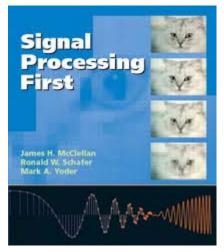
Lecture 6: Thu Sep 3, 2020

Reminder:


- HW2 due midnight tonight.
- HW3 posted later today.

Lecture

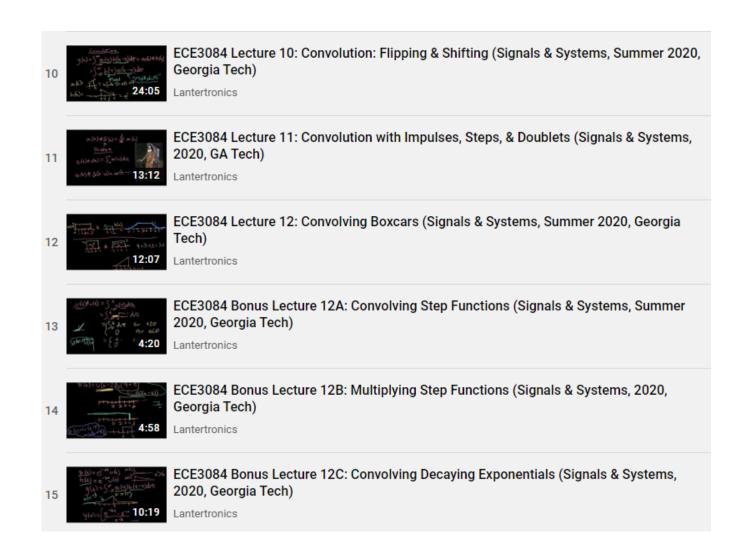
- convolution: more properties
- convolution examples

Reminder: Reading Assignment

9	Cor	ntinuous-Time Signals and LTI Systems 24	45
	9-1	Continuous-Time Signals	246
		9-1.1 Two-Sided Infinite-Length Signals	
		9-1.2 One-Sided Signals	
		9-1.3 Finite-Length Signals	
	9-2		248
		9-2.1 Sampling Property of the Impulse	250
		9-2.2 Mathematical Rigor	252
		9-2.3 Engineering Reality	252
		9-2.4 Derivative of the Unit Step	252
	9-3	Continuous-Time Systems	254
		9-3.1 Some Basic Continuous-Time Systems	254
		9-3.2 Continuous-Time Outputs	255
		9-3.3 Analogous Discrete-Time Systems	255
	9-4	Linear Time-Invariant Systems	255
		9-4.1 Time-Invariance	256
		9-4.2 Linearity	256
		9-4.3 The Convolution Integral	257
		9-4.4 Properties of Convolution	259
	9-5	Impulse Responses of Basic LTI Systems	260
		9-5.1 Integrator	260
		9-5.2 Differentiator	261
_		9-5.3 Ideal Delay	261
	9-6	1	261
	9-7	e	263
		v 1 1	263
			267
		1 1	268
		V 1 1	269
		9-7.5 Discussion of Convolution Examples	
	9-8	Properties of LTI Systems	
		9-8.1 Cascade and Parallel Combinations	
		9-8.2 Differentiation and Integration of Convolution	
		9-8.3 Stability and Causality	
	9-9	Using Convolution to Remove Multipath Distortion	
	9-10	Summary	
	9-11	Problems	279

Reading Assignment

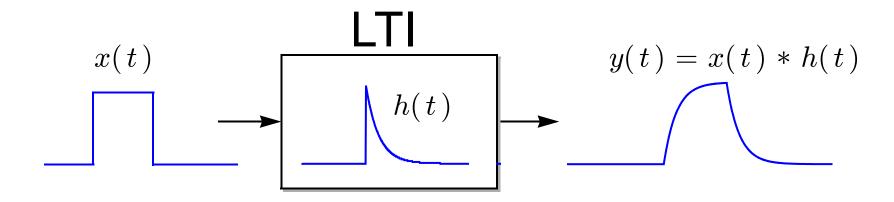
Handouts for ECE 3084


- syllabus
- 3084 book

1	What are Signals? 1.1 Convenient continuous-time signals 1.1.1 Unit step functions 1.1.2 Delta "functions" 1.1.3 Calculus with Dirac deltas and unit steps 1.2 Shifting, flipping and scaling continuous-time signals in time 1.3 Under the hood: what professors don't want to talk about	1 1 3 4 4 5
2	What are Systems? 2.1 System properties 2.1.1 Linearity 2.1.2 Time-invariance 2.1.3 Causality 2.1.4 Examples of systems and their properties 2.2 Concluding thoughts 2.2.1 Linearity and time-invariance as approximations 2.2.2 Contemplations on causality 2.2.3 How these properties play out in practice in a typical "signals and systems" course	9 10 10 11 11 12 13 13 14 14
4	Why are LTI Systems so Important? 3.1 Review of convolution for discrete-time signals 3.2 Convolution for continuous-time signals 3.3 Review of frequency response of discrete-time systems 3.4 Frequency response of continuous-time systems 3.5 Connection to Fourier transforms 3.6 Finishing the picture 3.7 A lew observations More on Continuous-Time Convolution 4.1 The convolution integral 4.2 Properties of convolution	15 16 16 17 18 19 19 21 21 22
	4.3 Convolution examples	23 28
5	Cross-Correlation and Matched Filtering 5.1 Cross-correlation properties 5.2 Cross-correlation examples 5.3 Matched filter implementation 5.4 Delay estimation 5.5 Causal concerns 5.6 A caveat 5.7 Under the hood: squared-error metrics and correlation processing	30 31 31 32 33 34 34

Reminder: Videos from Summer

https://www.youtube.com/playlist?list=PLOunECWxELQRYwsuj4BL4Hu1nvj9dxRQ6


Over 60 minutes of convolution examples:

Why Impulse Response is Important

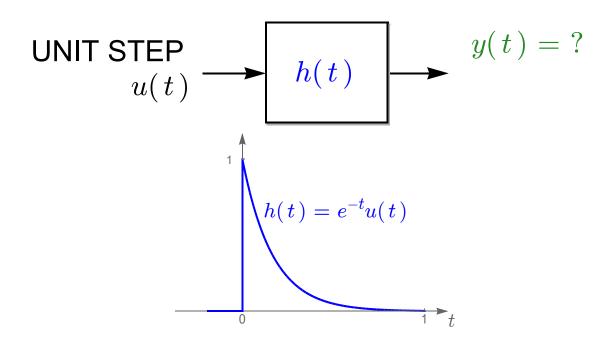
An LTI system is *completely* characterized by h(t).

Response to *any* input can be found by convolving it with h(t):

Convolution Properties

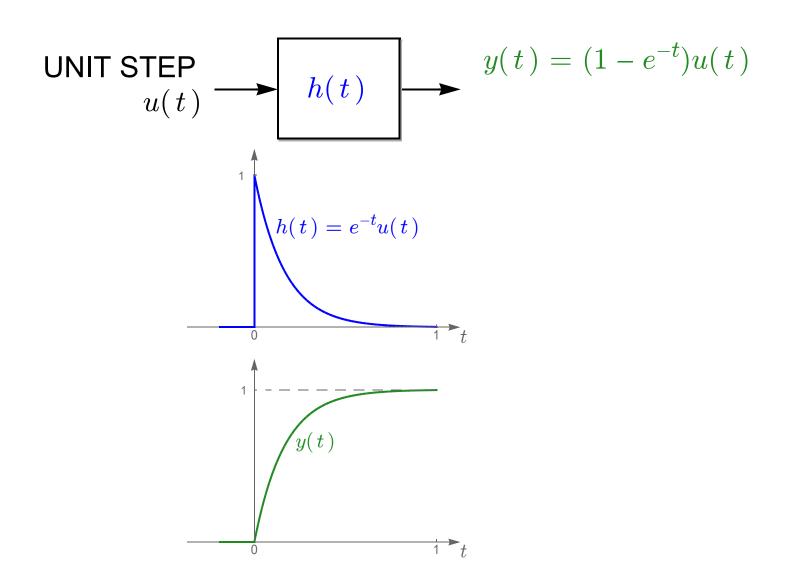
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

- commutative: $x(t) * h(t) = h(t) * x(t) \checkmark$
- associative $(x(t) * h(t)) * z(t) = x(t) * (h(t) * z(t)) \checkmark$
- Convolving with an impulse:

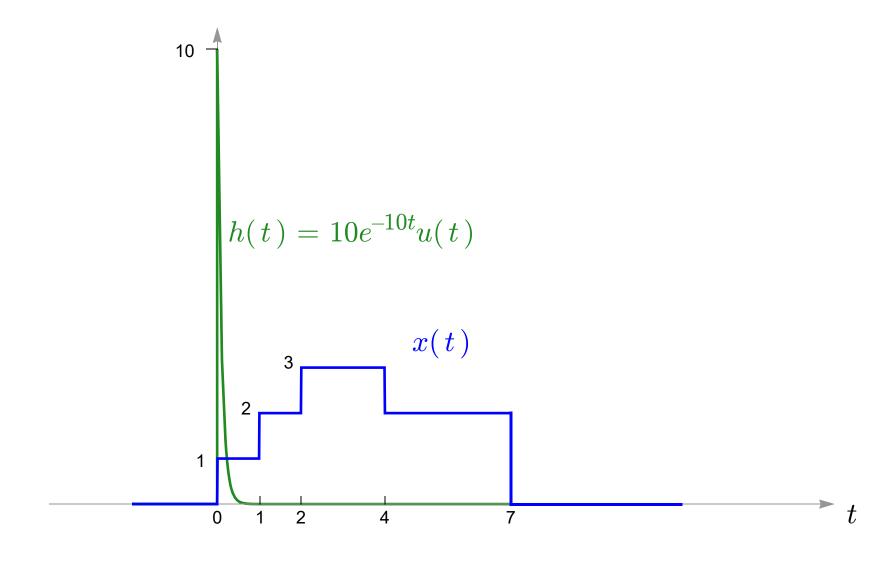

$$\triangleright \quad x(t) * \delta(t) = x(t) \checkmark$$

$$> x(t) * \delta(t-t_0) = x(t-t_0) \checkmark$$

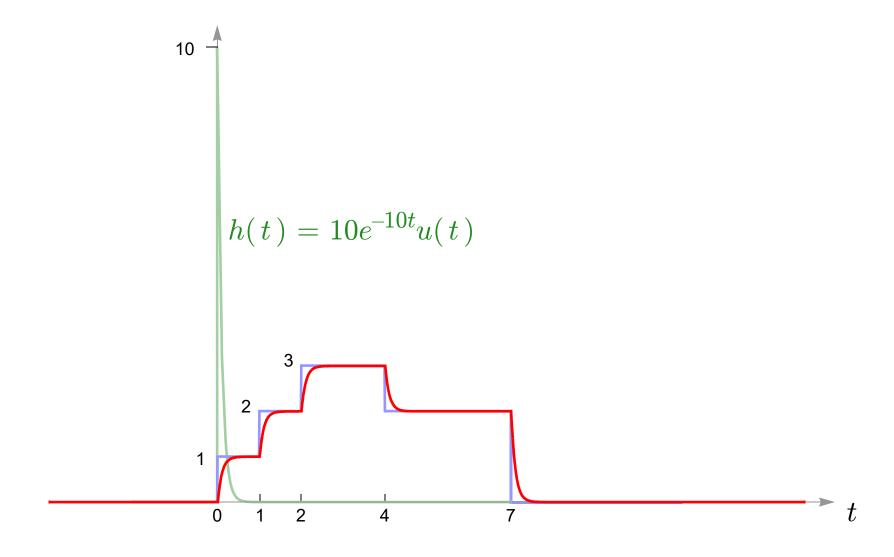
- Delay property: $x(t) * h(t t_0) = x(t t_0) * h(t)$
- Derivative: $\frac{d}{dt}(x(t) * h(t)) = (\frac{d}{dt}x(t)) * h(t) = x(t) * (\frac{d}{dt}h(t))$


Pop Quiz

Find the "step response" of a filter with an exponential impulse response:

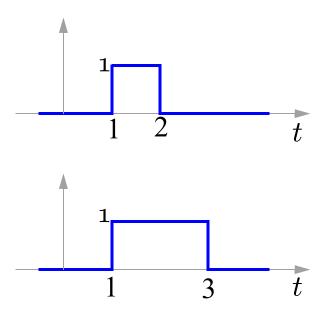


Pop Quiz

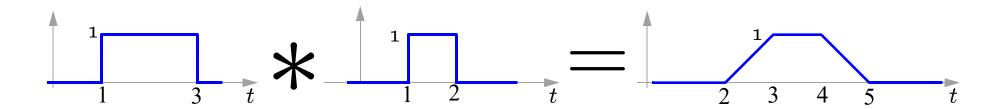

Find the "step response" of a filter with an exponential impulse response:

Sketch Convolution of x(t) with h(t):

Sketch Convolution of x(t) with h(t):


Convolution Tips

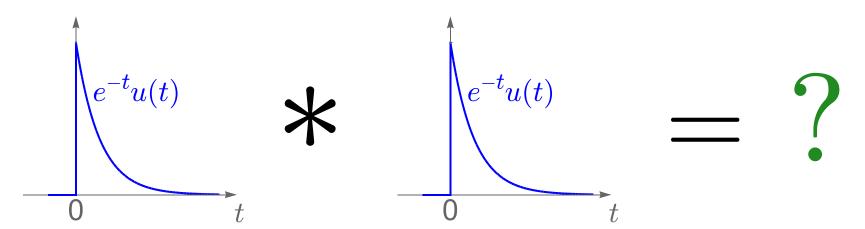
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$


- graphical approach mimics convolution integral
- graphs are plotted versus dummy variable τ
- convolution is commutative \Rightarrow pick "simpler" signal to flip!
- Getting the right limits of integration is 90% of job, integration itself is easy
- Use cconvdemo to learn the basics

Example of Convolution

Convolve these two rectangles:

Answer is a Trapezoid



- Doe rectangle floats past another
- \triangleright Once they begin to overlap, amount of overlap increases *linearly* with time \Rightarrow ramp up
- ▶ While they overlap fully, the signal plateaus

Fun Convolution Facts

- convolving two steps yields a ramp
- convolving a rect with itself yields a triangle
- convolving rects of different widths yields a trapezoid
- duration of convolution is sum of durations of each
- convolving a signal that starts at time t_1 with another starting at t_2 yields a signal that starts at t_1+t_2

Example 1:

