Lecture 4: Tue Aug 25, 2020

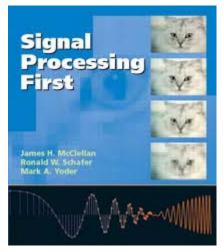
Reminder: HW1 due midnight tonight.

Lecture: systems and their properties

- Memoryless
- Causal
- Invertible
- (BIBO) stable
- Linear
- Time-invariant
- LTI

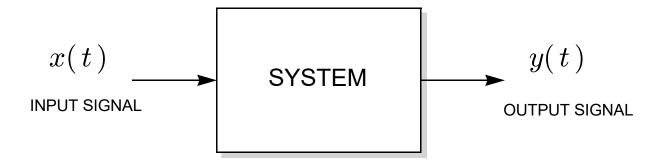
Reminder: Reading Assignment

Cor	itinu(ous-Time Signals and LTI Systems	24	5
9-1	Contin	uous-Time Signals	2	46
	9-1.1	Two-Sided Infinite-Length Signals		46
	9-1.2	One-Sided Signals		
	9-1.3	Finite-Length Signals		
9-2	The Ur	nit Impulse		
	9-2.1	Sampling Property of the Impulse	2	50
	9-2.2	Mathematical Rigor	2	52
	9-2.3	Engineering Reality	2	52
	9-2.4	Derivative of the Unit Step	2	52
9-3	Contin	uous-Time Systems	2	54
	9-3.1	Some Basic Continuous-Time Systems	2	54
	9-3.2	Continuous-Time Outputs	2	55
	9-3.3	Analogous Discrete-Time Systems	2	55
9-4	Linear	Time-Invariant Systems	2	55
	9-4.1	Time-Invariance	2	56
	9-4.2	Linearity	2	56
	9-4.3	The Convolution Integral		
	9-4.4	Properties of Convolution	2	59
9-5	Impuls	e Responses of Basic LTI Systems	2	60
	9-5.1	Integrator	2	60
	9-5.2	Differentiator	2	61
	9-5.3	Ideal Delay	2	61
9-6	Convol	lution of Impulses	2	61
9-7	Evalua	ting Convolution Integrals	2	63
	9-7.1	Delayed Unit-Step Input	2	63
	9-7.2	Evaluation of Discrete Convolution	2	67
	9-7.3	Square-Pulse Input	2	68
	9-7.4	Very Narrow Square Pulse Input	2	69
	9-7.5	Discussion of Convolution Examples		
9-8	Proper	ties of LTI Systems		
	9-8.1	Cascade and Parallel Combinations	2	70
	9-8.2	Differentiation and Integration of Convolution	2	72
	9-8.3	Stability and Causality		
9-9	Using	Convolution to Remove Multipath Distortion		
9-10	Summa	ary	2	78
9-11	Proble	ms	2	79



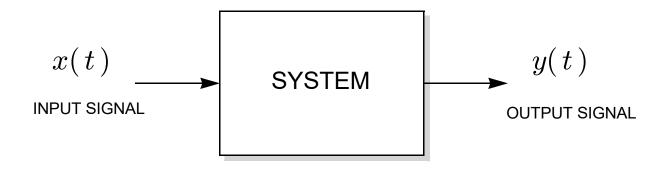
System

A deterministic transformation of an "input" signal to an "output" signal.



System

A deterministic transformation of an "input" signal to an "output" signal. **Examples: FM radio receiver, microphone, photodetector.**



Examples:

• the "delay-by-0.5" system: y(t) = x(t - 0.5)

• the "squaring" system: $y(t) = x^2(t)$

System Categories

- *Memoryless* output at a given instant t_0 depends only on input at same t_0 . No dependence on past and future.
- Causal output at a given instant t_0 depends only on input at or before t_0 . No dependence on future.
- *Invertible* input can always be recovered from output
- (BIBO) Stable A bounded input always results in a bounded output.
- *Linear* Additive and Scalable:

The response to $\alpha x_1(t) + \beta x_2(t)$

is always

 $\alpha y_1(t) + \beta y_2(t),$

where $y_1(t)$ is the response to $x_1(t)$, and $y_2(t)$ is ... to $x_2(t)$.

• Time-Invariant —

The response to

 $x_{1}(t-t_{0})$

is always

 $y_1(t-t_0)$, where $y_1(t)$ is the response to $x_1(t)$.

Yes or No?

causal

invertible

$$y(t) = x(t - 0.5)$$

$$y(t) = x^2(t)$$

Comments

- Memoryless implies causal.
- Before performing full-blown α/β test for linearity, try *litmus* tests:

> Zero-in Zero Out — the response of linear system to zero must be zero.

$$x(t) = 0 \longrightarrow \lim y(t) = 0$$

Double-In Double-Out — doubling the input must result in the same output, only doubled

$$x_{\mathbf{1}}(t) \xrightarrow{\text{LINEAR}} y_{\mathbf{1}}(t)$$

$$x(t) = 2x_{\mathbf{1}}(t) \xrightarrow{\text{LINEAR}} y(t) = 2y_{\mathbf{1}}(t)$$

Failing either test means that the system is NOT linear.

Passing both tests means that it could be linear. Must use α/β to be sure.

About the Litmus Tests

They are special cases of the full-blown α/β tests:

$$\triangleright$$
 Zero-in Zero Out: $\alpha = \beta = 0$

$$\triangleright$$
 Double-In Double Out: $\alpha = 2, \beta = 0$

Time-Invariant

Intuition: The response to an input does not depend on when it is applied.

Today, tomorrow, morning, afternoon, next year ... doesn't matter.

Mathematically: A system is time-invariant (TI) when

The response to

$$x_1(t-t_0)$$

is always

$$y_1(t-t_0),$$

where $y_1(t)$ is the response to $x_1(t)$.

Like linearity, it's easier to show that something is *not* TI.

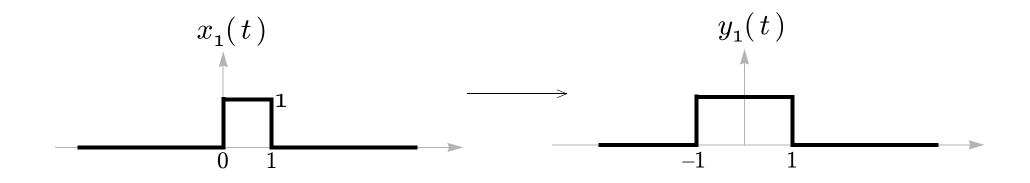
Just need one counterexample.

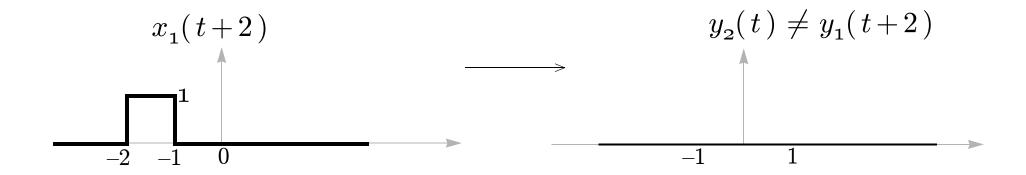
Try something simple at first, like inputs of $\delta(t)$ and $\delta(t-1)$.

	memoryless	causal	invertible	stable	linear	time-invariant
y(t) = 1 + x(t)						
y(t) = x(1-t)						
$y(t) = x^2(t)$						
y(t) = x(3t)						
$y(t) = x(t^2)$						
$y(t) = (2 + \cos(t))x(t)$						
$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$						

	memoryless	causal	invertible	stable	linear	time-invariant
y(t) = 1 + x(t)	Y	Y	Υ	Y	N	Y
y(t) = x(1-t)	N	N	Υ	Y	Y	N
$y(t) = x^2(t)$	Υ	Υ	N	Y	N	Y
y(t) = x(3t)	N	N	Υ	Y	Υ	N
$y(t) = x(t^2)$	N	N	N	Y	Υ	N
$y(t) = (2 + \cos(t))x(t)$	Y	Y	Υ	Y	Υ	N
$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$	N	Y	Υ	N	Υ	Y

Is $y(t) = x(t^2)$ Time-Invariant?





No. Delaying the input $x_1(t)$ results in a completely different output.