the constant acceleration. This polynomial range

model is a consequence of kinematics and is independent of the delay model.

The main issue arises on how the time-varying delay τ(t) relates to R(t). Two models

are frequently presented in the literature: the so-called wideband Doppler model and the

narrowband Doppler model [62]. In the former τ(t) = R(t − τ(t))/vp, and in the latter

τ(t) = R(t)/vp where vp is the wave propagation velocity. We will first discuss the
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wideband Doppler model in detail, then the narrowband model, which is considered as

a special case of the former.

In the wideband Doppler model, sometimes called the exact model [63], the

time-varying delay is related to the instantaneous range by the following relation:

τ(t) =
R(t− τ(t))

vp
. (2.21)

In comparison to radar literature, the factor of 2 is absent as there is no round-trip delay.

Applying a Taylor series expansion to (2.21) and using (2.20), we can solve for τ(t) as:

τ(t) = αw + βwt+ γwt
2 (2.22)

where:

αw =
R0

vp

(
1− v

vp

)
, (2.23)

βw =
v

vp

(
1− v

vp

)
− aR0

v2p
, (2.24)

γw =
a

2vp
− 3av

2v2p
, (2.25)

and where terms proportional to v−3
p were ignored [63].

A particularly interesting phenomenon occurs to the received signal (2.19) when

utilizing the wideband Doppler model. For simplicity we consider the case of constant

velocity, which occurs when a = 0, and we assume radio waves are used, which means the

wave propagation velocity is equal to the speed of light vp = c. τ(t) can then be expressed

as:

τ(t) =
R0

c+ v
+

v

c+ v
. (2.26)
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Substituting (2.26) into (2.19) yields:

r(t) = x(t− τ(t))e−j2πfcτ(t)

= x

(
t−

( R0

c+ v
+

v

c+ v
t
))
e−j2πfc

(
R0
c+v

+ v
c+v

t
)

= x

(
c

c+ v
(t− τ0)

)
e−j2πfc

c
c+v

(
τ0+

v
c
t
)

= x(µ0(t− τ0))e
j2πfcµ0(µ0(t−τ0))e−j2πfct

(2.27)

where µ0 = c/(c+ v), and τ0 = R0/c.

The µ0 term in (2.27) is called the Doppler stretch factor [64], and effectively

time-scales the received signal [65]. If the receiver is moving towards the transmitter, then

µ0 > 1 and the signal becomes compressed in time. If the receiver is moving away from

the transmitter, then µ0 < 1 and the signal is stretched in time.

In practice it can be difficult to solve for τ(t) from (2.20) and (2.21), especially as higher

order terms are adapted into the range model. We now consider the so-called narrowband

Doppler model, which assumes (with no physical explanation) that the relationship between

R(t) and τ(t) is [62, 63]:

τ(t) =
R(t)

vp
. (2.28)

The narrowband model is valid under the following conditions: (1) |v/vp| << 1, and

(2) B/2 < fc where B is the bandwidth of the transmitted signal [62]. In the context of

pulsed radar this is the same as the “stop and hop” assumption, which is the assumption

that the target of interest is static during the transmission and reception of a given radar

pulse [63].

Assuming constant acceleration τ(t) is:

τ(t) =
R0

vp
+
v

vp
t+

a

2vp
t2. (2.29)
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When comparing (2.29) to (2.22), it can easily be seen that the narrowband Doppler model

results in a significantly simpler τ(t).

In the case of a constant velocity, and vp = c, the received signal for the narrowband

model can be expressed as:

r(t) = x(t− τ(t))e−j2πfcτ(t)

= x

(
t
(
1− v

c

)
− τ0

)
e−j2πfc(

R0
c
+ v

c
t)

= x

(
t
(
1− v

c

)
− τ0

)
e−j2πfcτ0ej2πfDt,

(2.30)

where fD is the Doppler frequency. In comparison to (2.27), (2.30) does not have a Doppler

stretch factor in either the signal or in the carrier phase term. (2.30) models the Doppler

as a frequency shift, evidenced by the exp(j2πfDt) term. The wideband model instead has

a frequency scaling due to the µ0(t − τ0) in both the signal delay and in the carrier offset

term [62].

Since this thesis is focused on radio-frequency communication (|v/c| << 1), and does

not consider signal bandwidths on the order of the carrier frequency (B/2 < fc), we make

use of the narrowband approximation in modeling all Doppler effects.

2.2 Direct-Sequence Spread-Spectrum Acquisition

One of the first steps in direct-sequence spread-spectrum communications is synchronization.

The receiver needs to obtain timing and frequency synchronization in order to properly

despread and demodulate the received signal. Since the spreading sequences employed

in DSSS communications often have “thumbtacky” autocorrelation characteristics and

are designed to have low out-of-phase magnitude, a timing error of even a single chip

duration is enough to prevent despreading at the receiver. Given the difficulty of initial

synchronization, it is typically decomposed into a two step process. The first step is known

as coarse acquisition, in which the receiver attempts to align its locally generated copy of
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the spreading code to within a chip (or fractions of a chip) with the received signal. The

second step is known as tracking, in which the receiver makes use of several feedback

mechanisms to maintain fine synchronization between the transmitter and receiver. As

tracking loops are not the focus of this thesis, the reader is referred to [28, 66, 29] for

additional information on standard techniques such as the delay lock loop (DLL).

Considering DSSS communication systems were developed as far back as World War

II, and were declassified and available to the public as early as the 1970s, there exists

a tremendous amount of literature on spread-spectrum synchronization [66]. We will

briefly survey a few historic acquisition techniques that are pertinent to understanding

spread-spectrum acquisition, before we discuss the more modern techniques in greater

detail and identify gaps in their applicability.

2.2.1 Modeling the Acquisition Problem

To aid in our discussion of describing the DSSS acquisition problem, we will first introduce

a received signal model. For the sake of discussion, suppose the continuous time baseband

received signal is modeled as:

r(t) =
√
Pd(t− τ(t))c(t− τ(t))e−j2πfcτ(t)ejϕ

′
+ n(t), (2.31)

where P is the instantaneous received power, d(t) is the data signal, c(t) is the spreading

code signal, fc is the carrier frequency in Hz, τ(t) is the time-varying channel delay, and

n(t) is AWGN. We can further simplify (2.31) by assuming a constant propagation delay,

no data modulation, and no frequency uncertainty. These idealistic assumptions will be

relaxed as the discussion progresses and in the subsequent subsection, but our current aims

are to capture the essence of the acquisition problem. Applying these simplifications to

(2.31) yields:

r(t) =
√
Pc(t− τ)ejϕ + n(t), (2.32)
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where the constant phase terms have been amalgamated into the single exp(ϕ) term, and

where τ represents the code phase offset. In this particular model, the code phase offset τ

is synonymous with the constant channel delay. In practice, this is not the case as the shift

registers that generate the local spreading code at the receiver will, assuming no a priori

knowledge of the code phase offset, be initialized with random values. However, as the

receiver is only concerned with aligning the locally generated code with the received signal,

the contributions of either the channel or the shift register offset can often be abstracted by

a single τ .

The spreading code signal can be modeled as:

c(t) =
N−1∑
k=0

ckg(t− kTc), (2.33)

where ck is the kth chip of the spreading sequence, Tc is the chip period, N is the

period of the spreading code, and g(t) is an amplitude shaping pulse. In practice, the

sum limits in (2.33) may extend well beyond a single period when data modulation is

present, the spreading code is short, or there is no absolute termination on the acquisition

time. However, for burst communications, “push-to-talk” systems, or long spreading

codes where it may be impractical to send multiple periods, (2.33) may be an accurate

representation [67].

For historic reasons, acquisition can be thought of as a detection problem. This view can

be seen from the serial search circuit, which searches over all possible code phase offsets in

a sequential fashion. One possible realization of the serial search can be found in Fig. 2.5.

The received signal is correlated with a spreading code shifted by the hypothesized code

phase offset. The resulting signal is then passed through a bandpass filter (BPF) whose

bandwidth is approximately 1/Tc, then an envelope detector, and then finally integrated

for Td seconds. The result is then compared to a threshold. If it exceeds the threshold,

the signal is considered acquired and the receiver proceeds to tracking. Otherwise, it is
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Figure 2.5: Topology of serial search circuit. Searches over all possible code phase offsets
in a linear fashion.

assumed the candidate code phase offset is incorrect, the reference clock adjusts to select

the new code phase offset, and the process repeats. Although such a device can be used

to acquire a DSSS signal, it is seldom used in modern communications as a filter matched

to the spreading sequence can accomplish acquisition faster than the system depicted in

Fig. 2.5, and can do so with a smaller circuit footprint [29, 66].

In light of the previous discussion, it is more insightful to view acquisition as a two

stage process: the first stage is the parameter estimation stage in which the receiver must

estimate key parameters such as the code phase offset and the Doppler frequency. The

second stage is the detection stage in which the receiver must determine, based on the

estimated parameters, if the locally generated spreading code is sufficiently aligned with the

received signal such that acquisition has been achieved, and the receiver can then proceed

to the tracking phase.

If the acquisition process is performed digitally, that is r(t) is sampled at the chip rate

to produce a length N sequence rk, then the estimation-detection view of acquisition can

be formalized by the generalized likelihood ratio test (GLRT) [68]. The digitization of

r(t) also results in the discretization of the uncertainty space. For example, in (2.32),

there would only be N possible candidate code phase offsets after sampling, where each

candidate one corresponds to a particular cell. This one dimensional uncertainty region is

visualized in Fig. 2.6.

As the name suggests, the GLRT is a generalized version of the LRT in which unknown

parameters for each hypothesis are replaced by their maximum-likelihood estimates (MLE)
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Figure 2.6: Visualization of the 1D uncertainty region corresponding to all possible code
phase offsets.

[69, 70]. The GLRT decision statistic is:

Λ =

argmax
θ

f(r; θ|H1)

f(r|H0)
, (2.34)

where r is the vector of received signal samples, θ is a vector of parameters consisting

of the normalized code phase offset in chips, and the instantaneous received power P , the

latter of which is considered a nuisance parameter in the acquisition problem, and where

H1 is the hypothesis that the receiver has estimates of the parameters θ that correspond

with the aligned cells in the discretized uncertainty space, while H0 corresponds to all

other misaligned cells. In practice, due to the favorable autocorrelation properties of DSSS

signals, under H0 the distribution of r is only dependent on the noise [68, 71]. From (2.34)

it should be apparent the estimation stage corresponds to the determination of the ML

estimates under H1, while the detection stage consists of comparing the decision statistic

itself to a threshold to determine if acquisition has been achieved.

Although it is intuitive to view the first stage of acquisition as the parameter estimation

stage, we should emphasize that this is not a traditional estimation problem. Firstly, the

goal here is not to obtain as precise of an estimate of the code phase offset (or any other

parameter of interest) as possible; the estimate need only be sufficiently accurate such that

it is within the pull-in range of the tracking loop. Secondly, the receiver is never actually

certain if the DSSS signal is present before performing estimation, and subsequently the

detection portion is still essential. Lastly, while (2.34) provides guidance on how to develop

an acquisition module given a received signal model, it in no way captures the important

performance metric of acquisition time TAcq.
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Figure 2.7: Summary of acquisition modes [74].

There are several classic techniques to improve the acquisition time in comparison

to the serial search shown in Fig. 2.5. One way is to search the uncertainty region in

a parallelized fashion. In essence, the aptly named parallel search consists of multiple

branches where each branch correlates the received signal with spreading code c(t − τi)

where τi is a candidate code phase offset. While the parallel search has rapid acquisition

times in comparison to the serial search, it suffers from high computational complexity

[29]. Rapid acquisition by sequential estimation (RASE) [72], and its subsequent improved

versions [73], rely on making chip-by-chip decision on the sampled received signal, and

use these decisions to seed the shift registers that generate the local spreading code. While

RASE has acquisition times several linear factors shorter than the sequential search, and

without the complexity of the parallel search, the technique is not feasible at low SNRs.

We discuss more modern acquisition techniques that are feasible in the face of frequency

uncertainty in the next subsection.

We close this subsection with a brief discussion of the different acquisition modes. The

acquisition process is typically divided into three modes of operation [29, 68]:

1. The search mode.

2. The verification mode.

3. The lock mode.

When the acquisition module is in search mode, it is moving through the uncertainty

region and develops an estimate of the parameter vector θ̂. It then proceeds to the
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verification mode, where the candidate parameter cell(s) are now fixed, and where the

receiver must determine if the candidate θ̂ is sufficiently accurate such that the system can

declare a lock and proceed to tracking. While we have described several search (parameter

estimation) techniques, the receiver still has several degrees of design freedom in the

verification (detection) stage. For example, in Fig. 2.5, the dwell or integration time Td can

be adjusted to reduce the probability of false-lock. A multi-dwell system can be utilized in

which the output of the integrator must be passed through several detection stages before

a lock can be declared. In the event that any of the detection stages do not have their

thresholds exceeded, the detector declares acquisition has failed and returns to the search

stage. Otherwise, if all detection stages pass, the receiver accepts θ̂ as the correct estimate,

and proceeds to tracking. If the system loses its lock state while tracking, it will return to

the search stage and the process repeats. A summary of the acquisition modes is found in

Fig. 2.7.

2.2.2 Modern Acquisition Techniques

We now discuss several modern DSSS acquisition techniques that are more computationally

efficient and provider faster acquisition performance than the serial search shown in

Fig. 2.5. Furthermore, these techniques are applicable to scenarios in which there is both

code phase and frequency uncertainty. We begin with a simplification of the full received

signal model in (2.31):

r(t) =
√
Pc(t− τ)ej2πfDtejϕ + n(t), (2.35)

where it was assumed τ(t) = τ0− v
c
t follows a linear model, where v is the relative velocity

between the transmitter and receiver and c is the speed of light. It was also assumed that

since |v/c| << 1 the received signal’s spreading code is offset by a constant amount, and

does not experience a time-varying delay due to the v
c
t term [62].
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Figure 2.8: Implementation of the 2D exhaustive search in continuous time. The Doppler
frequency and code phase offset estimate are obtained by selecting the branch with the
largest correlation output.

As discussed in the previous subsection, the first stage of acquisition is the parameter

estimation stage, where in this case the receiver must make a coarse estimate of both

the code phase offset and the Doppler frequency {τ, fD}. Given that a linear search

over all code phase offsets can be accomplished efficiently with a filter matched to the

spreading code, it would seem intuitive to first compensate the received signal by the

Doppler frequency. However, since the receiver rarely has a priori knowledge of fD in

the initial synchronization process, it must search for it. As there are now two variables

that needs to be estimated, the uncertainty region is now 2D as visualized in Fig. 2.9.

One possibility is an exhaustive search over all possible Doppler frequencies. The

received signal is first frequency shifted by one of the candidate Doppler frequencies fi,

and then passed through a filter matched to the spreading code. The branch with candidate
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Figure 2.9: Visualization of the 2D uncertainty region corresponding to all possible code
phase offsets, and all possible Doppler frequencies.

frequency fi, closest to the actual Doppler frequency fD, will result in the largest output

as that branch will have the smallest residual Doppler shift. Thus selecting the largest

output of all the branches will estimate the Doppler frequency f̂D, while the matched

filter will estimate the code phase offset τ̂ . Since it is impractical to search over all

possible Doppler frequencies, the candidate Doppler fi is typically drawn from a finite

set {f0, f1, . . . , fN−1}. One possible implementation of this 2D exhaustive search is shown

in Fig. 2.8. While this algorithm, up to quantization errors, is optimal [75], in practice its

implementation is limited by its computational complexity.

We now survey several acquisition techniques that are capable of efficiently acquiring

a DSSS signal and that have lower computational complexity when compared to the

exhaustive search (or its discrete analog) shown in Fig. 2.8.

Double block zero padding (DBZP) is an acquisition algorithm that relies on partial

circular correlations, block padding, and the FFT to jointly estimate the code phase offset

and Doppler frequency. The algorithm is briefly summarized as follows: the received signal

is first partitioned into N equal sized blocks. The i + 1th block is then duplicated and
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concatenated to the ith block, i + 2th block is duplicated and concatenated to the i + 1th

block and so forth. The same is done for the local spreading code, except zeros are padded

onto each block instead of concatenation. The partial circular convolutions of every two

blocks of the received code and every two blocks local code is are then performed, and the

results stored in a matrix. This process is repeated for all permutations of the local code,

until all possible code phases have been tried. Then a column-wise FFT is performed on

the matrix to efficiently search for the correct Doppler frequency. There are several other

renditions of DBZP, such as modified versions to deal with data modulation or complexity

improvements [76, 77].

General zero padding (GZP) is another spread-spectrum acquisition algorithm,

originally designed to directly acquire the precision spreading code used in GPS. GZP

is briefly summarized as follows: The received signal is segmented into equal sized

blocks each of length N , then zero padded with N zeros. The received signal is then

correlated with a local spreading code, and the firstN samples of the result are incoherently

integrated and tested against a threshold. If the test statistic exceeds a threshold, acquisition

is declared, otherwise the next batch of samples from the received signal are tested. Search

over for the Doppler frequency is accomplished by circularly shifting the local spreading

code code. Since frequency shift is accomplished by exploiting this DFT property, the

frequency resolution is limited to △f = 1/NTs in which Ts is the sampling frequency.

The interested reader is referred to [30, 78, 79] for more details.

There are several other spread spectrum acquisition methods that involve a technique

known as “code-folding”, in which sections of the spreading code are “folded” onto itself

in order to reduce the number of code phases to be searched. Some of these techniques

include XFAST [80, 81], as well as dual-folding based algorithms such as the one in [82].

While these techniques present faster methods to acquire the phase of the spreading code,

they do not provide substantial improvements to code Doppler estimation, especially when

compared to DBZP. In fact the dual code folding acquisition scheme presented in [82] still
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uses the circular shift technique utilized in [78]. The interested reader is left to references

[80, 81, 82] for more information.

In [83, 84, 85] a spread spectrum acquisition technique based on partial-matched-filtering

(PMF) and the FFT is presented. The algorithm works by segmenting the length M

spreading code into P filters, each of which contain X chips of the total spreading code.

P must be chosen such that it is an integer, and XP = M . In the absence of any a priori

information about the phase of the spreading code, the whole received signal must be

passed through each of the PMFs to produce P total partial correlations, which are then

stored in a matrix. The receiver then takes the FFT and magnitude of this matrix, and then

selects the largest peak. Based on the indices of the rows and columns, the receiver is

able to determine the associated code phase offset and Doppler frequency. However, [83,

84, 85] does not discuss the applicability of PMF-FFT to a multipath channel or a RAKE

receiver, and do not discuss design trade-offs associated with the number of partial filters

P .

[86, 87] describe a frequency domain based approach to PMF-FFT spread spectrum

acquisition. Instead of proceeding with matched filtering and convolution in the time

domain as [83] did, the authors instead make use of the short-time-Fourier-Transform

(STFT) with variable window sizes as well as an STFT “inverse” to rapidly compute the

partial correlations. However, the authors of [86, 87] state that in general an overlapping

window leads to a decrease in detection probabilities and an increase in false alarm

probabilities.

In contrast to the previous acquisition algorithms, which broadly speaking perform

partial correlations before engaging in Doppler processing, there exists another class of

acquisition algorithm that make use of differential processing [88, 89, 90]. Although these

algorithms vary in their implementation, the basic idea is to delay the received signal by

a chip and correlate it with itself. The resulting output is then correlated with a one-chip

delay-correlated version of the local spreading code before proceeding to additional
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processing. The advantage of this differential processing is the effects of Doppler offset

and data modulation are removed, while the correlation properties of the spreading code

are still maintained. The drawback of differential processing based algorithms is they have

poor acquisition performance with weak signals [68, 90].

Up until this point we have discussed DSSS acquisition techniques that are applicable

when the Doppler frequency is constant, and the code phase offset is static, which is how

r(t) in (2.35) is modeled. While this is often a valid assumption in terrestrial commercial

communications, it does not hold when the Doppler frequency is high, the spreading code

is long [30, 91], and/or if the Doppler is time-varying. We first discuss the case in which

the code phase offset varies linearly with time, and then shift the discussion to quadratically

time-varying code phase offsetse and time-varying Doppler.

As the previous discussion has shown, while there are an abundance of techniques that

can acquire DSSS signals with static code phase offsets, however, there are comparatively

fewer that are applicable when the code phase varies linearly with time. [91] describes

circularly correlation with multiple data bits (CCMDB) algorithm, which as the name

suggests relies on circular correlations and coherent accumulations to perform acquisition.

CCMDB handles the linearly time-varying code phase offset and Doppler frequency shift

by producing multiple Doppler-compensated replicas of the spreading code, each one

compensated by a candidate Doppler frequency. To reduce computational burden, at

each step of the algorithm CCMDB discards Doppler bins that are unlikely to contain the

correct Doppler. CCMDB handles data modulation by estimating the most likely sequence

of data bits and compensating accordingly. For details the interested reader is referred to

[91]. [92] takes a different approach and augments an existing modified DBZP algorithm

to remove the time-varying effects from post-correlation matrix. [92] proposes the use

of stretch processing and generalized keystone transforms to mitigate the time-varying

effects, and noncoherent integration before estimating relevant parameters. [93] proposes

a two stage acquisition algorithm where in the first stage the keystone transform is utilized
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Figure 2.10: Visualization of the 3D uncertainty region corresponding to all possible initial
code phase offsets, all possible initial Doppler frequencies, and all possible Doppler rates.

to compensate for linear code phase drift and prolong coherent integration times, while in

the second stage the Doppler frequency is estimated using differential detection.

There are even fewer techniques that are viable when there is a time-varying Doppler

frequency shift. When the Doppler rate is high and/or the spreading code is long, this can

result in a time-varying code phase offset that has both a linear and quadratic component.

These so-called high-dynamic environments have been reported in low-earth orbit (LEO)

satellite communications [15, 18, 20, 21], along with hypersonic vehicle and space

communications [94, 95, 23]. The introduction of a non-zero Doppler rate expands the

uncertainty region by yet another dimension as seen in Fig. 2.10. The acquisition system

must be designed such that the initial Doppler frequency resolution △fD and the Doppler

rate resolution △fA are precise enough to be within the pull-in range of the tracking loops.

Otherwise, the system will fail to maintain a lock and will return to the acquisition mode

due to the poor initial Doppler estimates.

[96, 97] proposes an algorithm based on the fractional Fourier transform (FrFT) to

estimate and compensate for Doppler rate in DSSS signals. [97] discusses the optimal FrFT

bin that should be chosen in relation to the Doppler rate. [98] uses a convex optimization
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algorithm to estimate the code phase and Doppler frequency assuming the Doppler rate is

constant.

There have been several techniques pioneered in the field of radar signal processing

that can estimate and compensate for target acceleration (proportional to Doppler rate),

before jointly estimating the range and velocity [99, 100, 101, 102]. These techniques

make use of various transforms such as the Radon-fractional-Fourier transform [103],

modified-axis-rotation transform with Lv’s transform [99], time-reversing-transform (TRT)

[100], and keystone transform [101, 102, 104, 105]. While many of these techniques can

estimate and compensate for a non-zero Doppler rate, they are all developed under the

assumption that the transmitted signal is a linear frequency modulated (LFM) chirp, and

many use specific properties of LFM signals [106] which makes them unsuitable for DSSS

acquisition.

As this brief survey of DSSS acquisition techniques have shown, there are a vast number

of existing techniques that are applicable when the Doppler frequency is constant and the

code phase offset is static. While there are a handful of techniques that can accommodate

for linearly time-varying code phase offsets, there are relatively few that can do so when

the Doppler frequency shift is also time-varying. Given the relative dearth of acquisition

algorithms viable in high-dynamic environments, we focus our efforts in developing one

that can acquire DSSS signals in the face of both time-varying Doppler frequencies and

quadratically time-varying code phase offsets.

2.3 Existing Noncooperative Direct-Sequence Spread-Spectrum Signal Detection

Techniques

Noncooperative detection of direct-sequence spread-spectrum (DSSS) signals is generally

difficult since the detector has no knowledge of key parameters such as the spreading

sequence, the chip rate, or the type of spreading code used, and subsequently cannot easily

detect the presence of the DSSS signal buried in noise [28, 66, 107, 29]. We emphasize
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TRANSMITTER RECEIVER

DETECTOR

Figure 2.11: Visualization of the noncooperative detection problem. The detector deployed
by the eavesdropper must make a determination if a signal is present in its noisy
observations.

that this is a detection problem and not an interception problem. It is sufficient for an

eavesdropper to determine the presence of the DSSS signal in noise; it is not necessary to

demodulate the information-bearing bits.

In such a problem it is typical to assume that the transmitter is unaware of the

eavesdropper’s presence, and subsequently does not employ any countermeasures when

delivering its payload to the authorized receiver [28, 29]. A setup of this can be seen in

Fig. 2.11.

The detection problem can be phrased in terms of a binary hypothesis test:

 H1 : rk = sk(θ) + nk

H0 : rk = nk

(2.36)

where rk represents the baseband IQ samples at the detector, nk is AWGN, and sk is

the signal from the transmitter modified by some vector of parameters θ. Under the

alternative hypothesis H1, the received signal consists of signal and noise, while under
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the null hypothesis H0 there is just noise.

One strategy to derive a detector decision statistic is to apply the likelihood ratio test

(LRT) to the problem in (2.36), which by the Neyman-Pearson lemma results in the optimal

detector [69, 70, 108]. However, the LRT can only be applied to (2.36) if the PDFs under

both hypotheses are completely known. This is rarely the case, as the distribution of the

vector θ, which models unknown such as channel effects, is generally not known to the

receiver and presents direct application of the LRT.

It is possible to develop a test that is independent of the unknown vector θ, and is

normally performed in an ad hoc fashion. If such a test is optimal in the Neyman-Pearson

sense, then it is referred to at the uniformally most powerful (UMP) test and can be

computed independent of θ. However, the UMP test seldom exists, and in many cases the

vector θ must be handled directly [69, 70, 108].

There are two primary approaches that are viable in the event θ-independent test fails.

The first is to assume a distribution for the unknown vector θ and apply the LRT as usual.

There are two drawbacks to this approach: the first is if θ has large dimensionality it can

be difficult to derived a closed-form likelihood-ratio, and the second is even if a detector

statistic can be derived, its performance is highly dependent on the assumed distribution.

An alternative approach is to apply the generalized likelihood ratio test (GLRT), which

models the unknown under each hypothesis as deterministic, and replaces them with

their maximum-likelihood estimates [69, 70, 108]. While there is no general optimality

condition associated with the GLRT, in practice it can work quite well [108].

Despite the favorable low probability of detection (LPD) characteristics of DSSS

signals, they are not impervious to detection by an eavesdropper [28, 29]. Depending on

the amount of a priori knowledge known and the structure of the signal, there are several

techniques that may be used to noncooperatively detect a DSSS signal and even estimate

its spreading sequence. We first discuss a plethora of techniques which we will broadly

categorize as “correlation-based”. Generally speaking these techniques exploit some
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aspect of the autocorrelation function of the spreading code, and require that the detector

observation window length be longer than the spreading code period. We then discuss

other detection techniques that do not have such a stipulation on the detector observation

window length. For brevity, we will refer to the case in which the observation window

length is longer than the spreading code period as the “long window” case, and the case

in which the observation window length is shorter than the spreading code as the “short

window” case.

2.3.1 Correlation-Based Detection Techniques

Since there are a wide variety of detection techniques that exist under our umbrella term

of “correlation-based”, we first discuss techniques that are specifically developed for short

spreading codes, which are spreading sequences with a period equal or shorter then the

symbol duration. We then shift the discussion to detection of long-code DSSS signals,

where the spreading code period is longer than the symboling period [28].

There are several short-code DSSS signal detection techniques. [109] proposes

a technique that relies on the fluctuations of autocorrelation estimators derived from

windowed segments of the received signal to be greater when a DSSS signal present as

opposed to when one is absent. [110, 111] improve upon this algorithm with averaging and

wavelet transformation augmentations; the end result is improved detection performance

at low SNR. [112] proposes an delay-multiply based autocorrelation technique that

makes use of a wavelet transform. [113] uses an FFT-based technique that exploits the

autocorrelative properties of the short spreading code to detect the DSSS signal. Explicit

knowledge of the carrier frequency is assumed. [74, 114] proposes a semi-blind detection

based on eigenanalysis. The carrier frequency and spreading code period is assumed to be

known.

Once the DSSS signal has been detected, a reasonable next step for the eavesdropper is

to estimate relevant signal parameters. These can include, but are not limited to, the chip
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period, the symbol period, the carrier frequency, the spreading code period, and even the

spreading sequence itself. [74, 115, 114] describes two different methods to approximate

the period of a short spreading code using eigenanalysis and windowing-correlation based

technique. [116] suggests a technique to estimate the carrier frequency of the detected

DSSS signal assuming M-PSK modulation.

There have been several attempts to estimate a short code’s spreading sequence from

the detected DSSS signal. [117] proposes a low SNR eigenanalysis method to estimate

the spreading sequence. The paper proves for a short spreading code the concatenation

of eigenvectors corresponding to the segmented received signal’s correlation matrix is

the spreading code used to spread the signal. [118] proposes a low complexity iterative

algorithm to estimate the spreading code sequence. [119] makes improvements to this

algorithm such that performance does not degrade with increasing spreading code length.

The detection and estimation of long-code DSSS signals is substantially more difficult.

This is because the period of the spreading code is longer than the symbol period, and

the polarity changes of the signal within a given spreading code period can damage the

autocorrelative properties of the spreading sequence [119, 120]. For this reason [120]

introduces an information symbol transition matrix to overcome this problem, then makes

use of eigenanalysis to estimate the spreading sequence. [119] proposes a “missing-data”

model which allows one to model a long-code DSSS signal as a short-code DSSS signal

with missing data (zeros). A slightly modified short code spreading sequence estimation

algorithm is then used. [107] presents a long-code estimation technique that explicitly

exploits properties of maximal-length sequences. [121] presents a blind algorithm to

determine if the detected DSSS signal uses a long or short spreading code.

Given the previous discussion, there exists an abundance of techniques that can

noncooperatively detect DSSS signals and even estimate the spreading sequence for

the long window case. However, military DSSS communication systems use very long

spreading codes which would make it impractical for an eavesdropper to make use of any
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of these correlation-based techniques.

2.3.2 Detection Techniques for Short Windows

There are comparatively fewer detection techniques that an eavesdropper can utilize for the

short window case. We now provide a brief survey of a few of them.

[122] describes a phase-shift keying (PSK) detection technique whose complexity

grows linearly with observation window length, does not require knowledge of the noise

variance, but only takes advantage of a single antenna for detection. The detection

technique, which the authors name the “simplified generalized likelihood ratio” (S-GLR)

achieves similar performance as a detector derived from the universally most powerful

invariant (UMPI) test. [123] proposes a cyclostationary detector which looks for cyclic

features at integer multiples of the chip period and symbol period. However, the detection

technique requires the signal have excess bandwidth at the detector, and also requires

oversampling with at least two samples per chip for reasonable detection performance.

There are several multi-antenna signal detection techniques that have been pioneered for

passive radar applications and that provide substantial performance benefit over their

single-antenna counterparts [124, 125, 126, 127, 128], but they either assume the signal is

unknown or require knowledge of the transmitted sequence to perform detection.

The energy detector (ED), also known as a radiometer, is well-studied and has seen

widespread use due to its versatility. The ED does not require any a priori knowledge of

the signal, has low computational complexity, but suffers from performance degradation in

the face of noise uncertainty [74, 129, 130, 131, 132, 133, 134, 135]. If there is any degree

of uncertainty surrounding either the noise statistics or noise power, the detection threshold

could be set sub-optimally, and performance may suffer as a result [130]. Lastly, an energy

detector normally needs a long observation window length and stable noise floor to detect

a DSSS signal at low SNR while still maintaining a low false-alarm rate [136].

The advantage of a detector that has knowledge of the signal alphabet or signal structure
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has received considerably less attention in the literature. [137] showed that at low SNR an

ED has similar performance to a Neyman-Pearson optimal single-antenna detector that

knows the signal alphabet. In [138] an ED is shown to have similar performance to

a detector that knows the signal has an OFDM structure. However, to the best of our

knowledge the relative performance of multi-antenna alphabet-unaware and multi-antenna

alphabet-aware detectors has not been reported in the literature.

Given the inherent difficulty of noncooperative DSSS detection, coupled with the fact

military communication systems employ long spreading codes which make it impractical

to use a correlation-based detection technique, an eavesdropper should exploit every

possible advantage to improve detection performance. In particular, we consider the

case in which the detector does not have knowledge of the spreading sequence, the type

of spreading code used, or the modulating information bits. On the other hand, we

assume the detector is “alphabet-aware”, that is it does have a priori knowledge of the

modulating chips. We focus in on the specific case of QPSK modulated chips, and explore

the advantage of an multi-antenna alphabet-aware detector and compare its performance

to other multi-antenna alphabet-unaware detectors. While there is existing work that

explores PSK-specific detection techniques such as [122], along with a comparison of

BPSK detection to ED at low SNRs in the context of cognitive radio [137], to the best of

our knowledge there is no prior published work that addresses the added dimension of

multiple antennas at the detector.

2.4 Summary

In this chapter we have surveyed many existing air-to-ship channel models, empirical

measurements, along with electromagnetic wave scattering theory. We have ascertained

that the air-to-ship channel has several multipath components, where the chief multipath

component is the specular reflection from the sea surface in a calm sea environment. Other

intermittent multipath components arise from diffuse scattering from objects on the ocean
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surface, or in the case of a rough sea from the waves themselves. However, the diffuse

power contributions are often small when compared to specular contributions in calm

sea conditions, and generally are stochastic in nature. When the distance between the

transmitter and receiver is sufficiently large, the curvature of the earth must also be taken

into account; this large distance reduces the intensity of specular reflection. Large Doppler

shifts are present due to the relative motion of the hypersonic vehicle with respect to the

ship, but can still by characterized by the narrowband Doppler model. For air-breathing

hypersonic vehicles operating around Mach 6− 10 and with altitudes around 25− 30 km,

the plasma sheath is thin and tenuous at best.

Given the vast existing literature for direct-sequence spread-spectrum acquisition, we

have surveyed but a small portion. Despite the abundance of existing techniques, the

vast majority of them are only applicable in the face of constant Doppler frequency, and

static code phase offsets. We have identified few techniques suitable for acquisition

in an environment characterized by both time-varying Doppler frequency shifts

and time-varying channel delays, which are key characteristics of high-dynamic

communication environments such as LEO satcom.

Finally, we have surveyed noncooperative direct-sequence spread-spectrum detection

techniques. While there are many existing detection techniques, most of them rely on

exploiting the autocorrelative properties of the spreading code, and subsequently require

that the detector observation window is longer than the spreading code period. These

detection techniques are generally unsuitable for detecting military communication

systems, which employ long spreading codes as a countermeasure. While there are

techniques that do not have rely on the autocorrelative properties of the spreading code,

there is no known prior published work that explores the advantage of a multi-antenna

detector that knows the signal alphabet.
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CHAPTER 3

DSSS ACQUISITION FOR STATIC CODE PHASE OFFSETS

In this chapter, we develop a computationally efficient DSSS acquisition technique that

is applicable to scenarios in which the channel Doppler frequency is constant, and the

code phase offset is static. As the previous chapter has shown, there are several existing

techniques such as DBZP [139, 76] or PMF-FFT [83, 84, 85] that can be used to efficiently

acquire a DSSS signal under the aforementioned conditions. However, many of these

techniques were developed in an ad hoc fashion, lack certain channel estimation abilities

which may be useful to the receiver outside of spread-spectrum synchronization, and their

applicability to multipath environments such as the AtS channel has not been explored.

We propose the core form of delay-Doppler efficient exhaustive search (DEES), an

efficient algorithm that can acquire DSSS signals in a multipath channel environment with

constant Doppler, and that can also provide secondary channel estimation capabilities. We

derive core DEES from the optimal exhaustive search, and compare the performance of

both of these algorithms via numerical simulations.

It is contradictory to discuss DSSS acquisition in a channel in which the code phase

offset is static and the Doppler frequency is constant, since it is physically impossible

to have a static code phase offset and a non-zero Doppler frequency [62, 64]. Despite

this, the constant-Doppler-static-code-phase-offset model is often used when the Doppler

frequency shift is small, and the frame length is sufficiently short such that the time-varying

effects of the channel can be ignored. In the following chapter, we will expand the DSSS

acquisition problem to high-dynamic communication environments in which both the code

phase offset and the Doppler frequency is no longer static. We will then augment the core

DEES algorithm to be applicable to such harsh channel environments.
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3.1 Received Signal Model

It is typical to decompose spread-spectrum synchronization into a two step process: the

first is coarse acquisition and the second is fine tracking. As was shown in Chapter 2, we

can further decompose the coarse acquisition step into estimation and detection stages. In

this chapter, we focus on the estimation portion of acquisition.

We assume a simplified received signal model in which the baseband IQ samples at the

receiver are:

rk = αxk−d0e
jωDk + nk, (3.1)

where α is an unknown complex channel gain, ωD = 2πfDTc is the normalized radian

Doppler frequency, fD is the Doppler frequency in Hz, Tc is the chip period, fs = 1/Tc is

the sampling frequency, and the components of the noise vector nk are i.i.d. CN (0, 2σ2).

The transmitted binary DSSS signal xk is assumed to be known to the receiver, and

is non-zero only for k ∈ {0, 1, . . . , L − 1}. To handle non-integer code phase offsets

d0, we define xk−d =
∑

n xnsinc((k − n) − d); for readability this interpolating

sinc is suppressed. We assume that the code phase offset is restricted to the range

d0 ∈ D = {−dmax, . . . , 0, . . . , dmax} but is otherwise unknown, and that the normalized

Doppler frequency ωD is restricted to the range |ωD| ≤ ωmax, but is otherwise unknown.

The model introduced in (3.1) has some limitations, but it captures the essence of DSSS

acquisition. In practice, there may be a multipath channel, in which case we can view our

model as the contribution from one particular channel path. In practice there will also be

an extra constant phase factor of e−j2πfcd0Tc where fc is the carrier frequency in Hz, but it

does not appreciably change the problem, and thus has been omitted to simplify notation.

This chapter is concerned with the following problem: Given knowledge of the received

signal model in (3.1), estimate the parameters {d0, ωD} that maximizes the statistic:

z =

∣∣∣∣ ∞∑
k=−∞

rkx
∗
k−d̂0

e−jω̂Dk

∣∣∣∣2, (3.2)
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where d̂0 is the estimate of d0 and ω̂D is the estimate of ωD.

3.2 Derivation of the core DEES Algorithm

In the following we will derive the core DEES algorithm from a simplified version of

the received signal model in (3.1), and then we will slowly address some of the practical

limitations of the model. We proceed in four stages: (1) we remove α from the picture by

temporarily assuming α = 1; (2) we start with an exhaustive 2D search over all possible

code phase offsets and Doppler frequencies, and derive an efficient implementation based

on a bank of partitioned matched filters and the FFT; (3) we relax the α = 1 assumption,

and modify the algorithm to also estimate α; (4) we relax the single-path assumption, and

modify the algorithm to accommodate for a multipath channel and RAKE receiver.

When α = 1, the maximum-likelihood (ML) estimates for ωD and d0 can be found

from an exhaustive search over all possible candidate code phases and Doppler frequencies,

where for each candidate Doppler frequency ω and code phase d the received signal rk

is multiplied by e−jωk, then correlated with the delayed spreading code xk−d. This is

equivalent to the nested optimization:

{ω̂D, d̂0} = argmax
ω,d

Re{
∑
k

e−jωkrkx
∗
k−d} (3.3)

where Re{} takes the real part of its argument. Alternatively, the ML Doppler estimate can

be expressed explicitly as a nested optimization:

ω̂D = argmax
ω

max
d

Re{
∑
k

e−jωkrkx
∗
k−d}, (3.4)

where the ML delay estimate would be the value of d that maximizes the inner expression

when ω is the value that maximizes the outer maximum. The advantage of this alternative

form is that the inner optimization can be implemented efficiently using a matched filter.

In particular, the value of d that maximizes the inner sum can be found by passing e−jωkrk
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through a filter matched to xk, producing the output

ỹk = e−jωkrk ∗ x∗−k, (3.5)

and choosing d as the time instant at which the real part of the MF output achieves its

maximum value.

Since xk is of length L, we can select an integer N that divides L evenly, and partition

the length L signal into N segments, each of length L/N . In particular, let us define the

nth segment, for n ∈ {0, 1, ..., N − 1}, by

x
(n)
k = xk+L/Nwk, (3.6)

where wk is the rectangular window wk = 1 for k ∈ {0, 1, . . . , L/N − 1}, and wk = 0

for other k. According to this definition, all segments are non-zero only for k in this same

interval. A visualization of this can be seen in Fig. 3.1(a), which shows a generic signal

partitioned into N segments, and Fig. 3.1(b) which shows the rectangular window wk. In

terms of these segments, the original transmitted signal can be decomposed into the sum:

xk =
N−1∑
n=0

x
(n)
k−nL/N . (3.7)

Furthermore, in terms of the signal segments, the matched filter output of (3.5) can be

written as:
ỹk = e−jωkrk ∗ x∗−k

= e−jωkrk ∗
N−1∑
n=0

x
∗(n)
−k−nL/N

=
N−1∑
n=0

e−jω(k+nL/N)rnL/N+k ∗ x
∗(n)
−k .

(3.8)

The last line of (3.8) describes a parallel implementation of the length-L MF, in which the
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w
k

Figure 3.1: Time domain plots of (a) generic signal xk partitioned into N segments, (b)
windowing function wk, (c) received signal rk partitioned into N overlapping segments,
(d) windowing function w′

k.

MF output is computed by adding the outputs of a bank ofN matched filters, each of length

L/N , one for each signal segment.

The fact that the d is restricted to D implies that we need not compute the MF output

ỹk for all possible k; rather, ỹk need only be evaluated for k ∈ D. When k is restricted

in this manner, we can replace the input e−jω(k+nL/N)rk+nL/N to the n-th segment MF by

a windowed version that explicitly discards the irrelevant portions of the received signal,

namely:

r̃
(n)
k = e−jω(k+nL/N)rnL/N+kw

′
k, (3.9)

where w′
k is a unit-height rectangular window that is non-zero only in the interval k ∈ I ′ =

{−dmax, . . . , L/N + dmax − 1}. A visualization of the segmented received signal and w′
k

can be found in Fig. 3.1(c) and Fig. 3.1(d), respectively.
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3.2.1 Constant-Phase Approximation

A key step in our derivation is to recognize that, when the window w′
k in (3.9) is

sufficiently short, or equivalently when the candidate normalized Doppler ω is sufficiently

small relative to the window length L/N + 2dmax, the phase factor e−jωk in (3.9) will be

approximately constant over the duration of the window, taking the same value throughout

the duration of the window that it takes at time k = 0. We denote this as the constant-phase

approximation (CPA). Under CPA, we can approximate the factor e−jωk by 1 in (3.9), so

that the input to the n-th MF can be written as:

r̃
(n)
k ≈ e−jωnL/NrnL/N+kw

′
k. (3.10)

The importance of this approximation stems from the fact that the time-varying phase term

multiplying the input to the n-th MF has been replaced by a constant e−jωnL/N , independent

of time k. We can therefore move this constant factor from before each MF to after. In

particular, instead of feeding r̃(n)k as the input the n-th MF, we can instead feed the following

signal as the input to the n-th MF:

r
(n)
k = rnL/N+kw

′
k, (3.11)

and then multiply the signal coming out of the n-th MF by the constant e−jωnL/N before

adding. Thus, while we began with an exhaustive search that first compensates for Doppler,

segments the result, and then feeds these segments to a bank of MF’s, the approximation

of (3.10) allows us to perform these functions in reverse order, namely, to first segment

the received signal, feed the segments to a bank of MF’s, and compensate for the Doppler

afterwards.

Let y(n)k denote the output of the n-th MF at time k, when the uncompensated segment

r
(n)
k from (3.11) is its input. We can then approximate the output of the overall MF in
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(3.8) by multiplying each segmented MF output by the appropriate constant before adding,

yielding

yk =
N−1∑
n=0

e−jωnL/Ny
(n)
k . (3.12)

For k fixed, this can be viewed as a sampled DTFT of the MF bank outputs y(n)k , viewed as

a function of n. For the special case when the set of candidate frequencies ω is restricted

to be of the form ω = 2πm/L for m ∈ M = {0,±1, . . . ,±(N/2− 1)}, (3.12) reduces to

the discrete-Fourier transform, since then:

yk =
N−1∑
n=0

e−j2πmn/Ny
(n)
k , (3.13)

can be viewed as the m-th DFT coefficient of the vector [y(0)k , ..., y
(N−1)
k ]. Thus, instead

of performing an expensive search over all possible Doppler frequencies, N candidate

Doppler frequencies can be simultaneously searched with a single instance of the DFT,

which can be efficiently implemented with an FFT [140].

A block diagram of one possible implementation of the core DEES algorithm is shown

in Fig. 3.2. The received sequence rk is partitioned into N segments, and each segment

r
(n)
k is passed through a filter matched to that segment of the spreading code, with impulse

response x∗(n)−k . The MF outputs are then collected into a N ×D matrix Y, where the entry

in row n ∈ {0, 1, ...N − 1} and column k ∈ D is y(n)k , and where D = 2⌈dmax⌉ + 1. From

the N ×D matrix Y we create the N ×D matrix Z by taking the FFT of the columns of

Y.

The maximum normalized Doppler frequency tested by the FFT is 2π(N/2 − 1)/L.

To prevent aliasing we must have N > ωmaxL/π + 2, where ωmax = 2πfcTcb0,max is the

maximum normalized radian Doppler frequency. This places a lower bound on the number

of segments needed. On the other hand, the DFT resolution, with no zero-padding, is given

by △f = 1/(LTc). In other words, the maximum normalized Doppler frequency tested is

affected by the choice of N , but the frequency resolution is independent of the number of
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Figure 3.2: Block diagram of the core delay-Doppler efficient exhaustive search (DEES)
algorithm.
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segments N , and is determined by the signal length L and sampling frequency fs = 1/Tc.

We now discuss how to obtain estimates of d0 and ωD. Since DSSS signals have, ideally,

thumbtack autocorrelation characteristics, one strategy to produce estimates is to search for

distinct peaks in |Z|. The code phase offset and Doppler frequency can be jointly estimated

with row index m ∈ M and column index k ∈ D, namely ω̂D = 2πm/L and d̂0 = k.

In the case of a multipath channel and RAKE receiver, this process can be repeated where

{d0, ωD} is estimated independently for each path. The receiver zeros-out the peak it just

estimated in |Z| before moving onto the next one. In this case, the receiver must have a

priori knowledge of the number of channel paths present. For visualization an example is

shown in Fig. 3.3 for a two path channel.

Up until this point we have assumed that the channel gain α = 1. While a non-unity α

does not affect the estimation process for {d0, ωD}, core DEES can obtain coarse channel

gain estimates from Z. We now briefly derive the channel gain estimate α̂.

The output of the nth partitioned matched filter is:

y
(n)
k = r

(n)
k ∗ x

∗(n)
−k

= rnL/N+kw
′
k ∗ x

∗(n)
−k

≈ αx
(n)
k−d0

ejωD(k+nL/N−d0) ∗ x
∗(n)
−k

= αejωD(nL/N+d0)x
(n)
k−d0

ejωD(k−d0) ∗ x
∗(n)
−k ,

(3.14)

where in the third line it was assumed that due to the favorable autocorrelation

characteristics of DSSS signals the contributions of the correlations of segments

surrounding the nth segment are negligible.

Substituting (3.14) into (3.13) yields:

yk = α
N−1∑
n=0

ej(ωD−2πm)nL/NejωDd0x
(n)
k−d0

ejωD(k−d0) ∗ x
∗(n)
−k

= α
N−1∑
n=0

ej(ωD−2πm)nL/NejωDd0A(n,n)[k − d0, ωD),

(3.15)
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Figure 3.3: Depiction of |Z| at high SNR for a two path channel. Doppler frequency
estimates can be obtained from the row indices, while estimates of the code phase offsets
are obtained from column indices. Channel gain estimates for each path can be obtained
from the corresponding complex amplitudes in Z.

where A(n,n)[k, ωD) = x
(n)
k ejωDk ∗ x

∗(n)
−k is the discrete ambiguity function1 of the nth

transmitted signal segment.

From (3.15) we can estimate α. Let Zmk denote the entry in Z wherem is the row index

and k is the column index of the corresponding peak in |Z|, then:

α̂ =
Zmk∑N−1

n=0 e
jω̂D d̂0A(n,n)[0, ω̂D)

. (3.16)

It should be apparent from (3.16) that both the Doppler estimate and the code phase offset

estimate must be obtained prior to α̂. Subsequently, the channel gain estimates produced

by core DEES are highly dependent on the accuracy of {d̂0, ω̂D}, and should be viewed as

an auxiliary feature with limited accuracy.

It is important to note that the only difference between core DEES and an exhaustive

search is the constant phase approximation in (3.10). Thus as long as CPA holds, core

DEES will produce the same estimates as an exhaustive search with the same quantization

1See [141] for more details on ambiguity functions.

59



constraints.

3.3 Numerical Simulations

To assess the performance of core DEES, we characterize its DSSS acquisition performance

in a synthetic channel as a function of SNR and compare it against the exhaustive search.

We then assess core DEES’s channel estimation performance in a multipath channel.

While the optimal exhaustive search (ES) can be described by (3.3), in practice it is

necessary to search over a finite space. Subsequently, we implement (3.3) by means of a

2D grid search in which the received signal rk is compensated by e−jωnk, for candidate

Doppler frequencies {ω0, ω1, . . . ωN−1}, then passed through a filter matched to the full

length L xk; this is essentially a discrete time implementation of Fig. 2.8. This search can

be used to generate coarse estimates for d0 and ωD, but are are limited in precision by both

N and the quantization of the code phase search. To alleviate these issues, we utilize these

estimates as seeds for a numerical search that can find the local maximum of the objective

function in (3.3). Thus our implementation of ES consists of a 2D grid search followed by

a numerical local maximization algorithm. In particular, we make use of the interior-point

constrained optimization routine within MATLAB.

To compare the acquisition performance between core DEES and the exhaustive search

just described, we measured their probability of acquisition PA for a fixed false alarm rate

PFA. PA and PFA are calculated by the fraction of trials that the decision statistic (3.2)

exceeds threshold ζ when the signal component of rk is present and absent, respectively.

We assume that inaccurate estimates of {d0, ωD} will result in a negligible correlation.

For each SNR we simulate 105 trials, where each trial has both independent noise and

parameter realizations. Each parameter is drawn from a uniform distribution ranging from

± its maximum value; for example d0 is drawn from U(−d0,max, d0,max). The phase of the

channel gain α is uniformly distributed, and |α| is drawn from U(1, 5).

We consider a system with fc = 2 GHz, fs = 1/Tc = 1 MHz, L = 8200; this results in
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a Doppler resolution of △f = 121.95 Hz. For the channel parameters we set d0,max = 50

and ωmax = 0.0251 which corresponds to a maximum Doppler shift of 2 kHz. We first

consider the case of a channel with a single path.

Our simulation results suggest that in practice, core DEES provides acquisition

performance similar to that of the 2D grid search. This is evidenced by the closeness of

the blue (core DEES) and light blue (2D grid search) curves in Fig. 3.4(a), which plots

PA vs. SNR (dB) for a fixed PFA = 10−3. However, both core DEES and the 2D grid

search underperform ES which is neither constrained by a 1-chip quantization error in

the code phase offset estimate nor constrained by the Doppler resolution △f = 1/LTc.

This is apparent in Fig. 3.4(b) where the mean absolute error for the exhaustive search’s

code phase estimate d̂0 (green solid curve) does not obtain a lower bound and continues to

decrease as the SNR increases. While it does appear the MAE of the Doppler estimate for

ES obtains a lower bound, this is an artifact due to the stopping criteria of the numerical

solver, and not inherent to the ES itself.

For core DEES and the 2D grid search we can verify that the lower bounds on the

MAE for d̂0 and f̂D are in accordance with theoretical values. We consider the expected

value of the MAE of an estimator θ̂ that takes discrete values {−△/2,△/2} when the

true value θ is uniformly distributed within the bin U(−△/2,△/2). If X = |θ − θ̂|, then

E[X] = E[X|θ̂ = −△/2]P [θ̂ = −△/2] + E[X|θ̂ = △/2]P [θ̂ = △/2] = △/4. For the

system of interest △f = 121.95 Hz and △d0 = 1 chips, which imply the MAE of the

Doppler estimate approaches △f/4 = 30.48 Hz and the MAE of the code phase offset

estimate approaches △d0/4 = 0.25 at high SNR. Fig. 3.4(b) corroborates both of these

claims.

From Fig. 3.4 is it apparent that core DEES achieves similar performance as the 2D grid

search, although both of these techniques underperform the exhaustive search. However,

these limitations largely due to the quantization error in the code phase offset estimate and

the Doppler resolution. The former may be remedied by oversampling at the receiver,
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Figure 3.4: (a) Probability of acquisition PA vs. SNR (dB) for the exhaustive search, 2D
grid search, and core DEES with L/N = 20, for a fixed PFA = 10−3. The inset plot is a
magnified section of the same set of curves. (b) Mean absolute error (MAE) for d̂0 (solid
lines) and f̂D (dashed lines) for the same simulation in (a).
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Figure 3.5: Mean absolute error (MAE) for d̂0 (blue curves), f̂D (red cures) and α̂ (gold
curves) for core DEES in a two path channel. The subplots on the right of the figure are
zoomed-in plots of the same set of curves from −24 ≤ SNR (dB) ≤ −22. The dashed lines
of the same color indicate the MAE for the estimates associated with the second channel
path.

giving a sub-chip resolution, and the latter also by increasing the sampling rate or by

increasing L if possible.

Finally we shift our attention to the estimation capabilities of core DEES in a multipath

environment. We use the same channel parameters as before, however, we now enforce

that the delay of the second channel path differs from the delay of the first channel path by

at least one chip, e.g. |d0,1 − d0,2| ≥ 1, such that both paths may be clearly resolved.

As can be seen from Fig. 3.5 core DEES is capable of estimating both the code phase

offset and the Doppler frequency independently for each of the two channel paths. Since

the range of channel parameters are the same for both paths, the MAE curves for the second
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channel path (dotted lines) overlaps with that of the first (solid curves); this is more easily

seen in the subplots on the side. Using (3.16), core DEES can obtain channel estimates for

both channel paths. However, not only are these estimates dependent on the accuracy of

both d̂0 and ω̂D, but they are also constrained by the quantization error of both estimates.

Subsequently, even as the SNR increases and the accuracy of d̂0 and ω̂D improve, the

MAE of α̂ also achieves a lower bound. These channel estimates may be used to seed the

automatic gain control in other systems within the receiver, but are too coarse for diversity

combining or other applications requiring a high degree of accuracy.

3.4 Effect of Segment Size on Performance and Complexity

Up until this point we have placed a minimal amount of restrictions on how the number of

segments N should be chosen. While the number of segments should be selected such that

N > ωmaxL/π + 2, in practice this still leaves a wide variety of values that N could take.

In this section, we discuss the trade-offs associated with N , and show that when N is large

the Doppler losses are minimized, but at the cost of higher computational complexity.

There are two main causes for the Doppler losses in core DEES. The first is the Doppler

mismatch between the nth segment of the received signal and the nth matched filter,

which leads to an amplitude loss as it is equivalent to slicing the ambiguity function

A(n,n)[0, ωD) away from its maximum value at A(n,n)[0, 0). The second is the frequency

response inherent to the core DEES algorithm.

This frequency response can be understood from the amplitude of the peaks in |Z|. We

begin the analysis with quantity Zmk, which we first introduced in (3.16):

Zmk = αejωDd0

N−1∑
n=0

ej(ωD−ω)nL/NA(n,n)[0, ωD)

= αejωDd0AL/N [0, ωD)
N−1∑
n=0

ej(ωD−ω)nL/N

= αejωDd0AL/N [0, ωD)e
−j(ωD−ω)N−1

2
L
N

sin((ωD − ω)L/2))

sin((ωD − ω)L/2N))
,

(3.17)
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where the candidate Doppler frequency ω = 2πm/L has been abstracted for visualization

purposes, and where in the second lineA(n,n)[0, ωD) was replaced withAL/N [0, ωD), which

is the ambiguity function of a length L/N sequence of 1s. This can be done since only at

the 0 time lag does A(n,n)[0, ωD) = AL/N [0, ωD) ∀n.

We can then define the normalized peak amplitude β as the amplitude of Zmk divided

by the peak amplitude when ωD = 0. Namely:

β =

∣∣∣∣∣AL/N [0, ωD)

L

sin((ωD − ω)L/2)

sin((ωD − ω)L/2N)

∣∣∣∣∣. (3.18)

It should be apparent from (3.18) that the Doppler mismatch during the partitioned matched

filtering results in an amplitude reduction, as evidenced by the AL/N [0, ωD) term, while the

Doppler compensation by FFT has a frequency dependent response, as evidenced by the

sin((ωD − ω)L/2)/sin((ωD − ω)L/2N) term. This term gives rise to scalloping loss, in

which the amplitude of the peaks in |Z| is reduced if the Doppler frequency falls between

two FFT bins [83, 141].

β achieves a maximum value of unity only when ωD = 0; this holds even when ω = ωD,

as the loss due to the AL/N [0, ωD) term is irreversible. However, as a whole the Doppler

loss can be reduced by reducing L/N . This is seen in Fig. 3.6 which plots β vs. Doppler

frequency (Hz) for L/N = {10, 20, 50, 100, 205} for simulated data (solid curves) and

analytical expressions (3.18) (dashed curves). When the channel Doppler frequency fD is

low, the choice of L/N does not have a noticeable affect on β as evidenced by the overlap

of all the curves in the left-half of the figure. However, as the Doppler frequency increases,

it is apparent that a larger segment size results in a decrease in β. At fD = 2 kHz β ≈ 0.75

when L/N = 205, compared to β ≈ 0.99 when L/N = 20.

Based on the results in Fig. 3.6, it would appear when utilized core DEES a smaller

segment size should be used to curb Doppler losses. Selecting a smaller segment size

results in a larger N , which ultimately will increase the computational complexity of core
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Figure 3.6: Doppler loss β vs. Doppler frequency (Hz) for core DEES for a family of
segment sizes L/N . Solid curves indicate simulation results, while dotted curves indicate
analytical expressions.
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DEES. Thus there exists a trade off between robustness to high Doppler frequencies, and

computational complexity.

We now characterize the complexity of core DEES and compare it to the complexity

of the exhaustive search, whose implementation was described in the previous section. We

will show that core DEES always has lower computational complexity than the exhaustive

search for an equivalent number of candidate Doppler frequencies, due to the computational

efficiency afforded by the FFT.

We define complexity as the number of computations required to obtain estimates of

{d0, ωD}. We consider each complex add or complex multiply as one operation, and

assume that memory loads and register shifts have negligible computational cost. For

example, the computation of (a + b) is considered to be one operation. Vectorization of

matrices is assumed to be computationally negligible as well.

Using this methodology we can compute the complexity of the exhaustive search.

Assuming the received signal rk is of length (L + D), for a given candidate Doppler

ES requires (L + D) multiplications to compensate the rk by e−jωnk and (L + D)(2L −

1) operations to search over all possible code phase offsets with a MF implementation.

For N candidate Doppler frequencies, this results in a total computational complexity of

O(2NL(L+D) + ψ) where ψ is the complexity associated with the local maxima search,

and is implementation dependent.

There are several methods for implementing the DFT core DEES requires. One way

is to utilize an N -point FFT as shown in Fig. 3.2 which we assume has computational

complexity order O(N log2N) [140]. The complexity cost associated with the partitioned

matched filtering is O(D(2L−N)), while the computational cost associated with the FFT

of the columns of Y is O(DN log2(N)). Thus the complexity of core DEES is O(D(2L+

N [log2(N)− 1])).

An interesting case arises when the number of partitions N is selected such that ωDFT =

πN/L < ωmax, which implies that there are more candidate Doppler frequencies that are
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Table 3.1: Summary of Algorithm Complexities

DETECTOR COMPLEXITY ORDER
Exhaustive Search O(2NL(L+D) + ψ)

core DEES FFT O(D(2L+N [log2(N)− 1]))

core DEES Pruned FFT O(D(2L+N [log2(K)− 1]))

searched over than are actually required; in this case, not every output of the FFT needs to

be computed. The computational complexity of a pruned FFT, in which only K of the N

outputs are required is assumed to be O(N log2K). When considering pruned FFTs, the

complexity of core DEES reduces to O(D(2L+N [log2(K)− 1])) where ωmaxL/π + 2 ≤

K < N .

The computational complexity of core DEES scales as O(N [log2(N)−1]) with respect

to the number of segments. Given the previous discussion on amplitude degradation in

|Z| due to Doppler mismatch, the segment size L/N should be selected to keep Doppler

mismatch to a tolerable level, but not so small such that N is large and the computational

complexity is high. Even when incorporating FFT pruning, a large number of segments

will still incur a high complexity as pruning only affects the log2(K) term, and not the

linear N dependency.

The computational complexities of both ES and core DEES are summarized in Table

3.1. It is apparent that even when ψ = 0, which corresponds to the 2D grid search,

the computational complexity of ES is strictly greater than that of core DEES, whose

complexity is greatly reduced due to the partitioned matched filtering and the FFT.

3.5 Summary

In this chapter we have introduced core DEES, an efficient algorithm derived from the

optimal exhaustive search that can acquire DSSS signals with static code phase offsets and

constant Doppler frequencies. It achieves similar acquisition performance when compared
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to the 2D grid search, and mildly underperforms the exhaustive search chiefly due to

quantization limitations. core DEES provides auxiliary channel estimation capabilities,

and can take advantage of a multipath channel environment if the number of channel paths

is known. Its greatest drawback is its inability to deal with time-varying channel code phase

offsets which are present when Doppler frequencies are large and when the spreading code

is long. These limitations will be addressed in the next chapter.
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CHAPTER 4

DSSS ACQUISITION FOR TIME-VARYING CODE PHASE OFFSETS

In this previous chapter, we proposed core DEES, an efficient algorithm that can acquire

direct-sequence spread-spectrum signals when the Doppler frequency is constant, and the

code phase offset is static. However, when the Doppler frequency is large, the Doppler rate

is high, or when the frame is long, the time-varying effects of the channel can no longer be

ignored, and the code phase offset can no longer be modeled as static. A communication

environment characterized by these channel impediments is sometimes referred to as a

high-dynamic environment [23, 94, 95].

Rather than develop a brand new acquisition algorithm from scratch, we propose

several augmentations to the core DEES algorithm that will allow it to handle both

time-varying code phase offsets and a time-varying Doppler frequency [142]. We begin

with an adjustment to the received signal model described in (3.1) to better model the

channel effects present in a high-dynamic communication environment. We then showcase

the efficacy of the proposed augmentations, and then finally we compare the acquisition

performance of DEES, the augmented version, and core DEES in the LEO satellite

channel. This chapter assumes the reader is familiar with the mechanics of core DEES’s

operation, along with the associated notation.

4.1 Received Signal Model

Given the vast existing literature on DSSS acquisition for static code phase offsets and

constant Doppler [28, 76, 83, 84, 86, 87, 91, 143], we specifically focus on the time-varying

Doppler aspect of the problem, and ignore non-essential features such as data modulation

which have been discussed in [76]. As in Chapter 3, we focus our efforts on the estimation

portion of acquisition, and leave the detection stage untouched.
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The baseband IQ samples at the receiver are modeled as:

rk = αxk−dke
−jω0dk + nk, (4.1)

where α is an unknown complex channel gain, ω0 = 2πfcTc is the normalized radian

carrier frequency, fc is the carrier frequency in Hz, Tc is the chip period, fs = 1/Tc is the

sampling frequency, and the components of the noise vector nk are i.i.d. CN (0, 2σ2). The

transmitted binary DSSS signal xk is assumed to be known to the receiver, and is non-zero

only for k ∈ {0, 1, . . . , L−1}. To account for the case when dk in (4.1) is not an integer, we

define xk−d =
∑

n xnsinc((k−n)−d); for readability this interpolating sinc is suppressed.

To reflect the presence of both Doppler rate and Doppler frequency shift, we adopt a

quadratic model for the code phase offset dk, namely:

dk = d0 − b0k − b1k
2, (4.2)

where d0 is the initial code phase offset in chips, b0 = fD,0/fc is a constant proportional to

the initial Doppler frequency fD,0 in Hz, and b1 = fATc/(2fc) is a constant proportional to

the Doppler rate fA in Hz/s, which is assumed to be constant.

The receiver is assumed to have knowledge of the maximum values of the coefficients

in (4.2), i.e. |d0| ≤ |d0,max|, |b0| ≤ |b0,max|, and |b1| ≤ |b1,max|. Furthermore, implicit in

(4.1) is the assumption that the maximum possible Doppler frequency shift is just a small

fraction of the chip rate, that is |b0,max + Lb1,max/2|fcTc << 1. Subsequently, the receiver

has knowledge of the maximum code phase offset dmax, and the maximum normalized

radian Doppler frequency shift ωmax.

The received signal model in the previous chapter (3.1) can be viewed as a special case

of (4.1), in which the Doppler rate is zero (b1 = 0), the constant phase shift due to d0

e−jω0d0 is ignored, and |b0L| << 1/2 such that the code phase offset can be approximated

as static dk ≈ d0.
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This chapter solves the following problem: given knowledge of the received signal

model in (4.1) and the quadratic model in (4.2), estimate the parameters {d0, b0, b1} that

maximize the acquisition statistic [68, 144]:

z =

∣∣∣∣ ∞∑
k=−∞

rkx
∗
k−d̂k

e+jω0d̂k

∣∣∣∣2, (4.3)

where d̂k is the estimate of dk.

4.2 Time-Varying Code Phase Offsets

Core DEES, or any partial-correlation-FFT based DSSS acquisition technique, will

experience two main problems when utilized in a high-dynamic environment [145]. The

first is known as code phase migration (CPM), which arises from the fact the time-varying

channel delay will cause the code phase offset to shift over time as core DEES performs

its partitioned matched filtering. The second is known as Doppler frequency migration

(DFM), and arises from the fact the channel Doppler frequency is time-varying. The

combination of both of these effects will prevent coherent integration from the FFT of

the columns of Y, resulting in indistinct peaks in |Z|, which greatly reduces core DEES’s

acquisition performance.

An example of this can be seen in Fig. 4.1(a), where the left-half of the figure depicts

|Y| in the segment-code phase plane, where CPM for a two path channel is present.

Since the FFT applied to Y can only capture signal energy in a given column, the

post-integration SNR is significantly reduced. The right-half of Fig. 4.1(a) depicts |Z| in

the code phase-Doppler plane, after the FFT of the columns of Y. The two jagged lines

indicate DFM is present for both channel paths.

Instead of deriving a new algorithm from the 3D exhaustive search over {d0, b0, b1} in

a similar fashion to how core DEES was derived from the 2D exhaustive search in (3.4),

our approach is to utilize several signal processing techniques to eliminate the time-varying
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effects of the channel, and then use core DEES to acquire the static signal. This will adjust

the problem from an expensive 3D search to a 2D one with some additional post-processing,

where in Chapter 3 we have established core DEES provides performance comparable to

the 2D exhaustive search.

Our approach is to utilize a second-order keystone transform (SOKT)[146, 102] to

mitigate the quadratic component of CPM, then use a fractional Fourier transform (FrFT)

to estimate the Doppler rate, compensate for it with a complex phase factor, and finally

apply another SOKT to remove any residual CPM and DFM. We first discuss each step in

the ideal case in which digitization is a non-issue, then discuss a practical implementation

of this approach.

Ignoring the noise component, the output of the nth MF is:

y
(n)
k = r

(n)
k ∗ x

∗(n)
−k

≈ αx
(n)
k−dnL/N

e−jω0dnL/N ∗ x
∗(n)
−k ,

(4.4)

where in the last line it was assumed that since CPA holds the delays within a given signal

segment will not change, i.e. dk+nL/N ≈ dnL/N .

Taking the DTFT of (4.4) with respect to k and expanding dnL/N yields:

Y (n, ω′) = αX(n, ω′)X∗(n, ω′)e−j(ω0+ω′)d0ej(ω0+ω′)(b0nL/N+b1(nL/N)2), (4.5)

where ω′ is the discrete-time radian Fourier frequency and X(n, ω′) is the DTFT of x(n)k .

The exp(jω′b0nL/N) term in (4.5) is responsible for the linear component of CPM, while

the exp(jω′b1(nL/N)2) term is responsible for both the quadratic component of CPM and

DFM.

First proposed in the context of synthetic aperture radar, the keystone transform (KT)

is able to correct for linear time-varying delays without a priori knowledge of the target’s

velocity [147]. The KT has since been extended to a “second-order” form which can blindly
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correct for quadratic time-varying delays. The SOKT is [102, 146]:

n =

√
ω0

ω0 + ω′n
′ (4.6)

where n′ is the transformed index. The “second-order” arises from the fact the scaling term

ω0/(ω0 +ω′) is raised to the 1/2th power; the first-order keystone transform (FOKT) lacks

such a factor.

Substituting (4.6) into (4.5) yields:

Y (n′, ω′) = αX(n′, ω′)X∗(n′, ω′)e−j(ω0+ω′)d0ejb0n
′L/N

√
ω0(ω0+ω′)ejω0b1(n′L/N)2 , (4.7)

where X(n′, ω′) is X(n, ω′) after applying the SOKT. The exp(jb0n′L/N
√
ω0(ω0 + ω′))

term in (4.7) indicates that CPM and DFM still remain, as can be seen in Fig. 4.1(b).

However, this component cannot be rectified with another keystone transform due to the

presence of the exp(jω0b1(n
′L/N)2) term. Our strategy is to utilize the FrFT to estimate

the Doppler rate and then multiply (4.7) by exp(−jω0b̂1(n
′L/N)2) to remove the nuisance

term, and apply another SOKT to remove any residual CPM.

We now briefly introduce the fractional Fourier transform, then show how the FrFT can

be applied to estimate b1. The FrFT is a generalization of the canonical Fourier transform,

and is characterized by a single parameter β. The continuous time FrFT of signal x(t) is

[148, 149, 150, 151]:

X(β, u) =

∫ ∞

−∞
x(t)Kβ(t, u)dt, (4.8)

where the parameter β can be interpreted as a rotation angle, and Kβ(t, u) is:

Kβ(t, u) =


√
1− jcot(β)ejπϕ(t,u,β) β ̸= n

δ(t− u) β ∈ 2nπ

δ(t+ u) β ∈ (2n± 1)π

, (4.9)
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Figure 4.1: Visualization of matrices |Y| and |Z| with no transforms applied (a), a
second-order keystone-transform (SOKT) applied (b), an SOKT and phase compensation
applied (c), an SOKT, phase compensation, followed by another SOKT applied (d).
Two path channel with d0 = {10, 20}, fD,0 = {−19.1,−20.0} kHz, and fA =
{−1.3,−1.3} kHz/s. SNR = −10 dB, L/N = 1000.
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where ϕ(t, u, β) = t2cot(β) + u2cot(β) − tu csc(β), and n ∈ Z. The FrFT is equivalent

to the canonical Fourier transform when β = π/2, is the inverse Fourier transform when

β = −π/2, and β = 0 corresponds to the identity operator [149, 150, 151]. Additional

properties of the FrFT, along with the FrFT of several common signals can be found in

[148].

Perhaps one of the most intuitive ways to view the FrFT is in the time-frequency plane.

The FrFT is then a transform operator which rotates these axes counter-clockwise by angle

β [150, 152]; a visualization of this can be seen in Fig. 4.2(a). From this representation,

it should be clear that the FrFT is 2π periodic with respect to its transformation angle

β. However, for angles in which β is not a multiple of π/2, the FrFT of the signal is not

immediately obvious, and it may be more instructive to view the FrFT as the decomposition

of the signal in terms of chirps [150].

The FrFT can be used to estimate the chirp rate of an LFM signal [101, 96, 149, 152].

If x(t) is an LFM signal of the form Aejπ(µt
2+2f0t+ϕ0), then an estimate of its chirp rate µ̂

can be obtained from [101]:

µ̂ = −cot(β̂), (4.10)

where

β̂ = argmax
β

|X(β, u)|2. (4.11)

The chirp-rate estimation capabilities of the FrFT can be better understood from the

time-frequency plane described earlier. An LFM chirp has the distribution of a slant edge

or line in the time-frequency plane, since as the name suggests the frequency increases

linearly with time [149, 152]. Since the FrFT is an energy preserving transform, sweeping

the angle of the FrFT will rotate this slant edge and adjust how concentrated the energy is

in the magnitude spectra of the transformed signal. At the optimal angle, the magnitude of

the FrFT of an LFM chirp has a distinct peak, as seen in Fig. 4.2(b). Subsequently, (4.11) is

a formalization of this process, which can be completed with a brute-force search over all
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possible β, or with a more efficient algorithm such as the golden section search algorithm

as proposed in [149].

If its amplitude were constant, (4.7) can be approximated as an LFM signal with respect

to n′ with equivalent chirp rate 2b1fc. Since the channel gain α is already assumed to be

a constant, the only remaining term that must be constant is X(n′, ω′)X∗(n′, ω′). That

term corresponds to the Fourier transform of the autocorrelation of a DSSS signal of length

L/N , which is ideally a constant. Thus we may approximateX(n′, ω′)X∗(n′, ω′) as having

constant amplitude when the segment size L/N is sufficiently large. The Doppler rate,

proportional to b1, can then be estimated in a similar fashion as (4.10). The post-SOKT and

phase compensation can be visualized in Fig. 4.1(c).

If the estimates are accurate enough such that b̂1 ≈ b1, then multiplying (4.7) by

exp(−jω0b̂1(n
′L/N)2) and taking another SOKT yields:

Y (n′′, ω′) = αX(n′′, ω′)X∗(n′′, ω′)e−j(ω0+ω′)d0ejω0b0n′′L/N , (4.12)

where n′′ is the post-SOKT index. From (4.12) it is apparent that there is no longer any

coupling between ω′ and {b0, b1}, which indicates that the effects of both CPM and DFM

have been removed. This can be seen in Fig. 4.1(d), where the energy in |ZT| has been

focused into two distinct peaks. The SOKTs and phase compensation via FrFT remove

the time-varying aspect of both the code phase and the Doppler shift, and fixes them at an

arbitrary point; we chose the initial code phase offset and initial Doppler to allow for easy

estimation of {d0, b0}.

We now discuss a practical implementation of these core DEES augmentations. Since

it is not feasible to take the DTFT on the output of the N matched filters to produce (4.5),

an FFT of the rows of N × D matrix Y are instead taken to produce matrix Γ. The next

step is to apply the second-order keystone transform to each of the columns of Γ. Since the

variable n cannot simply be substituted as (4.6) suggests, the SOKT must be implemented
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Figure 4.2: (a) Illustration of the fractional Fourier transform in the time-frequency plane.
The FrFT can be interpreted as a rotational transformation of this plane. (b) Fractional
Fourier transform of an LFM chirp signal as a function of FrFT angle β. At the optimal
angle, the magnitude of the transform is characterized by a distinct peak.
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Figure 4.3: Matrices |Y| (a) and |Z| (b) after the application of two second-order keystone
transforms. Since the exponential phase compensation by the fractional Fourier transform
is absent, Doppler frequency migration is still present.

with an interpolation technique, such as sinc interpolation [113]:

Γ′
n′,l =

N−1∑
n=0

Γnlsinc
[√

ω0

ω0 +
2πl
D

n′ − n

]
, (4.13)

to produce matrix Γ′, where Γnl refer to the nth row and lth column of Γ.

A discrete FrFT is then applied to each of the columns of Γ′, to obtain estimates of

the equivalent chirp rates η̂l = −cot(β̂l)N/(TcL)2, where β̂l is the optimal FrFT angle of

the lth column and N/(TcL)2 is a sampling correction factor for the discrete FrFT [153].

In principle, η̂l = η̂ = 2b1fc/Tc ∀l. However, in practice this is not the case as the signal

has been corrupted by noise and theX(n′, ω′)X∗(n′, ω′) term in (4.7) is only approximately

constant. To improve the accuracy of b1, it is advantageous to average each of the individual

estimates:

b̂1 =
Tc
2fc

1

D

D−1∑
l=0

η̂l. (4.14)

At low SNR the accuracy of b̂1 can further be improved by removing extraneous values of

η̂l, corresponding to b̂1 exceeding b1,max, before taking the mean.

The columns of Γ′ are then multiplied by complex phase factor exp(−jb̂1π(n′TcL/N)2),

resulting in matrix Γ′′. An SOKT is applied to the columns of Γ′′ in a similar fashion as
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(4.13), and finally an IFFT is applied to the rows of the resulting matrix to obtain N ×D

matrix YT. A block diagram of the augmented DEES is shown in Fig. 4.4, where an FFT

of the columns of YT is taken in accordance with the core DEES algorithm. In effect,

the DEES algorithm is the same as the core DEES algorithm, except matrix Y has been

post-processed to produce matrix YT.

We now briefly discuss the DEES’s viability in a multipath channel environment. As

was discussed in the previous chapter, and as Fig. 3.3 illustrated, core DEES can acquire

a DSSS signal in a multipath environment so long as the number of the channel paths is

known to the receiver. For the implementation shown in Fig. 4.4, DEES is usable in a

multipath environment so long as all the channel paths have the same Doppler rate. This

limitation is due to the phase compensation exp(−jb̂1π(n′TcL/N)2) applied to matrix Γ′

which implicitly assumes there is only one Doppler rate.

As presented, the efficacy of the DEES algorithm is predicated on the accuracy of the

Doppler rate estimate b̂1 in (4.14); we had previously assumed that they are sufficiently

accurate such that b̂1 ≈ b1 such that (4.12) holds. We now consider the case in which this

condition does not hold. Since the estimation error of b̂1 will depend on the channel, we

consider the case in which DEES does not make use of the FrFT to obtain Doppler rate

estimates (e.g. b̂1 = 0), and instead applies two SOKTs successively.

Applying another SOKT to (4.7) results in

Y (n′′, ω′) = αX(n′′, ω′)X∗(n′′, ω′)e−j(ω0+ω′)d0ejω0b0n′′L/Ne
j

ω2
0

ω0+ω′ b1(n
′′L/N)2 . (4.15)

From 4.15 it is apparent that while the linear component of CPM has been removed, as there

is no coupling between b0 and ω′ in the exponent, both CPM and DFM are still present as

evidenced by the exp(j ω2
0

ω0+ω′ b1(n
′′L/N)2) term.

However, in practice the double SOKT can still mitigate some of the time-varying

effects of the channel if the CPM contributions from the b1 component of dk are
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Figure 4.4: Block diagram of the delay-Doppler efficient exhaustive search (DEES)
algorithm.
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small. This is evidenced in Fig. 4.3 where the residual component of CPM due to the

exp(j ω2
0

ω0+ω′ b1(n
′′L/N)2) term is small and less than one code phase offset bin. Although

DFM is still present as seen in Fig. 4.3(b), the energy is still contained in the correct initial

code phase offset bins, which will result in an accurate estimate of d̂0, however, the same

cannot be said of b̂0.

4.3 Special Case: Zero Doppler Rate

In light of both (3.1) and (4.1), we have not considered the case in which the Doppler rate

is zero, and thus dk = d0 − b0k follows a linear model instead of a quadratic one. This

corresponds to the case in which the Doppler frequency is constant, but still sufficiently

large (or the spreading code is sufficiently long) such that the time-varying effects of the

channel cannot be ignored.

In this case, core DEES will have to deal with a code phase offset that varies linearly

with time, however, the issue of time-varying Doppler frequencies is no longer present.

While DEES, as implemented in Fig. 4.4, can acquire DSSS signals in such an environment,

it is unnecessarily burdened by both the SOKT and the FrFT which are used to mitigate the

effects of a constant Doppler rate. We now propose a simpler augmentation to core DEES

to handle the case of linear time-varying code phase offsets.

With b1 = 0 the DTFT of the output of the nth MF is:

Y (n, ω′) = αX(n, ω′)X∗(n, ω′)e−j(ω0+ω′)d0ej(ω0+ω′)(b0nL/N), (4.16)

where ω′ is the discrete-time radian Fourier frequency as before. Realizing that the linear

CPM is caused by the exp(jω′b0nL/N) term, we apply a first-order keystone transform

(FOKT) to (4.16) which results in:

Y (n′, ω′) = αX(n′, ω′)X∗(n′, ω′)e−j(ω0+ω′)d0ejω0(b0n′L/N). (4.17)
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From (4.17) all CPM has been removed since ω′ is no longer coupled with b0. Thus, for the

case of a constant Doppler frequency, core DEES need only be augmented with a single

FOKT. One possible implementation of this augmentation is shown in Fig. 4.5, where the

FOKT must be implemented with interpolation in a similar manner as (4.13).

Interestingly, the absence of the FrFT indicates a single linear transformation can be

applied to Y to produce YT, since the Fourier transform and the keystone transform are

both linear transforms. This implies that a matrix could be used to obtain ZT from Y

instead of the FFT/IFFT and interpolation implementation in Fig. 4.5.

We now develop, step by step, a transformation matrix T that relates zT and y, which

are the vectorized versions of ZT and Y, respectively. The ND × 1 vector y is:

y =

[
y
(0)
k , y

(1)
k , . . . , y

(N−1)
k

]T
. (4.18)

In accordance with Fig. 4.5, the first step is to apply a DFT to each row of the matrix

Y to produce matrix Γ. This can be performed by multiplying (4.18) by the ND × ND

transformation matrix W:

W =



WD

WD,

. . .

WD


, (4.19)

where the off partitions of W are zero. WD is a D-point DFT matrix with entries shifted
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Figure 4.5: Block diagram of the first-order keystone-transform augmentation of core
DEES. Only a first-order keystone transform is necessary if Doppler frequency is constant.
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to correspond with the convention in (3.13):

WD =



1 w⌊D/2⌋+1 w2⌊D/2⌋+1 . . . w(D−1)⌊D/2⌋+1

1 w⌊N/2⌋+2 w2⌊D/2⌋+2 . . . w(D−1)⌊D/2⌋+2

...
...

...
...

...

1 1 1 . . . 1

...
...

...
...

...

1 w⌊D/2⌋ w2⌊D/2⌋ . . . w(D−1)⌊D/2⌋


. (4.20)

where w = exp(−j2π/D) is the primitive Dth root of unity, and where the lower brackets

indicate the “floor” operator. The inverse of unitary matrix WD is simply W−1
D = W†

D/D,

where W†
D is the conjugate-transpose of WD .

The entries of Λ are related to the entries of Γ with relationship:

Λñl =
N−1∑
n=0

Γn,l sinc
(

ω0

ω0 + ω′ ñ− n

)
. (4.21)

This linear transform can be implemented with transformation matrix A:

A =



A0,0 A0,1 . . . A0,N−1

A1,0 A1,1 . . . A0,N−1

...
...

...
...

AN−1,0 AN−1,1 . . . AN−1,N−1


, (4.22)

where Añ,n is a D×D diagonal matrix with entries a(ñ, n, i) = sinc
(

ω0

ω0+2π(i)/D
ñ−n

)
for

i ∈ {0, 1, . . . , D − 1}.

The final step in the core DEES algorithm is to take an N -point FFT of the columns of

matrix YT to produce ZT. Unfortunately, the adjustment from an FFT along the columns

to that of an FFT along the rows prevents direct application of a matrix whose structure is
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similar to (4.20). Instead we must utilize matrix B:

B =



W⌊N/2⌋+1,0 W⌊N/2⌋,1 . . . W⌊N/2⌋,N−1

W⌊N/2⌋+2,0 W⌊N/2⌋+2,1 . . . W⌊N/2⌋+2,N−1

...
...

...
...

W⌊N/2⌋,0 W⌊N/2⌋,1 . . . W⌊N/2⌋,N−1


, (4.23)

where Wn,l = w(n,l)IN = e−j2π n
N
lIN , and where IN is the N ×N identity matrix.

The total transformation matrix is then:

T =
1

D
BW−1AW (4.24)

such that zT = Ty. The vector zT can then be un-vectorized to produce matrix ZT.

The matrix implementation of the FOKT augmentation for core DEES has niche

application, and is not merely an intellectual curiosity. We now compare the computational

complexity of the matrix implementation to the FFT implementation as seen in Fig. 4.5,

and show that only when N and D are very small is the matrix implementation cheaper to

compute.

We follow the same method for computing computational complexity as in Chapter 3,

where each complex add or complex multiply as one operation, and assume that memory

loads and register shifts have negligible computational cost. Vectorization of matrices is

assumed to be computationally negligible as well.

For the FFT implementation, the FFT and IFFT to produce Y and YT, respectively,

have a net computational complexity of O(2NDlog2(D)). The sinc interpolation for

the FOKT requires a total of O(6ND) operations. The FFT of the columns of ZT

has complexity O(NDlog2(N)). Thus the total computational complexity of the FFT

implementation is O(2ND(log2(D
√
N) + 3)).

The matrix implementation is straight forward to compute, as it involves the
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multiplication of ND × ND matrix T with ND × 1 vector y. The matrix multiplication

can be analyzed as the dot product of two length ND vectors, performed ND times, for a

total complexity of O(2ND(ND − 1)).

We can express the relative complexity of both implementations as:

G =
ηMatrix

ηFFT
=

ND − 1
2

log2(D
√
N) + 3

(4.25)

As (4.25) suggests, the matrix implementation is only more efficient when both N and

D are extremely small. For example, N = 2 and D = 3 already results in similar

computational complexities. While intuitively it may seem more efficient to compute ZT

from Y in a single transformation, for practical values ofN andD the FFT implementation

is actually more efficient.

4.4 Numerical Results

To demonstrate the efficacy of DEES, we characterize its acquisition performance in the

LEO satellite channel as a function of SNR, and showcase its performance improvement

over the core DEES algorithm.

We measure performance as probability of acquisition PA for a fixed false alarm rate

PFA. PA and PFA are calculated by the fraction of trials that the decision statistic (4.3)

exceeds threshold ζ when the signal component of rk is present and absent, respectively.

We assume that inaccurate estimates of {d0, b0, b1} will result in (4.3) having a negligible

correlation. Since core DEES does not produce Doppler rate estimates, we assume b̂1 = 0

when computing (4.3).

For each SNR we simulate 1000 trials, where each trial has both independent noise and

parameter realizations. Each parameter is drawn from a uniform distribution ranging from

± its maximum value; for example d0 is drawn from U(−d0,max, d0,max). The polarity of b0

and b1 is enforced to be the same. The phase of α is uniformly distributed, and |α| is drawn
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from U(1, 5).

We consider a system with fc = 20 GHz, fs = 1/Tc = 60 MHz, L = 220, and

L/N = 500 chips. For the LEO satellite channel, we consider the high acceleration regime

[18], and select d0,max = 20, b0,max = 2.0 × 10−6, b1,max = 2.36 × 10−15, which with the

previous system parameters corresponds to a maximum initial Doppler frequency shift of

fD,0 = 40 kHz, a maximum Doppler rate of 5.67 kHz/s, a maximum of 2.10 code phase

bins migrated, and a maximum of 1.73 Doppler bins migrated. While the LEO satellite

channel is considered a multipath channel with Rician fading [24, 25, 26, 142], we do

not model any multipath or fading effects as the key channel impediment of interest is the

time-varying Doppler frequency shift.

Shown in Fig. 4.6(a) is PA vs. SNR (dB) for fixed PFA = 0.01 for both DEES (purple

curve) and core DEES (dark red curve). As the SNR increases, PA also increases, with

DEES achieving PA > 0.9 when SNR ≥ −41 dB. Once the SNR exceeds −40 dB, PA has

diminishing performance gains with increasing SNR, as d̂0 is now within a fraction of a

chip of the true value, and the initial Doppler frequency estimate is now accurate to within

tens of Hz. This can be seen in Fig. 4.6(b) which plots the mean absolute error (MAE)

for {d̂0, f̂D,0, f̂A} vs. SNR (dB) for DEES. The MAE of d̂0 (blue curve) and f̂D,0 reaches

a lower bound that only exists due to the quantization error of DEES. On the other hand,

DEES has difficulty obtaining an accurate f̂A when the SNR is low, as evidenced by the

gold curve obtaining an upper bound at low SNR, which exists only due to knowledge of

b1,max. However, when SNR ≥ −30 dB, the Doppler rate error is less than 1 kHz/s, which

is well within the pull-in range of tracking loops [154].

Due to the presence of both CPM and DFM, DEES outperforms core DEES by a

wide margin. This can be seen in Fig. 4.6(a), where core DEES requires approximately

5 dB of additional SNR to achieve the same PA ≈ 0.7. The performance benefit of the

DEES augmentations are more apparent as SNR increases, as evidenced by the widening

gap between the purple and dark red curves. This indicates that the SOKT and phase
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Figure 4.6: (a) Probability of acquisition PA vs. SNR (dB) with fixed PFA = 0.01 for
DEES (purple curve) and core DEES (dark red curve). (b) DEES Mean absolute error
(MAE) vs. SNR (dB) for d̂0 (blue curve), f̂D,0 (red curve), and f̂A (gold curve).
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compensation via the FrFT are successful at mitigating the time-varying Doppler effects of

the LEO satellite channel.

Given the large performance advantage DEES has over its core form, it would seem

natural to compare DEES against the 3D exhaustive search over {d0, b0, b1}. However,

due to our choice of parameters, namely L = 220, is it computationally infeasible to

simulate the acquisition performance of the 3D exhaustive search. Using the methodology

described in the end of Section 4.3, we briefly compare the computational complexities of

both algorithms, and show that the computational complexity of DEES is less than that of

the 3D search for practical parameters.

Unlike the 2D exhaustive search described in Chapter 3, the 3D exhaustive search

cannot first compensate the received signal rk by the Doppler frequency (and Doppler rate)

due to the time-varying channel delay. Instead, the 3D exhaustive search must compute the

correlation in (4.3) for all possible candidate tuples of {d0, b0, b1}. Assuming the received

signal rk is of length (L + D), it takes a total of 2(L + D) operations to compute the

correlation and its L2 norm for a given candidate tuple. If there are N candidate initial

Doppler frequencies, and M candidate Doppler rates, there are total of MND candidate

tuples. This means the 3D exhaustive search has complexity O(2MND(L+D)).

We now characterize the computational complexity of DEES. From Chapter 3,

core DEES has complexity O(D(2L + N [log2(N) − 1])), which means we need only

determine the complexity of the augmentations. Referencing Fig. 4.4, the FFT and

IFFT to produce Γ and YT have total complexity O(2NDlog2(D)). Each SOKT has

complexity O(7ND). Since we assume that a single discrete FrFT on a length n

sequence has complexity nlog2(n) [155, 156], the D length N FrFTs searching over

M candidate Doppler rates, along with the phase compensation have total complexity

O(D(MN log2(N) + N + 8)). This means DEES has total computational complexity

O(2NDlog2(N
(M+1)

2 D) + 14ND + 2LD + 8D).

From this analysis it should be clear for practical values (e.g. N >> 1 or M >>
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1) DEES has significantly lower computational complexity when compared to the 3D

exhaustive search. For the parameters used to produce the results in Fig. 4.6, the 3D

exhaustive search has a computational complexity approximately 105 times larger than

DEES.

4.5 Summary

In this chapter we have introduced DEES, an efficient algorithm that can acquire DSSS

signals in an environment with time-varying Doppler frequency shifts. DEES utilizes a

composition of the SOKT and the FrFT to reduce an expensive 3D search over initial

code phase offset, Doppler frequency, and Doppler rate into a 2D search with limited

post-processing. Numerical results show DEES can acquire long-code DSSS signal in the

high-acceleration regime of the LEO satellite channel, whereas core DEES struggles and is

significantly outperformed due to its inability to deal with both code phase migration and

Doppler frequency migration.
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CHAPTER 5

NONCOOPERATIVE DSSS DETECTION OF QPSK CODED SIGNALS

In this chapter we shift our attention to the noncooperative detection problem, in which

an eavesdropper armed with a detector is interested in detecting the presence of a DSSS

signal buried in noise [157]. Due to the noncooperative nature of the problem, the detector

lacks knowledge of key parameters such as the spreading sequence or the type of spreading

code utilized, and thus cannot take advantage of processing gain to aid in detecting a signal

buried deep below the noise floor. Given the difficulty of noncooperative detection, the

detector should exploit every possible advantage available to it to improve performance.

In particular, we explore the advantage of a detector that knows the DSSS signal is coded

using QPSK.

We propose a multi-antenna likelihood ratio test detector that takes advantage of

knowledge of the signal alphabet, and whose computational complexity grows linearly

with the detector observation window length. We compare the proposed alphabet-aware

detector against a battery of benchmark detectors, and characterize the benefits of alphabet

awareness for detection through both numerical simulation and statistical analysis.

5.1 Received Signal Model

We adopt a simplified received signal model with no channel dispersion, perfect

channel state information, identical signal delays for each antenna, and perfect carrier

synchronization. Implicit in such a model is the assumption the detector has knowledge of

both the carrier frequency and the signal bandwidth. Despite these limitations our model

still captures the essence of the noncooperative detection problem. We will later relax the

assumption that the detector has a priori knowledge of the channel state. We model the

detection problem as a composite binary hypothesis test where H0 is the null hypothesis in
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which only noise was received, and H1 is the alternative hypothesis in which signal plus

noise was received. The model for a vector of N samples at the kth antenna is:

 H1 : rk = αks+wk

H0 : rk = wk

(5.1)

where rk is an N × 1 received vector of baseband samples at the kth antenna, where k ∈

{0, 1, . . . , K − 1}, where K is the number of antennas, where αk is the complex channel

gain to the kth antenna, where s is the signal vector, and where wk is the noise vector at the

kth antenna. We assume that the components of s are i.i.d. uniform over the QPSK alphabet

A = {±1± j}, and that the components of the noise vector wk are i.i.d. CN (0, 2σ2), and

are independent for each antenna k ∈ {0, 1, . . . , K − 1}.

The i.i.d. model for the signal vector components in (5.1) reflects our assumptions

that the detector has no knowledge of the spreading sequence, the modulating information

symbols, and that the spread coding period is longer than the detector observation window,

which prevents the detector from exploiting any autocorrelative properties of the spreading

code. In effect, these assumptions make the DSSS signal indistinguishable from a

high-speed low-SNR non-spread single-carrier QPSK signal, whose symbol rate is equal

to the chip rate. Subsequently, although noncooperative detection of DSSS signals is the

key motivation for this work, the results in this chapter are also applicable to unspread

QPSK signals.

This chapter is concerned with the noncooperative detection problem: Given

{r0, r1, . . . , rK−1} and knowledge of the model in (5.1), with the noise variance and signal

alphabet also known, decide whether the signal is present (H1) or absent (H0).

5.2 Proposed Detector

According to the Neyman-Pearson criterion, the test that maximizes the probability of

detection PD for a given false-alarm probability PFA is the likelihood ratio test (LRT),
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which compares the ratio of likelihoods under H0 and H1 to a threshold [69, 70, 108]. If

the likelihood ratio exceeds a threshold the null hypothesis H0 is rejected, and the presence

of a signal is declared. Otherwise, the null hypothesis is accepted and the absence of a

signal is declared.

Applying the LRT directly to binary hypothesis testing problem in (5.1) leads to the

proposed alphabet-aware detector, which in terms of R = [r0, r1, . . . , rK−1] is:

LAA = log

[
f(R|H1)

f(R|H0)

]
. (5.2)

The numerator in (5.2) can be rewritten as:

f(R|H1) = Es

[(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk−αks||2

2σ2

]
= Es

[(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk||2+||αks||2

2σ2 e
∑K−1

k=0

Re{α∗
ks†rk}
σ2

]
=

(
1

2πσ2

)NK
1

22N

22N∑
i=1

e−
∑K−1

k=0
||rk||2+||αksi||

2

2σ2 e
∑K−1

k=0

Re{α∗
ks

†
i
r}

σ2

=

(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk||2+2N|αk|2

2σ2

N−1∏
n=0

cosh
(

1

σ2
Re

K−1∑
k=0

{α∗
krk(n)}

)
cosh

(
1

σ2
Im

K−1∑
k=0

{α∗
krk(n)}

)
,

(5.3)

where s† is the Hermitian-transpose of s, where si refers to the ith vector in an ordered list

of the 22N possible QPSK signal vectors, where ||s||2 = 2N , and where α∗
k is the complex

conjugate of αk.

The last step in (5.3) is a significant reduction in computational complexity, because

it reduces the 22N computations (exponential in N ) to 2N computations (linear in N ),

and allows for the practical implementation of the AA statistic even for large observation

windows. Such a reduction is possible due to the constellation positions of QPSK, which

lie along the real and imaginary axes.
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The denominator in (5.2) is:

f(R|H0) =

(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk||2

2σ2 . (5.4)

Substituting (5.3) and (5.4) into (5.2) results in:

LAA =
N−1∑
n=0

log
[

cosh
(

1

σ2

K−1∑
k=0

Re{α∗
krk(n)}

)

cosh
(

1

σ2

K−1∑
k=0

Im{α∗
krk(n)}

)]
−

K−1∑
k=0

N |αk|2

σ2
.

(5.5)

The AA decision statistic in (5.5) accommodates for multiple antennas by first

maximal-ratio combining (MRC) the K received signal vectors, yielding z =
∑K−1

k=0 α
∗
krk.

The detector then averages over all possible QPSK signal combinations with the two cosh

functions.

A block diagram of the AA detector is shown in Fig. 5.1. In terms of z(n) =

zR(n) + jzI(n), we can write LAA =
∑

n J(z(n)), where J(x + jy) = logcosh(x/σ2) +

logcosh(y/σ2). For brevity the last term of (5.5) was omitted from the block diagram;

doing so does not affect detector performance as it is equivalent to changing the detection

threshold.

5.3 Benchmark Detectors

We compare the performance of our proposed AA detector to four benchmark detectors.

The first two benchmarks of interest are the AA detector’s alphabet-unaware (AU)

counterpart, and the energy detector (ED). Both the AU detector and ED lack knowledge

of the signal alphabet, making them prime candidates for benchmarking the benefits

of alphabet awareness. The other two benchmarks of interest are the alphabet-aware

channel-unaware (AA-CU) and alphabet-unaware channel-unaware (AU-CU) detectors,

which are versions of the AA and AU detectors that do not have a priori knowledge of
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Figure 5.1: Block diagram of both the proposed alphabet-aware detector and the benchmark
alphabet-unaware detector. Both detectors consist of a maximal-ratio combining front end,
followed by a mapping from a complex vector to a scalar.

the channel gains {α0, α1, . . . , αK−1}. In practice, the detector does not have a priori

knowledge of the channel in a noncooperative detection scenario; the CU detectors are

practical realizations of both the AA and AU detectors, respectively.

With the exception of ED, each of the benchmark detectors’ decision statistic can

derived by applying the generalized likelihood ratio test (GLRT) to the binary hypothesis

testing problem in (5.1). For some of the benchmark detectors, it is convenient to adopt a

mathematically equivalent vectorized received signal model. Namely:


H1 : R = Hs+W

H0 : R = W

(5.6)

where R = [r0; r1; . . . ; rK−1] = vec(R) is the NK × 1 received signal vector and is the

vectorization of matrix R, s is the N × 1 transmitted signal vector, W is the NK× 1 noise

vector with entries W = [w0,w1, . . . ,wK−1], and H is a NK × N channel coefficient

matrix with entries H = [α0IN ;α1IN ; . . . ;αK−1IN ]. We will shift between the notations

when convenient to maintain the compactness of expressions.
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Alphabet-unaware detector

The first benchmark we consider is the alphabet-unaware (AU) detector, which as its name

suggests does not know the distribution of s. Rather than assume a potentially incorrect

distribution for s, the alphabet-unaware detector models s as a vector of deterministic

unknowns and applies the GLRT to (5.1), in which the unknown parameters under each

hypothesis are replaced with their maximum-likelihood estimates (MLE) [69, 70].

The PDF of R under H0 is the same as (5.4). The PDF of R under H1 is:

argmax
s

f(R; s|H1) = argmax
s

(
1

2πσ2

)NK

e−
||R−Hs||2

2σ2

= argmax
s

(
1

2πσ2

)NK

e−
||R||2+||Hs||2

2σ2 e
Re{(Hs)†R}

σ2

=

(
1

2πσ2

)NK

e
− 1

2σ2

[
||R||2+ ||H†R||2∑K−1

k=0
|αk|2

−2
||H†R||2∑K−1
k=0

|αk|2

]

=

(
1

2πσ2

)NK

e
− 1

2σ2

[∑K−1
k=0 ||rk||2−

||
∑K−1

k=0
α∗
krk||2∑K−1

k=0
|αk|2

]
,

(5.7)

where the MLE of s is ŝ = (H†H)−1H†R , and where H† is the conjugate-transpose of H.

A few important relationships were utilized to simplify (5.7). First consider the

reduction of Re{(Hŝ)†H} which was introduced in the second line:

Re{(Hŝ)†H} = Re{(H†R)†(H†H)−1H†R)}

=

(K−1∑
k=0

|αk|2
)−1

Re{IN(H†R)†H†R)}

=

(K−1∑
k=0

|αk|2
)−1

||H†R||2,

(5.8)

where (H†H)−1 =
(∑K−1

k=0 |αk|2
)−1

IN commutes with (H†R)† due to identity properties

of the former. We now shift our attention to the other quantity of interest, ||Hŝ||2, which
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can be reduced as follows:

||Hŝ||2 = ||H(H†H)−1H†R||2

=

(K−1∑
k=0

|αk|2
)−2

||HH†R||2

=

(K−1∑
k=0

|αk|2
)−1

||H†R||2.

(5.9)

Taking the logarithm of the ratio of (5.7) and (5.4) results in the AU decision statistic:

LAU = log

[argmax
s

f(R; s|H1)

f(R|H0)

]
=

||
∑K−1

k=0 α
∗
krk||2

σ2
∑K−1

k=0 |αk|2
. (5.10)

As (5.10) suggests, this detector first combines the signals from the different antennas

using MRC, and then performs ED after combining. Ignoring the constant term in the

denominator, the AU detector has the same block diagram as the AA detector as shown

in Fig. 5.1, except with J(x + jy) = x2 + y2 instead of J(x + jy) = logcosh(x/σ2) +

logcosh(y/σ2). As before, ignoring the constant does not impact detection performance.

Recognizing that (5.10) follows a noncentral χ2 distribution with 2N degrees of

freedom and noncentrality parameter δ = 2N SNR under H1, the probability of detection

of the AU detector is [158]:

PD,AU = QN(
√
δ,
√
η) (5.11)

where QM(a, b) =
∫∞
b
x(x

a
)M−1e−

x2+a2

2 IM−1(ax) dx is the Marcum-Q function [159] and

IM−1(ax) is the modified Bessel function of order M − 1. Recognizing that (5.10) follows

a central χ2 distribution with 2N degrees of freedom under H0, the probability of false

alarm is:

PFA,AU = 1− γ(N, η/2)

Γ(N)
(5.12)

where Γ(x) =
∫∞
0
xz−1e−xdx is the gamma function, and where γ(z, x) =

∫ x

0
tz−1e−tdt is

the lower incomplete gamma function [158].
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In practice, even if the AU detector had a priori knowledge of the channel gains, it would

be difficult for the detector to obtain synchronization due to its alphabet-unawareness.

Thus, the received signal model in (5.1) is unrealistic for any alphabet-unaware detector

that relies on coherent combining before performing detection. While this idealized

received signal model results in optimistic detector performance from alphabet-unaware

detectors, these detectors now represent a higher benchmark for the proposed AA

detector to overcome, and allows for the direct characterization of the effects of detector

alphabet-awareness.

Energy detector

The second benchmark we consider is the energy detector (ED). Like AU, the ED does

not have knowledge of the signal alphabet, but unlike AU the ED has no knowledge of

the channel gains. As the name suggests the ED uses the energy of the observations to

determine the presence or absence of the signal. The ED decision statistic is:

LED =
1

σ2

K−1∑
k=0

||rk||2, (5.13)

which follows a noncentral χ2 distribution with 2NK degrees of freedom and noncentrality

parameter δ = 2N SNR under H1, and a central χ2 distribution with 2NK degrees of

freedom under H0. Subsequently the analytical expression for the detection and false alarm

rates are:

PD,ED = QNK(
√
δ,
√
η), (5.14)

and

PFA,ED = 1− γ(NK, η/2)

Γ(NK)
, (5.15)

respectively. These expressions are the same as the AU detector’s PD and PFA expressions,

except the 2N degrees of freedom have been replaced with 2NK degrees of freedom.
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It is important to notice the performance of ED scales with NK at a given SNR. For

example, if the number of antennas is halved, than the observation window length must be

doubled to main the same detector performance. For large values of NK or as SNR → ∞,

the ED decision statistic approximately follows a normal distribution [160] with LED ∼

N (2N(K + ρ), 4N(K + ρ)) under H1, and LED ∼ N (2NK, 4NK) under H0.

Alphabet-aware channel-unaware detector

The third benchmark is the channel-unaware version of the proposed AA detector, namely

the AA-CU detector. There are two approaches of modeling the unknown channel gains

αk. One approach is to take the Bayesian perspective and assume a distribution for αk,

and apply the LRT to obtain the decision statistic. This requires a priori knowledge of

the channel environment the detector will be engaged in, and an inaccurate assumption

will lead to suboptimal detector performance. Furthermore, even if the distribution of the

channel gains were known, in many cases it is analytically intractable to derive the decision

statistic; this is shown in Appendix A. Subsequently, we take a similar approach as before

and model the αk as deterministic unknowns.

The AA-CU decision statistic is obtained by applying the GLRT to (5.1); its derivation

follows in a similar fashion as the AA detector. The resulting decision statistic is:

LAA-CU =
N−1∑
n=0

log
[

cosh
(

1

σ2

K−1∑
k=0

Re{α̂∗
krk(n)}

)

cosh
(

1

σ2

K−1∑
k=0

Im{α̂∗
krk(n)}

)]
−

K−1∑
k=0

N |α̂k|2

σ2
.

(5.16)

where α̂ = [α̂0, α̂1, . . . , α̂K−1] = argmax
α

f(R;α|H1). A closed-form solution for α̂ is

not known, but it can be estimated using numerical techniques such as gradient descent.

The relevant equation for a gradient descent implementation of the AA-CU statistic can be

found in the Appendix B.
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Alphabet-unaware channel-unaware detector

Finally, the last benchmark considered is the channel-unaware version of the AU detector,

namely the AU-CU detector. Proposed in [126], the AU-CU detector is derived by applying

the GLRT to (5.1) assuming both s and α = [α0, α1, . . . , αK−1] are vectors of deterministic

unknowns. Following a treatment of [126], the PDF of R under H1 is:

f(R;α, s|H1) = argmax
α,s

(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk−αks||2

2σ2

= argmax
α,s

(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk||2+||αks||2

2σ2 e
∑K−1

k=0
Re{(αks)†rk}

σ2

(5.17)

The ML estimate of αk, α̂k = s†rk
||s||2 [126, 124]. Substituting this in to the previous

expression yields:

f(R;α, s|H1) = argmax
α

(
1

2πσ2

)NK

e−
∑K−1

k=0

||rk||2−|s†rk|2

||s||2
2σ2

= argmax
α

(
1

2πσ2

)NK

e
−

∑K−1
k=0

||rk||2

2σ2 +
∑K−1

k=0
1

2σ2
s†RR†s
||s||2

(5.18)

The ML estimate of s is that which maximizes:

argmax
s

s†RR†s

||s||2
. (5.19)

This quantity is the Rayleigh quotient, and is maximized when s = λmax
(
Φ
)

where Φ =

R†R [124, 126]. Thus ŝ = λmax
(
Φ
)
.

The AU-CU decision statistic is then:

LAU-CU = log

[argmax
α,s

f(R;α, s|H1)

f(R|H0)

]
=

1

σ2
λmax

(
Φ
)

=
||
∑K−1

k=0 α̃
∗
krk||2

σ2
∑K−1

k=0 |α̃∗
k|2

,

(5.20)
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where λmax
(
Φ
)

is the maximum eigenvalue of the K × K Gramian matrix Φ = R†R,

and where α̃k is the maximum-likelihood (ML) estimate of the kth channel gain. Analytic

expressions for the cumulative distribution function (CDF) and probability density function

(PDF) of (5.20) have been derived in [161].

The second form of the decision statistic in the last line of (5.20) can be derived by

estimating the channel gains before estimating the signal vector, which is different from

the derivation in [126]. It should be noted that the channel estimates α̃k differ from the

channel estimates α̂k in (5.16), as α̃k is obtained when s is unknown. The second form of

the AU-CU statistic is more insightful as it shows that the AU-CU detector takes advantage

of multiple antennas with MRC, and that the only difference between the AU detector and

the AU-CU detector is the use of the actual channel gains in place of their estimates.

The ED can be related to the AU-CU detector in terms of the number of eigenvalues

utilized, since the ED statistic can also be written as LED = Tr(Φ)/σ2 =
∑K−1

k=0 λk(Φ)/σ2.

Thus, while the AU-CU statistic takes the maximum eigenvalue of Φ, the ED statistic sums

over all eigenvalues. It follows that the AU-CU statistic reduces to ED when there is only

a single antenna (K = 1). Furthermore, the AU statistic is also equivalent to ED when

K = 1, since the extra constant factor in the denominator is equivalent to changing the

detection threshold.

It is important to note that, with the exception of ED, all the benchmark detectors as

well as the proposed AA detector share the same topology shown in Fig. 5.1. They all

first perform MRC, apply a nonlinear operator J(·) to each component of the resulting

combined vector, and finally sum over the vector components to produce a scalar decision

statistic. The CU detectors must first obtain channel estimates before performing MRC,

but otherwise follow the same process.

The only difference between the alphabet-aware and alphabet-unaware detectors is the

nonlinear operator used. The alphabet-aware detectors use J(x) = logcosh(x/σ2), while

alphabet-unaware detectors use J(x) = x2. This distinction is not significant at low SNR,
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Figure 5.2: Comparison of logcosh(x) and x2/2.

since log[cosh(x)] ≈ x2/2 for small values of x, which often holds when the SNR is low.

Both functions are illustrated in Fig. (5.2), where they both exhibit similar behavior when

x is small.

With the exception of ED, all the benchmark detectors discussed were derived by

applying the GLRT to the binary hypothesis testing problem in (5.1). These detectors have

inherently suboptimal detection performance within their particular class, as the GLRT

is not optimal in the Neyman-Pearson sense, although it can be asymptotically optimal

under certain conditions [162]. However, the GLRT is the uniformly most powerful

invariant (UMPI) test for signal detection problems that fit the linear model, is in general

asymptotically UMPI as the number of observations approaches infinity (N → ∞) [163],

and is invariant to the same set of transformations that the original hypothesis testing

problem is invariant to [122, 164]. As the name suggests, the UMPI test has the highest

statistical power among tests that are invariant to a particular transformation group. For

example, the GLRT AU-CU detector does not necessarily maximize PD for a given PFA
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among detectors that neither have a priori knowledge of the channel gains nor knowledge

of the signal alphabet, but it does provide optimal detection performance among detectors

that are invariant with respect to element-wise rotations of the received signal vector in the

limit as N → ∞.

5.4 Performance Characterization

In this section we compare the performance of the proposed detector to its benchmarks as

a function of three key parameters: the number of antennas K, the observation window

length N , and the SNR.

We begin by describing the simulation methodology for numerical results presented

later in this section. For a given SNR, N , K, and PFA, each decision statistic is simulated

withM = 105 trials when the signal is present andM trials when the signal is absent. Each

trial has independent realizations of the noise vector, the signal vector, and the complex

channel gains αk, each of which is modeled as αk = ejθk where each θk is uniformly

distributed over the interval [0, 2π). The SNR is the same at each of the K antennas.

The probabilities PD and PFA are estimated by the fractions of trials that the test statistic

exceeds the threshold when the signal is present and absent, respectively.

For all detectors we measure performance as probability of detection PD for a given

false alarm rate PFA. Therefore every detector must choose its own threshold to achieve

the desired PFA. We numerically determine the thresholds for the AA-CU, AU-CU, and

AA detectors. The thresholds for AU and ED can be determined analytically, since both of

these detectors have closed-form expressions for PFA.

This section is divided into two subsections. In the first subsection we characterize

detector performance when the SNR is low, and show that in this case alphabet awareness

does not result in performance gain, regardless of the values of the other key parameters.

In the second subsection we examine the conditions in which alphabet awareness results in

appreciable performance gains, followed by a brief discussion on detector computational
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complexity.

5.4.1 Low-SNR Performance

We now investigate the performance of each detector in the low SNR regime. The

per-antenna SNR at the kth antenna is SNRk = ρk = |αk|2||s||2
2σ2N

, and the overall SNR is

ρ =
∑K−1

k=0 ρk. The first parameter of interest is the observation window length N .

Increasing N improves the detection performance of all detectors considered. This

effect can most easily be explained through the mechanics of the energy detector. As the

observation window length (sometimes referred to as the integration time in the context

of ED) increases, the ED captures an increasing amount of signal energy (assuming the

signal is present), while averaging out the noise whose variance is already known to the

detector. As Fig. 5.3 shows, this results in the narrowing of the PDFs of the decision

statistic, which allows for easier discrimination between H1 and H0, and ultimately results

in improved detection performance. For small values of N , both the AA-CU and AU-CU

detectors have difficulty obtaining accurate channel estimates, which limits their detection

performance to be similar to that of ED. This is seen in Fig. 5.4 which plots PD vs. N

for K = 4, SNRk = −20 dB, and PFA = 0.01 where both the purple (AA-CU) and

red curves (AU-CU), which are virtually on top of one another, approach the gold curve

(ED) when N < 103. From the same figure, it is apparent that while increasing N does

improve detection performance, it does not influence the relative performance between

alphabet-aware detectors and their alphabet-unaware counterparts.

Still operating in the low SNR regime, we shift our attention to detector performance

as a function of the number of antennas K. As the number of antennas increases, the SNR

available to the detector increases, which results in improved detection performance for

all detectors considered. However, not all detectors reap equal performance gains from an

increase in K. For instance, ED will underperform both AA and AU as K grows since

ED does not utilize a coherent combining technique. This is evidenced by Fig. 5.5, which
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Figure 5.3: Probability density functions for L′
ED = LED/2N under H1 (red curve) and H0

(blue curve) with SNRk = −20 dB and K = 4. Central limit theorem applied to allow for
normal distribution approximation of the PDFs.
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Figure 5.4: Probability of detection PD vs. observation window length N for K = 4,
PFA = 0.01, and SNRk = −20 dB. Inset plots are zoomed-in sections of the same set of
curves.
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Figure 5.5: Probability of detection PD vs. number of antennas K for N = 104, PFA =
0.01, and SNRk = −20 dB.

plots PD vs. K for N = 104, SNRk = −20 dB, and PFA = 0.01. From this figure it

is also apparent that the AA and AU (blue and green curves) are able to outperform their

CU counterparts (purple and red curves) as both the AA and AU detectors have a priori

knowledge of the channel gains and can flawlessly perform MRC.

The results in Fig. 5.5 suggest that while PD improves with increasing K, at low SNR

multiple antennas will not give an alphabet-aware detector a performance edge over its

alphabet-unaware counterpart. This is evidenced by the consistent overlap of the AA and

AU detection curves. Likewise, when these detectors are stripped of their a priori channel

knowledge, the alphabet-aware advantage is still not apparent. Interestingly, when K = 1

all the detectors exhibit the same performance, as there is neither benefit from MRC, nor

from alphabet awareness. In the following we show that the performance convergence of

all detectors at K = 1 is to be expected, as in the limit of low SNR the performance of
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the single-antenna AA detector approaches that of the single-antenna ED. This statement

holds regardless of the observation window length, and regardless of the false alarm rate.

Our approach is to show that, in the limit of low SNR and with a single antenna, the

AA statistic has the same moment generating function (MGF) as the ED statistic, which

indicates they have the same distribution, and therefore have the same performance. Since

K = 1 we will temporarily suppress any k subscripts for readability. For mathematical

convenience, we consider the adjusted AA statistic Z = LAA +N |α|2/σ2, which is simpler

to work with and achieves the same performance (since it is equivalent to changing the

threshold), namely:

Z =
N−1∑
n=0

log
[

cosh
(
Re{α∗r(n)}

σ2

)
cosh

(
Im{α∗r(n)}

σ2

)]

=
N−1∑
n=0

log
[
cosh

(
X(n)

)
cosh

(
Y (n)

)]
=

2N−1∑
n=0

log
[
cosh

(
X(n)

)]
,

(5.21)

where the last line follows from the fact that X(n) = Re{α∗r(n)}/σ2 and Y (n) =

Im{α∗r(n)}/σ2 have the same distribution under both H1 and H0. Under H1, both X(n)

and Y (n) have probability density function (PDF) 0.5f(x−ρ)+0.5f(x+ρ), where f(x) is

the PDF of a normal random variable with zero mean and variance ρ, and where ρ = SNR.

Under H0: X(n) ∼ N (0, ρ), and Y (n) ∼ N (0, ρ).

The MGF of Z is:

MZ(τ) =
2N−1∏
n=0

MZ(n)(τ) (5.22)

where Z(n) = log
[
cosh

(
X(n)

)]
. From (5.22) it is apparent that we can calculate the MGF

of Z(n) and raise it to the 2N th power since {X(n)} are i.i.d.. First consider the case in
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which the real part of s(n), sR(n), is 1:

MZ(n)(τ |sR(n) = 1) = E
[
eτZ(n)

]
= E

[
cosh(X(n))τ

]
= E

[
eX(n)τ

2τ

∞∑
k=0

(
τ

k

)
e−2X(n)k

]
=

1

2τ

∞∑
k=0

(
τ

k

)
e

ρ
2
[4k2−4k(1+τ)+τ(2+τ)]

=
1

2τ

∞∑
k=0

(
τ

k

)
e

ρ
2
β(τ,k)

=
1

2τ

∞∑
k=0

∞∑
m=0

(
τ

k

)(
ρmβ(τ, k)m

2mm!

)
,

(5.23)

where β(τ, k) = 4k2−4k(1+ τ)+ τ(2+ τ), and where
(
τ
k

)
= τ(τ −1) . . . (τ −k)(τ −k+

1)/k! is the generalized binomial coefficient for non-integer τ [158]. In the limit as ρ→ 0,

terms of order O(ρ2) or higher can be ignored, which leads to:

lim
ρ→0

MZ(n)(τ |sR(n) = 1) =
1

2τ

∞∑
k=0

(
τ

k

)(
1 +

ρβ(τ, k)

2

)
= 1 +

1

2τ

∞∑
k=0

(
τ

k

)
ρ

2

[
4k2

− 4k(1 + τ) + τ(2 + τ)
]

= 1 +
ρτ

2
.

(5.24)

The case in which sR(n) = −1 follows a similar derivation and leads to the same result:

limρ→0MZ(n)(τ |sR(n) = −1) = limρ→0MZ(n)(τ |sR(n) = 1) = 1 + ρτ/2.

Squaring (5.24), ignoring terms of O(ρ2) or higher, then raising the result to the N th

power yields:

lim
ρ→0

MZ(τ) = (1 + ρτ)N (5.25)
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The MGF of Z under H0 is:

MZ(n)(τ) = E
[
eτZ(n)

]
= E

[
cosh(X(n))τ

]
=

∫ ∞

−∞

e−
x2

2ρ

√
2πρ

[ ∞∑
k=0

(
τ

k

)
ex(τ−2k)

2τ

]
dx

=
1

2τ

∞∑
k=0

(
τ

k

)
e

ρ
2
(τ−2k)2

=
1

2τ

∞∑
k=0

∞∑
m=0

(
τ

k

)(
ρm(τ − 2k)2m

2mm!

)
,

(5.26)

where a binomial series was used to expand cosh(x)τ on the third line [158]. In the limit

as ρ → 0 terms of order O(ρ2) or higher will be small, and thus can be ignored. Using the

following relationships:

2τ =
∞∑
k=0

(
τ

k

)
τ2(τ−1) =

∞∑
k=0

(
τ

k

)
k

τ(τ − 1)2(τ−2) =
∞∑
k=0

(
τ

k

)
(k2 − k),

we can compute:

lim
ρ→0

MZ(n)(τ) =
1

2τ

∞∑
k=0

(
τ

k

)(
1 +

ρ(τ − 2k)2

2

)
= 1 +

ρτ

2
.

(5.27)

In the limit as ρ→ 0, the MGF of Z =
∑2N−1

n=0 Z(n) is:

lim
ρ→0

MZ(τ) = (1 + ρτ)N . (5.28)
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Interestingly, both (5.25) and (5.28) hold even when K > 1, since the distribution

of (5.21) remains the same even in the multi-antenna case. This is because

the AA detector can flawlessly perform MRC, which means the distributions of

X(n,K) =
∑K−1

k=0 Re{α∗
krk(n)}/σ2 and Y (n,K) =

∑K−1
k=0 Im{α∗

krk(n)}/σ2 only depend

on the total SNR ρ =
∑K−1

k=0 ρk. Despite this, neither (5.25) nor (5.28) can be used to

predict the detection performance of the AA detector for non-zero ρ, and as (5.23) suggests

we do not have a closed-form analytical expression for MZ(τ).

We now consider the ED statistic ζ:

ζ =
ρ

2σ2

N−1∑
n=0

|r(n)|2 =
N−1∑
n=0

ζ(n), (5.29)

which is the same as (5.13) but with K = 1 and scaled by constant ρ/2 for mathematical

convenience.

Under H1 the nth entry of (5.29) has a noncentral χ2 distribution with 2 degrees of

freedom and noncentrality parameter λ = 2ρ, scaled by constant ρ/2. Thus the MGF of

ζ(n) is:

Mζ(n)(τ) = E
[
eτζ(n)

]
=

e
ρ2τ

2(1−ρτ)

(1− ρτ)

=
∞∑
q=0

(ρ2τ)q

q!2q(1− ρτ)q+1

(5.30)

where the above expression is valid for τ < 1/ρ [165]. In the limit as ρ → 0, terms of

order O(ρ2) or higher can be ignored, yielding:

lim
ρ→0

Mζ(n)(τ) = 1 + ρτ . (5.31)
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The MGF of ζ is
∏N−1

n=0 Mζ(n)(τ), which leads to:

lim
ρ→0

Mζ(τ) = (1 + ρτ)N . (5.32)

We now consider the MGF of ζ under H0. Realizing ζ(n) is a χ2 distribution with 2

degrees of freedom, scaled by constant ρ/2, the MGF is:

Mζ(n)(τ) =
1

(1− ρτ)
, (5.33)

where the above expression is valid for τ < 1/ρ [165]. Applying a Taylor series with

respect to ρ about 0 and ignoring terms of order O(ρ2) or higher yields limρ→0Mζ(n)(τ) =

1 + ρτ . The MGF of ζ is then:

lim
ρ→0

Mζ(τ) = (1 + ρτ)N . (5.34)

Since both (5.32) and (5.25), and (5.34) and (5.28), are identical, we have proven that

Z and ζ have the same MGF in the limit as ρ → 0, and thus have the same distribution

under both H1 and H0.

Since, in the limit of low SNR, Z and ζ have the same MGF and thus the same

distribution under both H1 and H0, the performance of the AA detector approaches the

performance of an ED. This is consistent with the conclusions in [137, 29]. As this

discussion has demonstrated, with a single antenna and knowledge of the channel gains,

the advantage of knowing the signal alphabet disappears as SNR → 0. Since the primary

advantage of multiple antennas is MRC, an alphabet-aware advantage is still not apparent

even when K > 1, as evidenced by the numerical results in Fig. 5.5.
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5.4.2 The Alphabet-Aware Advantage

The AA detector can outperform the AU detector when the SNR is high and N is small.

The high SNR allows the AA detector to recognize the signal constellation positions

with minimal noise corruption, and exploit its knowledge of the signal alphabet for a

performance advantage.

We now briefly discuss the influence of the observation window length N on detector

performance. As Fig. 5.4 in the previous section has shown, at low SNR the value

of N does not influence the relative performance of alphabet-aware detectors and

their alphabet-unaware counterparts. At high SNRs, empirically, we have found that

alphabet-aware detectors have the greatest performance gains over their alphabet-unaware

counterparts when the observation window is small.

We can see the alphabet-aware advantage in Fig. 5.6 which plots PD vs. SNRk with

K = 4, N = 5, and PFA = 10−6. To accommodate for this reduced false alarm rate, the

number of simulation trials was increased from M = 105 to M = 107. The AA (green

curve) clearly outperforms its alphabet-unaware counterpart, the AU detector (blue curve).

For example, in comparison to AA, the AU detector needs approximately 0.4 dB higher

SNRk to obtain the same PD = 0.66. Likewise, the AA-CU (purple curve) outperforms its

alphabet unaware counterpart, the AU-CU detector (red curve) once the SNR is high. At

high SNRs, the ED (gold curve) is significantly outperformed by the other four detectors.

When operating in the smallN and high SNR regime, the alphabet-aware detectors have

increasing performance gains over their alphabet-unaware counterpart as PFA decreases.

This can be seen in Fig. 5.7 which plots PD vs. PFA with SNRk = 0 dB for all five

detectors. The performance gap between the AA and AU detectors (green and blue curves),

as well their CU versions (purple and red curves), widens as PFA decreases.

Our numerical results show that the proposed AA detector has performance benefits

over its alphabet-unaware counterpart, the AU detector, when the observation window

length N is small and the SNR is high. It has increasing performance gains over the AU
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Figure 5.6: Probability of detection PD vs. SNRk (dB) for PFA = 10−6, N = 5, and
K = 4.
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Figure 5.7: Probability of detection PD vs. false alarm rate PFA for N = 5, SNRk = 0 dB,
and K = 4.
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detector as the false alarm rate PFA decreases. The AA-CU and AU-CU detectors exhibit

the same performance trends as well. Adjusting the number of antennas K does not affect

the relative performance of alphabet-aware detectors over alphabet-unaware detectors.

Despite these performance gains, the AA detector has a higher computational

complexity than the AU detector. We measure computational complexity as the number

of operations needed to calculate a given decision statistic. If each complex add, complex

multiply, and transcendental function computation is considered to be one operation,

and if each conjugate transpose and memory load is assumed to be negligible, then the

computational complexity of the AA detector is O(N(4K + 7)), where O refers to the

“Big O” notation. Using the same methodology, we can compute the computational

complexity of ED, which is O(2NK), and the computational complexity of AU, which is

O(N(2K + 1)). From this analysis ED has lowest computational complexity of the three

detectors, followed by the AU detector, and then the AA detector, which has the highest

computational complexity.

The computational complexities of both the AA-CU and AU-CU detectors are less

straightforward to characterize as both complexities are implementation dependent. The

computational complexity of a P step gradient descent AA-CU is O(N(4K + 7) + 2K +

P [K(4NK+16N ])). The AU-CU detector as described in (5.20) is difficult to characterize

as our methodology does not accommodate for computing the eigenvalues of a matrix. If

we assume finding the maximum eigenvalue of a K ×K matrix is O(K3) [166, 167, 168],

then AU-CU has computational complexity O(K3+N(K2+K)). From these expressions

it is clear that only when the number of antennas is large such that the K3 term dominates

does the AU-CU have greater complexity than AA-CU; this holds even if gradient descent

were to converge in one step (P = 1). Thus for the channel-unaware detectors, in practical

circumstances alphabet-awareness still results in a higher computational complexity. A

summary of the detector complexities can be found in Table 5.1.

While the AA detector outperforms the AU detector when the SNR is high and N is
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Table 5.1: Summary of Detector Computational Complexities

DETECTOR COMPLEXITY ORDER
AA O(N(4K + 7)))

AU O(N(2K + 1)))

ED O(2NK)

AA-CU O(N(4K + 7) + 2K + P [K(4NK + 16N ]))

AU-CU O(K3 + (N − 0.5)(K2 +K))

small, the performance gains are less than 1 dB even when the false alarm rate is small.

Given the previous discussion, the AU detector has the advantage when computational

resources are limited, or when a low false alarm rate is not required. At low SNR, we

see a similar case against alphabet awareness, with the AA detector providing nearly

indistinguishable performance from the AU detector. When considering the CU detectors

the case is even more apparent, as both the AA-CU and AU-CU have similar performance

at low SNR, and in the case of small N both can actually be outperformed by the simpler

ED.

5.5 Summary

In this chapter we have proposed a LRT detector that can detect long-code DSSS signals

with QPSK coded chips, whose has computational complexity grows linearly with

observation window length, and that can take advantage of multiple antennas. We have

compared the performance of this proposed detector against other multi-antenna alphabet

unaware detectors, and only under the specific conditions of high SNR, small observation

window length, and low false alarm rate does knowledge of the signal alphabet provide a

measurable advantage. For noncooperative DSSS signal detection at low SNR, knowledge

of QPSK coded chips cannot be leveraged to significantly improve detection performance.
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CHAPTER 6

CONCLUSION AND SUGGESTED FUTURE WORK

In this thesis we have explored two key communication problems that are expected to be

present on the modern battlefield: DSSS acquisition in high dynamic environments, and

noncooperative DSSS signal detection. Both are motivated by the use of long spreading

codes in military communications, with the former also drawing its roots from hypersonic

aircraft communication, and LEO satellite communication.

In the case of DSSS acquisition we have proposed delay-Doppler efficient exhaustive

search (DEES), an algorithm that can acquire long-code DSSS signals in the face of both

time-varying channel delays and time-varying Doppler frequency shifts. DEES utilizes

a composition of second-order keystone-transforms and the fractional Fourier transform

to remove time-varying channel effects, before utilizing an efficient FFT-based algorithm

derived from the optimal 2D exhaustive search to acquire the post-processed signal. The

advantage of this post-processing method is it utilizes the fractional Fourier transform to

efficiently search over the Doppler rate, and avoids the high complexity associated with the

optimal 3D exhaustive search. Simulation results show this composition of transforms are

effective in mitigating the high dynamic effects of the channel, as DEES provides superior

acquisition performance to its core DEES sibling in the LEO satellite channel.

While the DEES algorithm is suitable for performing acquisition in environments

characterized by both time-varying Doppler and time-varying channel delays, there are

still many improvements that could be made to the algorithm. First, as presented in

this thesis DEES can only handle a multipath channel environment if each channel path

experiences the same Doppler rate. While this may hold in the AtS channel when the

aircraft is far away from the ship, it certainly does not hold in others. Therefore, we

consider the augmentation of DEES to accommodate for those situations. Given the
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parallels between the estimation portion of DSSS acquisition and target detection in radar

signal processing, it would be interesting to see if the CLEAN algorithm [101, 152, 169]

could be modified for this purpose. Second, the second-order keystone-transform and

fractional Fourier transform augmentations for core DEES (that resulted in DEES) were

derived under the assumption that fading effects were absent from the channel. It would

be interesting to see how DEES performs in a channel with Rician fading, as this is a more

accurate characterization of the LEO satellite channel, and if performance does suffer with

this adjustment, what improvements could be made to DEES. Lastly, while the fractional

Fourier transform can be used to estimate the Doppler rate, in the case of DEES it provides

less than satisfactory performance at low SNR. It would be interesting to see what other

improvements could be made to the DEES algorithm to improve Doppler rate estimates.

In the case of noncooperative DSSS detection, we have proposed a LRT detector that

can take advantage of multiple antennas, exploits knowledge that the signal alphabet is

QPSK, and has computational complexity that grows linearly with observation window

length. Our results have shown that despite the proposed detector’s knowledge of the

signal alphabet, at low SNR it provides comparable performance to its alphabet-unaware

counterpart, regardless of the observation window length, and regardless of the number

of antennas. Only under the specific conditions of high SNR, small observation window

length, and low false alarm rate does knowledge of the signal alphabet provide a

measurable advantage. In nearly all situations considered, either the multi-antenna

alphabet-unaware detector or the energy detector provided similar detection performance

as the alphabet-aware detector, but with lower computational complexity.

Although we have established the lack of an alphabet-aware advantage in detecting

DSSS signals with QPSK coded chips, the received signal models in Chapter 5 did

not accommodate for either fading effects or synchronization mismatch. While these

assumptions are useful in directly measuring the benefits of alphabet awareness, they

are incredibly idealistic to say the least. It would be interesting to see if the lack of an
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alphabet-aware advantage in the noncooperative detection of DSSS signals still holds when

a fading channel model is considered, along with a time-varying phase term that models

the carrier frequency offset. This thesis has shown, in the case where the channel effects

are modeled as a complex channel gain, the optimal solution is to perform maximal-ratio

combining on the received signal vectors at each antenna, which effectively boosts the

SNR at the detector. It would be interesting to see how the detector decision statistic

changes under these proposed channel model adjustments. In addition to changes to the

channel model, another interesting direction would be to add interference to the received

signal model. It is unlikely that a detector deployed on a battlefield will only collect

its target signal of interest, and there are likely other communication signals, possibly

friendly, that will make its detection task more difficult.
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APPENDIX A

BAYESIAN APPROACH TO DERIVING ALPHABET-AWARE

CHANNEL-UNAWARE DETECTOR

In this Appendix we derive the alphabet-aware channel-unaware (AA-CU) decision statistic

assuming that the magnitude of the channel gains |αk| are known to the detector, and the

phases of each of the channel gains are uniformly distributed, i.e. θk ∼ U(−π, π).

Under these conditions the PDF of r under H1 can be expressed as:

f(R|H1) = Eθ

[
Es

[(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk−|αk|ejθk s||2

2σ2

]]
= Eθ

[(
1

2πσ2

)NK

e−
∑K−1

k=0
(||rk||2+N|αk|2)

2σ2
1

22N

22N∑
i=1

e
∑K−1

k=0

Re{|αk|e−jθk s
†
i
rk}

σ2

]

=

(
1

2πσ2

)NK

e−
∑K−1

k=0
(||rk||2+N|αk|2)

2σ2

(
1

2π

)K ∫ π

−π

∫ π

−π

· · ·
∫ π

−π

N−1∏
n=0

cosh
(K−1∑

k=0

Re{|αk|e−jθkrk(n)}
σ2

)
cosh

(K−1∑
k=0

Im{|αk|e−jθkrk(n)}
σ2

)
dθ0dθ1 . . . dθK−1.

(A.1)

The PDF of R under H0 can be expressed as:

f(R|H0) =

(
1

2πσ2

)NK

e
∑K−1

k=0
−||rk||2

2σ2 (A.2)

Forming the likelihood ratio yields the decision statistic:

L = log
[(

1

2π

)K ∫ π

−π

∫ π

−π

· · ·
∫ π

−π

N−1∏
n=0

cosh
(K−1∑

k=0

Re{|αk|e−jθkrk(n)}
σ2

)
dθ0dθ1 . . . dθK−1

]

−
K−1∑
k=0

N |αk|2

σ2
.

(A.3)

As is apparent from (A.3), this approach has resulted in a K dimensional integral which
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has no closed-form analytical solution.

A different, but mathematically equivalent, result can be obtained by changing the order

of the expectations in (A.1).

f(R|H1) = Es

[
Eθ

[(
1

2πσ2

)NK

e−
∑K−1

k=0
||rk−|αk|ejθk s||2

2σ2

]]
= Es

[(
1

2πσ2

)NK

e−
∑K−1

k=0
(||rk||2+N|αk|2)

2σ2 Eθ

[
e
∑K−1

k=0
|αk||s†rk|cos(θk)

σ2

]]
= Es

[(
1

2πσ2

)NK

e−
∑K−1

k=0
(||rk||2+N|αk|2)

2σ2

K−1∏
k=0

I0

(
|αk||s†rk|

σ2

)]

=

(
1

2πσ2

)NK

e−
∑K−1

k=0
(||rk||2+N|αk|2)

2σ2

[
1

22N

22N∑
i=1

K−1∏
k=0

I0

(
|αk||s†irk|

σ2

)]
,

(A.4)

where I0(x) is the modified Bessel function of the first kind.

The decision statistic is then:

L = log
(
f(R|H1)

f(R|H0)

)
= log

[
1

22N

22N∑
i=1

K−1∏
k=0

I0

(
|αk||s†irk|

σ2

)]
−

K−1∑
k=0

N |αk|2

σ2
. (A.5)

In comparison to (A.3), (A.5) no longer has a K dimensional integral and can be

implemented numerically. However, due to the presence of the 22N sum terms, (A.5)

has high computational complexity and is not practical for even modest values of N .

Furthermore, unlike (5.16), the presence of the modified Bessel function I0(x) prevents

the logcosh reduction.
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APPENDIX B

GRADIENT DESCENT EQUATIONS FOR ALPHABET-AWARE

CHANNEL-UNAWARE DETECTOR

In this Appendix we calculate the gradient descent equations for the alphabet-aware

channel-unaware (AA-CU) detector described in (5.3). Separating the real and imaginary

components of the received signal vector and the channel gains for mathematical

convenience, the log PDF under H1 is:

log
(
f(RR,RI|H1)

)
= −

K−1∑
k=0

1

2σ2
[||rk,R||2 + ||rk,I||2 + 2N(α2

k,R + α2
k,I)]

+
N−1∑
n=0

log
[

cosh
(

1

σ2

K−1∑
k=0

αk,Rrk,R(n) + αk,Irk,I(n)

)

cosh
(

1

σ2

K−1∑
k=0

αk,Irk,R(n)− αk,Rrk,I(n)

)]
−NKlog(2πσ2)

(B.1)

where rk,R, rk,I refer to the real and imaginary parts of rk, respectively, and αk,R, αk,I refer

to the real and imaginary parts of αk.

Taking the partial derivative with respect to αk,R yields:

∂log
(
f(RR,RI|H1)

)
αk,R

=
N−1∑
n=0

[
tanh

(K−1∑
k=0

αk,Rrk,R(n) + αk,Irk,I(n)

σ2

)
rk,R(n)

σ2

+ tanh
(K−1∑

k=0

αk,Irk,R(n)− αk,Rrk,I(n)

σ2

)
rk,I(n)

σ2

]
− 2Nαk,R

σ2

(B.2)

Taking the partial derivative with respect to αk,I yields:
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∂log
(
f(RR,RI|H1)

)
αk,I

=
N−1∑
n=0

[
tanh

(K−1∑
k=0

αk,Rrk,R(n) + αk,Irk,I(n)

σ2

)
rk,I(n)

σ2
−

tanh
(K−1∑

k=0

αk,Irk,R(n)− αk,Rrk,I(n)

σ2

)
rk,R(n)

σ2

]
− 2Nαk,I

σ2

(B.3)

The gradient of L = log
(
f(RR,RI |H1)

)
can then be expressed as:

∇L =



∂L
∂α0,R

∂L
∂α0,I

∂L
∂α1,R

∂L
∂α1,I

...

∂L
∂αK−1,R

∂L
∂αK−1,I



(B.4)

The update equation of gradient descent is given by:

xp+1 = xp − γp∇L(xp) (B.5)

where xp is vector of input values at the pth step, γp is the step size, ∇ is the gradient

operator, and L is function of interest. The step size γp can be calculated:

γp =
|(xp − xp−1)

T[∇L(xp)−∇L(xp−1)]|
||∇L(xp)−∇Y (xp−1)||2

. (B.6)

The equations update iteratively until a convergence criteria met. One possible criteria is if

the step size γp is smaller than a certain value.
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APPENDIX C

PDFS OF SELECT FUNCTIONS OF RANDOM VARIABLES

C.1 PDF of Cosh of a Normal R.V.

We begin with a derivation of the probability density function (PDF) of Y = cosh[X] where

X ∼ N (µ, σ2), µ, σ ∈ R, and σ > 0. We use the cumulative distribution function (CDF)

to derive the PDF of Y :

FY (y) = P [Y ≤ y]

= P [cosh(X) ≤ y]

= P [X ≤ cosh−1(y)] + P [X ≥ −cosh−1(y)]

= FX(cosh−1(y)) + 1−FX(−cosh−1(y))

(C.1)

where FY (y) and FX(x) refer to the CDFs of Y and X , respectively, and where:

FX(x) =
1

2

[
1 + erf

(
x− µ√
2σ2

)]
, (C.2)

where erf(x) = 2/
√
π
∫ x

0
e−t2dt. We can obtain the PDF of Y , fY (y), by taking the

derivative of FY (y). Doing this yields:

fY (y) =


2√
2πσ2

1√
y2−1

e−
(µ2+(cosh−1(y))2)

2σ2 cosh
(

µ
σ2 cosh−1(y)

)
y ≥ 1

0 otherwise

(C.3)

The mean and the variance can be easily calculated by applying the law of the

unconscious statistician (LOTUS). The mean is:
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E[Y ] =

∫ ∞

−∞
cosh(x)

1√
2πσ2

e−
(x−µ)2

2σ2 dx

= e
σ2

2 cosh(µ).
(C.4)

The variance can be obtained in a similar fashion.

Var[Y ] =
1

2

(
1 + e2σ

2

cosh(2µ)
)
− eσ

2

cosh(µ)2. (C.5)

The author is unaware of any closed form solution for the moment generating function

(MGF) of Y .

C.2 Distribution of Log Cosh of a Normal R.V.

In this section we derive the PDF of Z = log[Y ] = cosh[X] where X ∼ N (µ, σ2),

µ, σ ∈ R, and σ > 0. We use the CDF to derive the PDF of Z:

FZ(z) = P [Z ≤ z]

= P [log(Y ) ≤ z]

= FY (exp(z))

=
1

2

(
2− erf

[
µ− cosh−1(ez)√

2σ2

]
+ erf

[
µ+ cosh−1(ez)√

2σ2

])
(C.6)

where FZ(z) and FY (y) refer to the CDFs of Z and Y , respectively. FY (y) was derived in

the previous section. Taking the derivative of FZ(z) with respect to z yields the PDF:

fZ(z) =


cosh

(
µ

σ2 cosh−1(ez)
)

√
πσ2

√
ezsinh(z)

ez−
1

2σ2 (µ
2+(cosh−1(ez))2) z > 0

0 otherwise
(C.7)

The author is unaware of a closed form solution for either the mean or the variance. The

expected value cannot be obtained from LOTUS, since the log(cosh(x)) term cannot be

integrated, and subsequently the variance cannot be determined either.
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