Lecture 19: Tue Oct 20, 2020

Reminder:

• Homework 8 due Thursday

Lecture

- up and down conversion
- I & Q components
- A frequency-domain view of downconversion
- A frequency-domain view of sampling: introduction

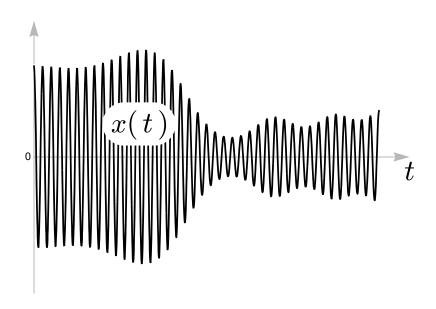
3084 Reading

9	Sam	pling and Periodicity	63
	9.1	Sampling time-domain signals	63
		9.1.1 A Warm-Up Question	63
		9.1.2 Sampling: from ECE2026 to ECE3084	63
		9.1.3 A mathematical model for sampling	64
		9.1.4 Practical reconstruction from samples	67
	9.2	Deriving the DTFT and IDTFT from the CTFT and ICTFT	69
	9.3	Fourier series reimagined as frequency-domain sampling	70
		9.3.1 A quick "sanity check"	72
	9.4	The grand beauty of the duality of sampling and periodicity	72
10	Lap	lace Transforms	75
	_	Introducing the Laplace transform	75
		10.1.1 Beyond Fourier	75
		10.1.2 Examples	7 6
	10.2	Key properties of the Laplace transform	77
		10.2.1 Linearity	77
		10.2.2 Taking derivatives	78
		10.2.3 Integration	78
		10.2.4 Time delays	7 9
	10.3	The initial and final value theorems	80
		10.3.1 Examples	80
	10.4	Partial fraction expansions (PFEs)	81
		10.4.1 First PFE example	81
		10.4.2 An example with distinct real and imaginary roots	82
		10.4.3 An example with complex roots	83
		10.4.4 Residue method with repeated roots	83
	10.5	PFEs of Improper Fractions	85
	10.6	Laplace and differential equations	86
		10.6.1 First-order system example	86
		10.6.2 Another first-order system example	87
	10.7	Transfer functions	91
		10.7.1 Input-output systems	92
		10.7.2 Stability	96

1 & Q

What class of signals can be written like this (the sum of 2 AM signals)?

$$x(t) = \cos(2\pi f_0 t) - \sin(2\pi f_0 t)$$



1 & Q

What class of signals can be written like this (the sum of 2 AM signals)?

$$x(t) = \boxed{x_{I}(t) \cos(2\pi f_0 t) - \boxed{x_{Q}(t) \sin(2\pi f_0 t)}.}$$

Any signal can be written like this, where

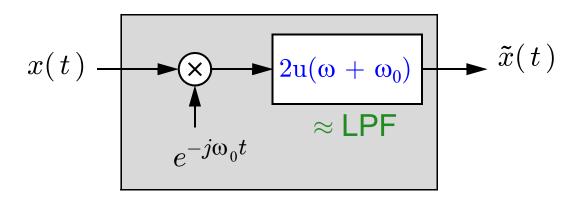
$$x_I(t) = in\text{-}phase \text{ component of } x(t)$$
 ... w.r.t. f_0

$$x_{Q}(\,t\,) = ext{quadrature component of}\,\,x(\,t\,)$$
 ... w.r.t. $f_{\scriptscriptstyle 0}$

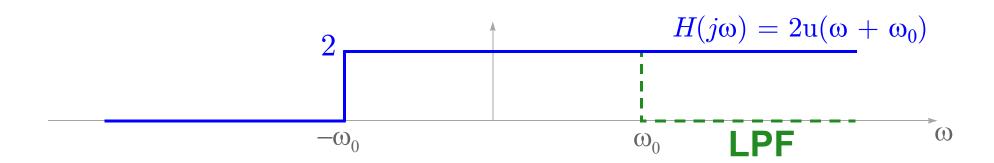
are the real and imaginary parts of

$$ilde{x}(t) = complex \ envelope \ ext{of} \ x(t) \ = x_I(t) + jx_Q(t).$$
 ... w.r.t. f_0

Downconverter



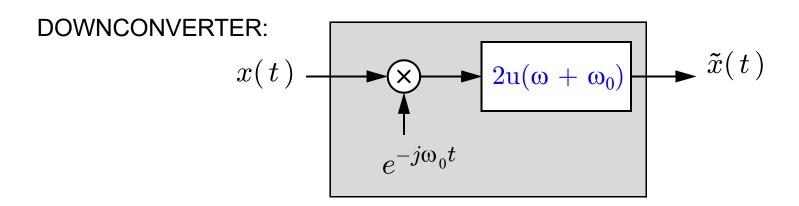
Under mild conditions, we can substitute LPF for $2u(\omega + \omega_0)$:

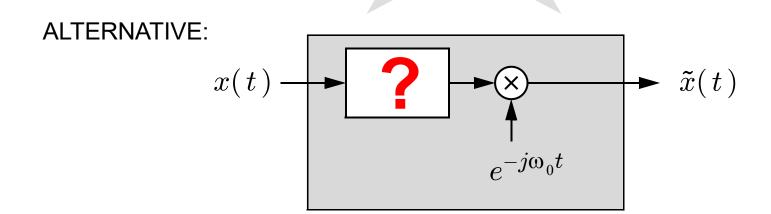


What are these conditions?

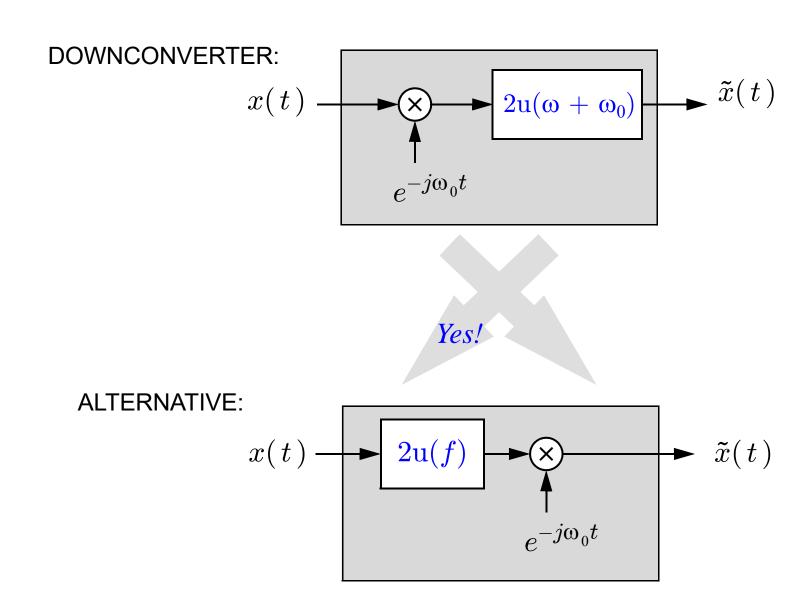
$$_{0}t$$
 $\leq t$ $= (t)X$

Can we filter before frequency shift?

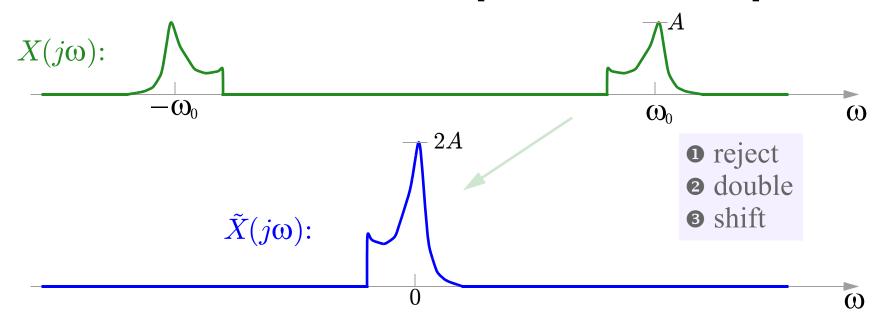




Can we filter before frequency shift?



What is FT of Complex Envelope?



Key properties of downconverter:

- > invertible = info lossless. WLOG.
- ▶ baseband output easier to process, much lower sampling rate

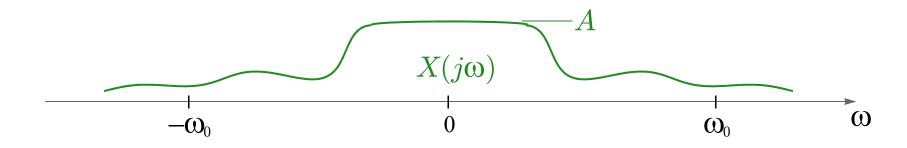
For these reasons: 1st step at receiver is often **DOWNCONVERT**.

The Complex Envelope in 3 Steps

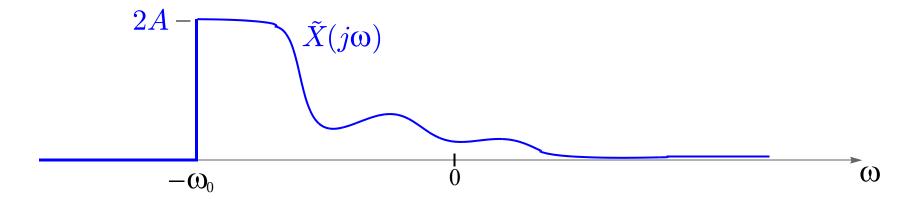
- reject
- **2** double
- shift

Signal need not be Concentrated at ω_0

In the frequency domain, the complex envelope of this:



Is this:



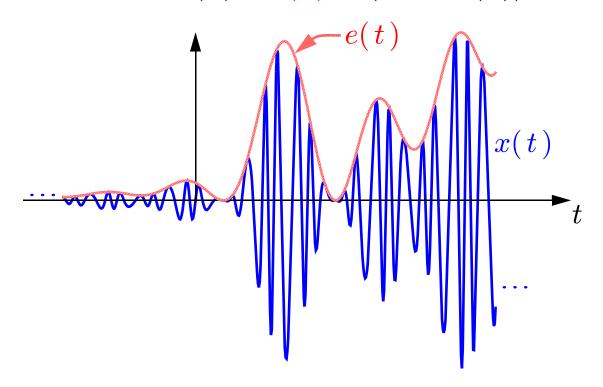
Implications of Complex Envelope

Any real signal x(t) can be written *uniquely* in one of three forms:

C.E. representation: $x(t) = \text{Re}\{\tilde{x}(t)e^{j\omega_0 t}\}$

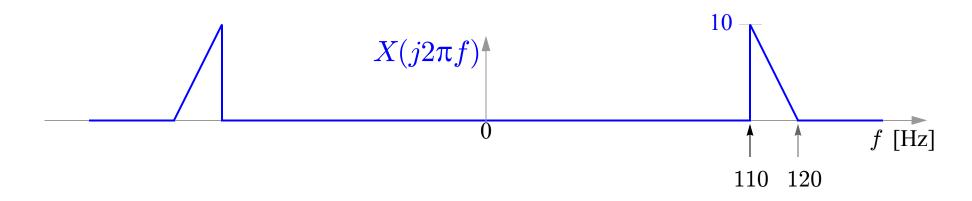
I &Q representation: $x(t) = x_I(t)\cos(\omega_0 t) - x_Q(t)\sin(\omega_0 t)$

E&P representation: $x(t) = e(t)\cos(\omega_0 t + \theta(t))$



Pop Quiz

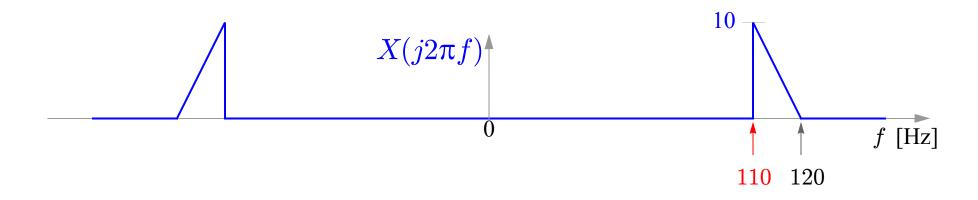
Consider a signal x(t) whose FT is shown below:



(a) Find its *in-phase* component $x_I(t)$

Pop Quiz

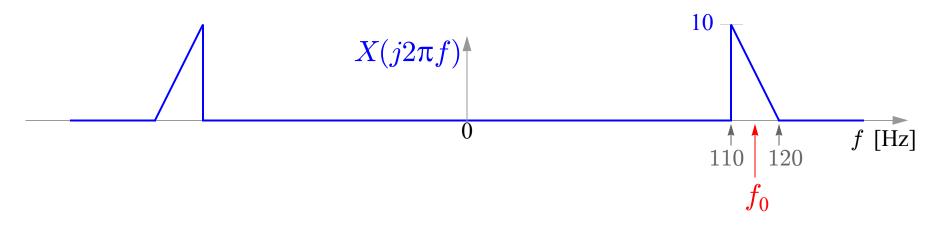
Consider a signal x(t) whose FT is shown below:



(a) Find its *in-phase* component $x_I(t)$... w.r.t. $f_0 = 110$ Hz.

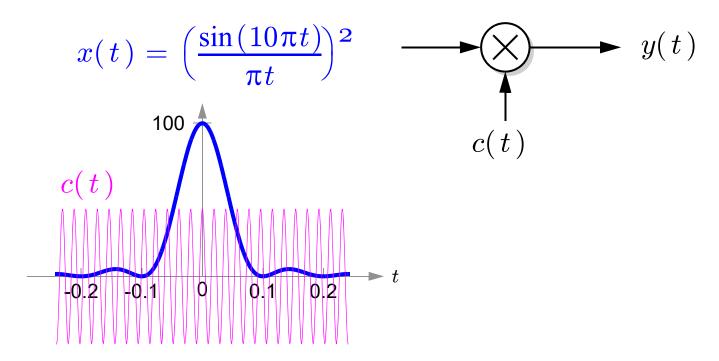
Pop Quiz

Consider a signal x(t) whose FT is shown below:



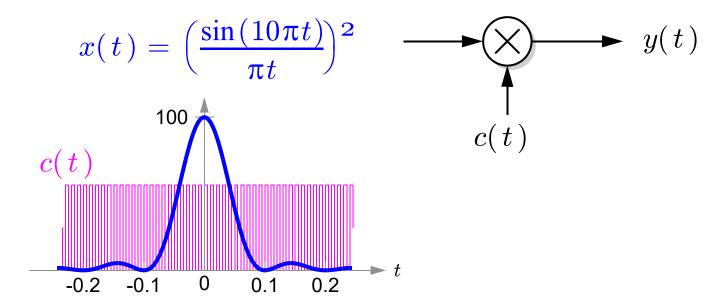
- (a) Find its *in-phase* component $x_I(t)$... w.r.t. $f_0 = 110$ Hz.
- (b) Find its *in-phase* component $x_I(t)$... w.r.t. $f_0 = 115$ Hz.

Pop Quiz: Modulation

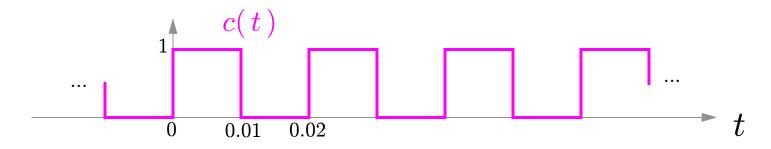


(a) Find $Y(j\omega)$ when $c(t) = \cos(100\pi t)$.

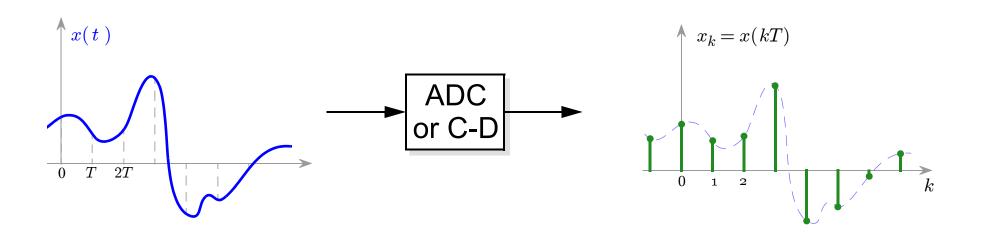
Pop Quiz: Modulation



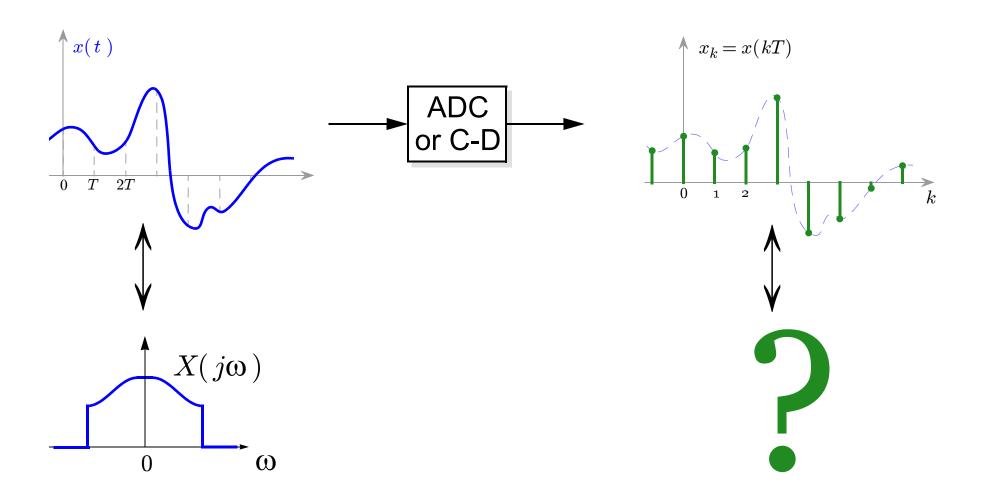
- (a) Find $Y(j\omega)$ when $c(t) = \cos(100\pi t)$.
- (b) Find $Y(j\omega)$ when c(t) = 50%-duty-cycle square wave:



Impact of Sampling in the Freq Domain?



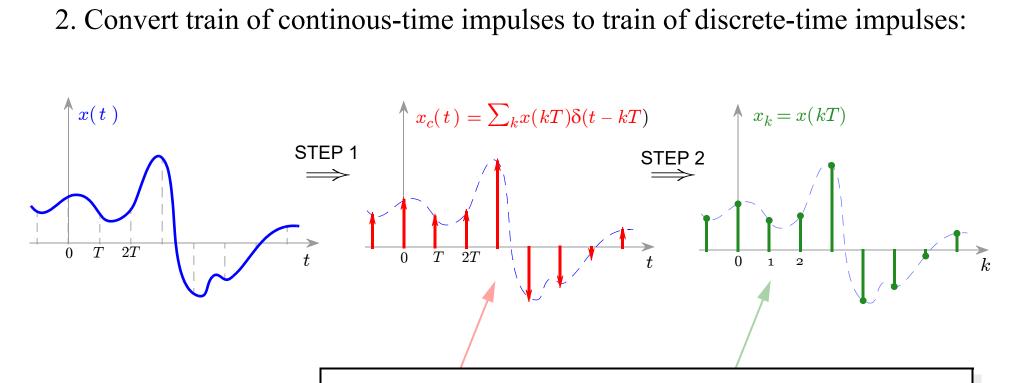
Impact of Sampling in the Freq Domain?



How is the FT *after* sampling related to the FT *before* sampling?

Sampling in 2 Steps

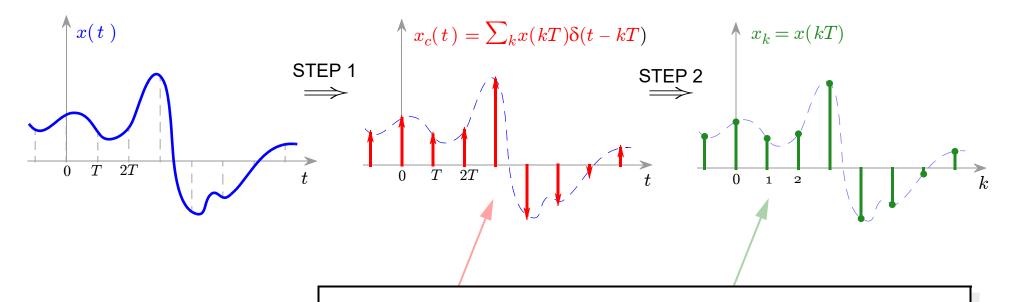
- 1. Multiply by $p(t) = \sum_{k} \delta(t kT)$
- 2. Convert train of continous-time impulses to train of discrete-time impulses:



Compare the Fourier transform of these two signals.

Sampling in 2 Steps

- 1. Multiply by $p(t) = \sum_{k} \delta(t kT)$
- 2. Convert train of continous-time impulses to train of discrete-time impulses:



Compare the Fourier transform of these two signals. They are identical! Why?