Lecture 9: Tue Sep 15, 2020

Reminder:

• HW4 due Thursday.

Lecture

- review frequency response
- LTI systems: sinusoid in, sinusoid out

Frequency Response

(Chapter 10 of 2026 1st edition.)

10	Freq	quency Response	285
	10-1	The Frequency Response Function for LTI Systems	. 285
		10-1.1 Plotting the Frequency Response	. 287
		10-1.1.1 Logarithmic Plot	. 288
		10-1.2 Magnitude and Phase Changes	. 288
	10-2	Response to Real Sinusoidal Signals	289
		10-2.1 Cosine Inputs	
		10-2.2 Symmetry of $H(j\omega)$	
		10-2.3 Response to a General Sum of Sinusoids	. 293
		10-2.4 Periodic Input Signals	. 294
	10-3	Ideal Filters	295
		10-3.1 Ideal Delay System	. 295
		10-3.2 Ideal Lowpass Filter	. 296
		10-3.3 Ideal Highpass Filter	297
		10-3.4 Ideal Bandpass Filter	297
	10-4	Application of Ideal Filters	298
	10-5	Time-Domain or Frequency-Domain?	300
	10-6	Summary/Future	. 301
	10-7	Problems	. 302

Complex Exponentials are Eigensignals of LTI Systems

$$x(t) = e^{j\omega_0 t}$$
 LTI
$$y(t) = H(j\omega_0)e^{j\omega_0 t}$$

Scaling constant (eigenvalue) is:

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$
 "frequency response"

evaluated at ω_0 .

Sinusoid-In, Sinusoid Out

$$x(t) = A\cos(\omega_0 t + \theta)$$

$$y(t) = A|H(j\omega_0)|\cos(\omega_0 t + \theta + \phi)$$

$$+ \phi$$

An LTI system does only 2 things to a sinusoid with frequency ω_0 :

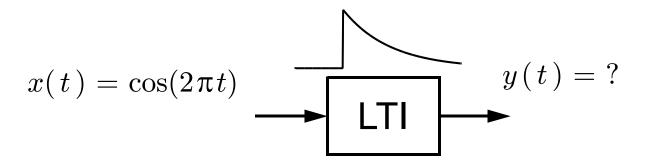
- \triangleright it attenuates amplitude by $|H(j\omega_0)|$
- \triangleright it shifts phase by $\varphi = \text{angle}\{H(j\omega_0)\}$

Notation:

- \triangleright $H(j\omega)$ = frequency response
- $\triangleright |H(j\omega)|$ = magnitude response
- \triangleright angle $\{H(j\omega)\}$ = phase response

Numeric Example

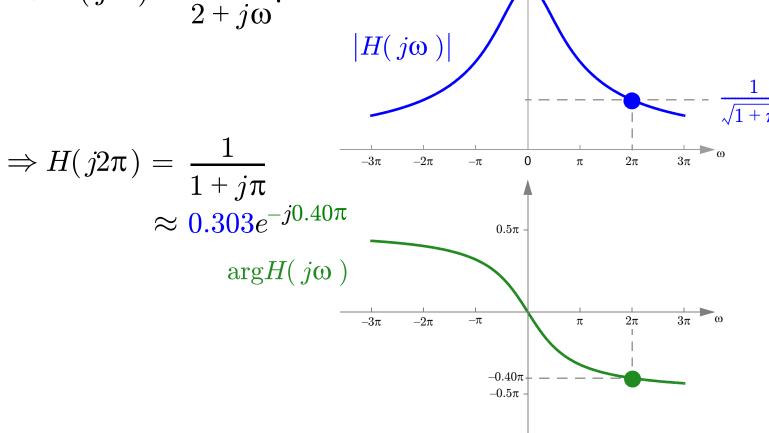
Find output y(t) when $x(t) = \cos(2\pi t)$ is input to an LTI system with impulse response $h(t) = 2e^{-2t}u(t)$:



Evaluate at $\omega = 2\pi$

Integrate

$$\Rightarrow H(j\omega) = \frac{2}{2+j\omega}$$
:



$$x(t) = \cos(2\pi t)$$

$$\times (t) = |H(j2\pi)|\cos(2\pi t + \varphi)$$

$$\approx 0.303\cos(2\pi t - 0.40\pi)$$

Hermitian (Conjugate) Symmetry

Fact: If h(t) is real, then $H(-j\omega) = H^*(j\omega)$

Why?

Look at definition:
$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$
.

- \triangleright The LHS of equality replaces ω by $-\omega$ in integral.
- \triangleright The RHS of equality replaces j by -j in integral.
- \triangleright Effect on the integral is the same \Rightarrow LHS = RHS.

Examples

(1)
$$H(j\omega) = \frac{1}{\omega + j}$$
 \Rightarrow $h(t)$ real?

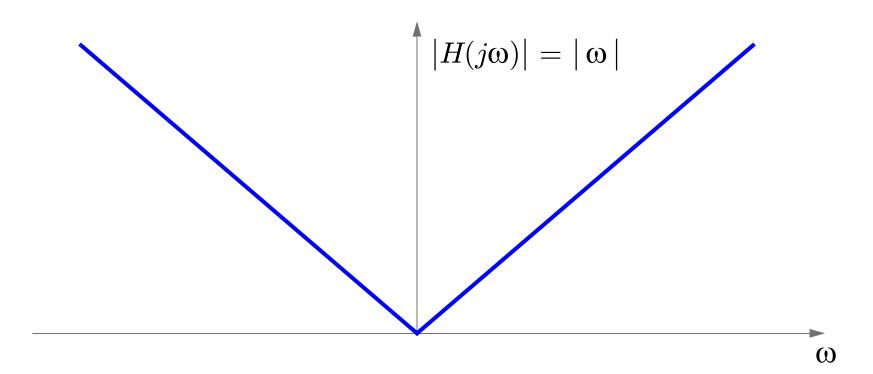
(2)
$$H(j\omega) = \frac{j}{\omega + j}$$
 $\Rightarrow h(t) \text{ real?}$

Pop Quiz: What is the Frequency Response of a Differentiator?

Pop Quiz: What is the Frequency Response of a Differentiator?

(Finding h(t) directly is not easy. Exploit instead that differentiator is LTI, and that freq response is simply eigval that goes along with eigsignal $e^{j\omega t}$.) $\Rightarrow H(j\omega) = j\omega$.

Sketch magnitude response:



Pop Quiz: What is the Frequency Response of a Delay System?

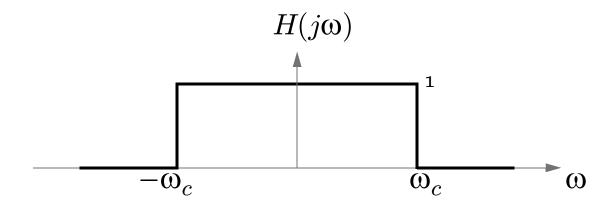
Delay by t_0

Pop Quiz: What is the Frequency Response of a Delay System?

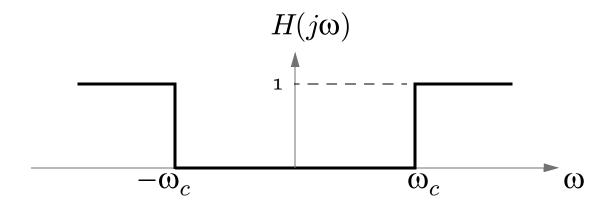
Delay by t_0

$$\Rightarrow H(j\omega) = e^{-j\omega t_0}$$
.

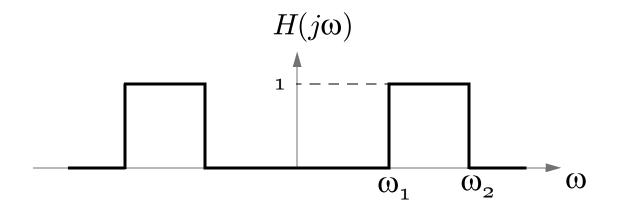
Ideal LPF = Low-Pass Filter



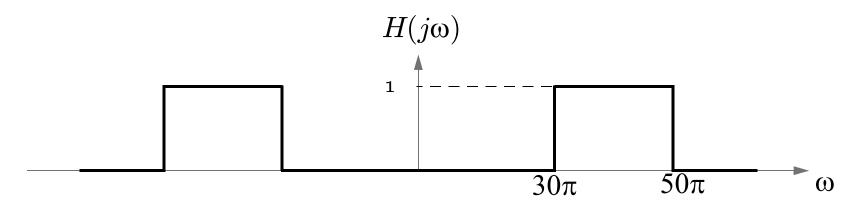
Ideal HPF = High-Pass Filter



Ideal BPF = Band-Pass Filter

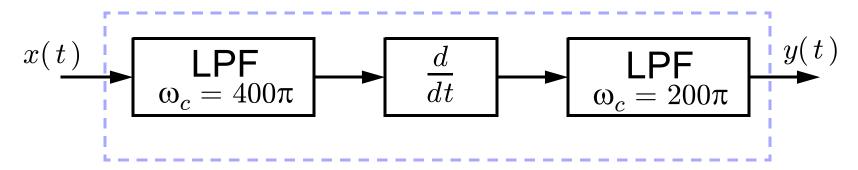


Pop Quiz:



- (a) Construct using a pair of low-pass filters.
- (b) Construct using one *low*-pass and one *high*-pass filter.
- (c) Construct using a pair of high-pass filters.

Serial Cascade of 3 Systems



Suppose input is

$$x(t) = 17 + \cos(100\pi t) + 3\cos(300\pi t) + 5\cos(500\pi t).$$

Find overall output y(t).

Importance of Sine-In, Sine Out

$$x(t) = e^{j\omega_0 t}$$

$$LTI \qquad y(t) = H(j\omega_0) e^{j\omega_0 t}$$

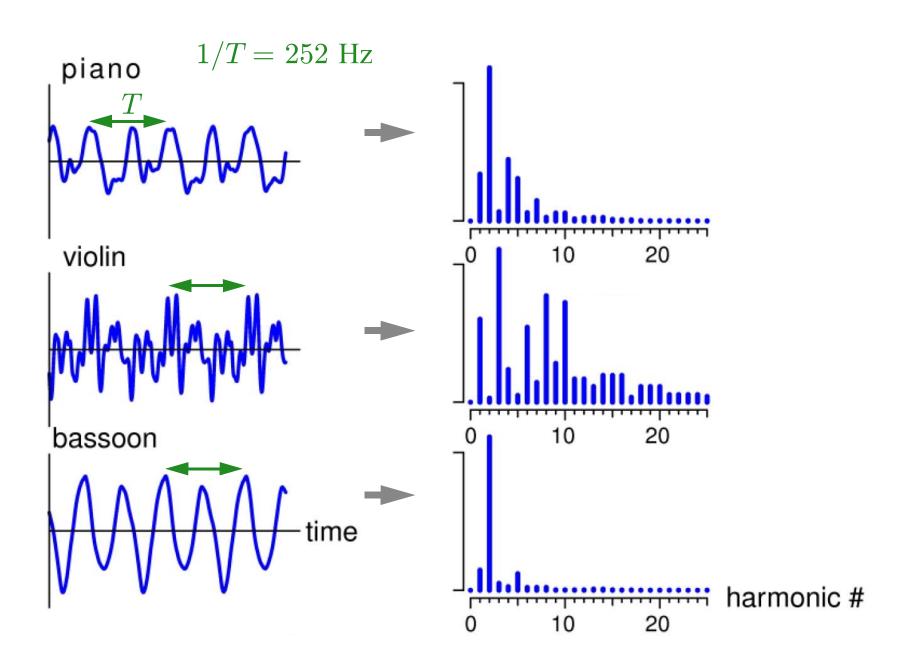
So what?

How does this help us when the input is *not a complex exponential*?

Turns out a HUUUGE class of signals can be written as sum of complex exps.

One example: Periodic signals.

Musical Instruments



Periodic Signals

A periodic signal satisfies x(t) = x(t + T) for all t.

The smallest nonzero T that works is the fundamental period.

Key fact from 2026:

Any (!) periodic signal can be written as a sum of sinusoids:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk_2\pi t/T}$$
 "FS synthesis"

with *harmonically* related frequencies, whose amplitudes and phases are determined by the Fourier series coefficients:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk_2\pi t/T} dt$$
 "FS analysis"

Any interval of length T, e.g. [0, T), [-T/2, T/2), etc.

Why?

Complex exponentials with different harmonic frequency are orthogonal:

$$\frac{1}{T} \int_{T} e^{j\mathbf{k} \cdot 2\pi t/T} e^{-jm \cdot 2\pi t/T} dt = \delta[k - m] = \begin{cases} 1, \text{ when } k = m \\ 0, \text{ when } k \neq m \end{cases}$$

To derive FS analysis equation:

Multiply both sides of FS synthesis equation by $e^{-jm_2\pi t/T}$, integrate both sides over one period, and use above orthogonality result.

Fun FS Facts

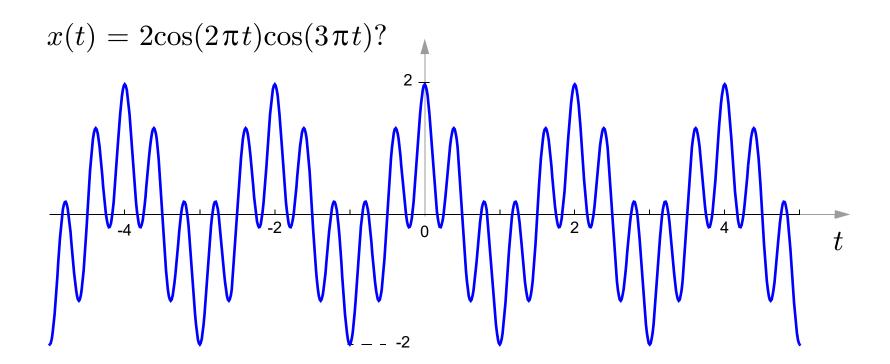
- The zero-th "DC" coefficient is often computed separately: $a_0 = \frac{1}{T} \int_T x(t) dt$. Can interpret as the "average" value.
- If x(t) is real then $a_{-k} = a_k^* \implies$ "Hermitian" symmetry.
- If x(t) is (real and) even, a_k are purely real (and even):

$$a_k = \frac{1}{T} \int_T x(t) \left(\cos(k2\pi t/T) - j\sin(k2\pi t/T)\right) dt$$

(even)(odd) = odd, integrates to 0

- If x(t) is odd, a_k are purely imaginary. E.g., consider FS for $\sin(200\pi t)$.
- Integration not always needed to find FS coefficients.

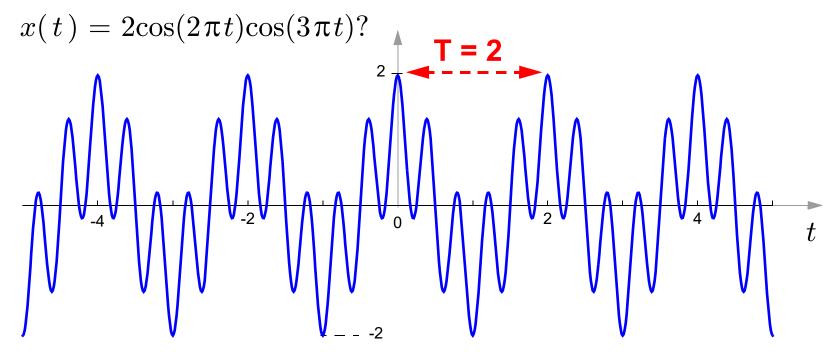
Analysis Not Always Necessary



Questions:

- (a) Is it periodic?
- (b) Find period T
- (c) Find FS coefficients

Analysis Not Always Necessary



Use trig ID $2\cos x \cos y = \cos(x-y) + \cos(x+y)$, and Euler:

$$\Rightarrow x(t) = \cos(\pi t) + \cos(5\pi t)$$

$$= \frac{1}{2}e^{j\pi t} + \frac{1}{2}e^{-j\pi t} + \frac{1}{2}e^{j5\pi t} + \frac{1}{2}e^{-j5\pi t}$$

$$= \sum_{k=-\infty}^{\infty} a_k e^{jk_2\pi t/T}, \quad \text{where } T = 2, \ a_{\pm 1} = a_{\pm 5} = \frac{1}{2}.$$

(Derive T from this equation, use picture only to confirm that T=2 makes sense.)