Lecture 13: fpTue Sep 29, 2020

Reminder:

• Quiz 1 is Thursday

Lecture

- the Fourier transform:
 - > more properties (table 2)
 - > using table 1 and table 2

Quiz 1: Thursday

Rules:

- open book/notes
- Google not recommended
- Use Piazza to check for typos
- Otherwise: No communication (electronic or otherwise) with anyone
- See piazza post for logistics

Coverage:

- lectures 1-10
- homeworks 1-5
- Chapters 1 6 of 3084 PDF book
- Chapters 3, 9, 10 of 2026 SP1st (1st Ed)
- Youtube modules 1 17

PDF	Date	Торіс
<u>lec1</u>	Tue Aug 18	Intro and Motivation; the unit step function
<u>lec2</u>	Thu Aug 20	The Dirac impulse function
<u>lec3</u>	Tue Aug 25	Signal properties: even, odd, energy, power
lec4	Thu Aug 27	Systems and their properties: linear, time-invariance
<u>lec5</u>	Tue Sep 1	LTI systems, impulse response, the convolution integral
<u>lec6</u>	Thu Sep 3	Convolution: properties, examples
<u>lec7</u>	Tue Sep 8	The RADAR problem: crosscorrelation, autocorrelation, the matched filter
lec8	Thu Sep 10	Review RADAR and the MF, intro to frequency response
<u>lec9</u>	Tue Sep 15	Frequency response and Fourier series
lec10	Thu Sep 17	More Fourier series, intro to Fourier transform

Piazza

- A PDF for quiz 1 will be made available to you at 10:00pm EDT on Wednesday, September 30.
- The submission deadline is Thursday October 1, at 11:59pm EDT.
- Somewhere in that 26 hour window, you need to set aside roughly 75 minutes to complete the exam, plus whatever time you need to scan and upload.
- Let N be the number of pages in the quiz PDF.
 - If you have a printer: Print it out, work directly on the printout.
 - If you do not have a printer
 - ullet Take out N blank pages and show your work and answers on the corresponding page, in the corresponding space
 - Do not attach extra sheets! Only the first N pages will be graded.
 - For example, if the first page asks only for your name, write only your name on the first page.
 - If the top half of page 3 is part (b) of Problem 2, then limit the top half of your page 3 to Prob. 2(b).
 - If page 5 contains Prob. 4 and nothing else, then what you write on page 5 should only relate to Prob. 4.
 - Please draw answer boxes on each page that align with their positions on the quiz PDF. And place your answers inside.
- Scan the N pages into a single PDF document.
 - Ensure they are scanned in order: the first page of the scanned document should match the first page of the quiz PDF, etc.
 - Before the deadline: upload the PDF to the "Assignments > Quiz 1" page on canvas:

Late Penalty 1% per minute

Coverage from 3084 PDF

Pre	efac	e		iii	
	0.1	The DSP First Legacy		iii	
	0.2	Forward to the Past		iv	
	0.3	Putting Educational Eggs in Many Baskets – Not Just One			
	0.4	For All Electrical Engineers		v	
	0.5	Tough Choices		vi	
1	Wh	at are Signals?		1	
	1.1	Convenient continuous-time signals		1	
		1.1.1 Unit step functions		1	
		1.1.2 Delta "functions"			
		1.1.3 Calculus with Dirac deltas and unit steps			
	1.2	Shifting, flipping and scaling continuous-time signals in time			
	1.3	Under the hood: what professors don't want to talk about		5	
2	Wh	at are Systems?		9	
	2.1	System properties		10	
		2.1.1 Linearity	Mo	ro on Continuous Time Convolution	21
			/ 1	The convolution integral	
		2.1.3 Causality		Properties of convolution	
	0.0	2.1.4 Examples of systems and their properties			
	2.2	Concluding thoughts	4.3	Convolution examples	
		2.2.1 Linearity and time-invariance as approximations	4.4	Some final comments	28
		2.2.3 How these properties play out in practice in a typical "signals an 5	Cro	oss-Correlation and Matched Filtering	29
			5.1	Cross-correlation properties	30
3	Wh	y are LTI Systems so Important?	5.2	Cross-correlation examples	
	3.1	Review of convolution for discrete-time signals	5.3	Matched filter implementation	31
	3.2	Convolution for continuous-time signals	5.4	Delay estimation	32
	3.3	Review of frequency response of discrete-time systems	5.5	Causal concerns	33
	3.4	Frequency response of continuous-time systems	5.6	A caveat	
	3.9	Connection to Fourier transforms	5.7	Under the hood: squared-error metrics and correlation processing	
		6	Ros	view of Fourier Series	37
		O .	6.1	Fourier synthesis sum and analysis integral	
				System response to a periodic signal	
			6.2		
			6.3	Properties of Fourier series	
			0.4	Fourier series of a symmetric "square wave"	
				6.4.1 Lowpass filtering the square wave	
			6.5	What makes Fourier series tick?	
			6.6	Under the hood	43

Coverage from SP First

9-1		ous-Time Signals		
	9-1.1 T	wo-Sided Infinite-Length Signals		. 246
	9-1.2	One-Sided Signals		. 247
		inite-Length Signals		. 248
9-2		Impulse		. 248
		Sampling Property of the Impulse		
		Mathematical Rigor		
	9-2.3 E	Engineering Reality		. 252
	9-2.4 I	Derivative of the Unit Step		. 252
9-3	Continuo	ous-Time Systems		. 254
	9-3.1 S	Some Basic Continuous-Time Systems		
	9-3.2	Continuous-Time Outputs		100
	9-3.3 A	Analogous Discrete-Time Systems	Signal	100
9-4	Linear Ti	ime-Invariant Systems		
	9-4.1 Т	Time-Invariance	Processing	
	9-4.2 I	inearity	First	200
	9-4.3 T	The Convolution Integral	3333	
	9-4.4 F	Properties of Convolution		100
9-5	Impulse 1	Responses of Basic LTI Systems	1st Ed	
	9-5.1 I	ntegrator	Torthu	100
	9-5.2 I	Differentiator	James H. McClellan	
	9-5.3 I	deal Delay	Ronald W. Schafer	
9-6	Convolut	tion of Impulses	Mark A. Yoder	BLC.
9-7	Evaluatir	ng Convolution Integrals		
	9-7.1 I	Delayed Unit-Step Input		
	9-7.2 E	Evaluation of Discrete Convolution		
	9-7.3 S	Square-Pulse Input	S 2222	
	9-7.4 \	Very Narrow Square Pulse Input		. 269
	9-7.5 I	Discussion of Convolution Examples		. 270
9-8	Propertie	s of LTI Systems		. 270
	9-8.1	Cascade and Parallel Combinations		. 270
	9-8.2 I	Differentiation and Integration of Convolution		. 272
	9-8.3 S	Stability and Causality		. 273
9-9	Using Co	onvolution to Remove Multipath Distortion		. 276
9-10	Summary	v		. 278

	quency Response 28
0-1	The Frequency Response Function for LTI Systems
	10-1.1 Plotting the Frequency Response
	10-1.1.1 Logarithmic Plot
	10-1.2 Magnitude and Phase Changes
0-2	Response to Real Sinusoidal Signals
	10-2.1 Cosine Inputs
	10-2.2 Symmetry of $H(j\omega)$
	10-2.3 Response to a General Sum of Sinusoids
	10-2.4 Periodic Input Signals
0-3	Ideal Filters
	10-3.1 Ideal Delay System
	10-3.2 Ideal Lowpass Filter
	10-3.3 Ideal Highpass Filter
	10-3.4 Ideal Bandpass Filter
0-4	Application of Ideal Filters
0-5	Time-Domain or Frequency-Domain?
0-6	Summary/Future
0-7	Problems

3-1	The Sp	pectrum of a Sum of Sinusoids	
	3-1.1	Notation Change	
	3-1.2	Graphical Plot of the Spectrum	
3-2	Beat N	lotes	
	3-2.1	Multiplication of Sinusoids	
	3-2.2	Beat Note Waveform	
	3-2.3	Amplitude Modulation	
3-3	Period	ic Waveforms	
	3-3.1	Synthetic Vowel	
	3-3.2	Example of a Nonperiodic Signal	
3-4	Fourie	r Series	
	3-4.1	Fourier Series: Analysis	
	3-4.2	Fourier Series Derivation	
3-5	Spectr	um of the Fourier Series	
3-6	Fourier	r Analysis of Periodic Signals	
	3-6.1	The Square Wave	
		3-6.1.1 DC Value of a Square Wave	
	3-6.2	Spectrum for a Square Wave	
	3-6.3	Synthesis of a Square Wave	
	3-6.4	Triangle Wave	
	3-6.5	Synthesis of a Triangle Wave	
	3-6.6	Convergence of Fourier Synthesis	

Coverage from Youtube

Modules 1 - 17:

Handouts for ECE 3084

- syllabus
- 3084 book

Supplemental Material

- Step and Delta functions (from https://math.mit.edu/~stoopn/18.031/)
- Summer 2026 ECE3084 video lecture playlist (youtube) ■ ECE306+ Resource Page. Videos and recture notes.
- · MIT Class: Videos, lecture notes, and problems

ECE3084 Signals and Systems

53 videos - 1,140 views - Lest updated on Aug 15, 2020

≞ × / / ···

These are video lectures from the Summer 2020 offering of ECE3084: Signals and Systems at Georgia Tech, brought to you as a result of Covid-19 forcing Tech to operate in "distance learning" mode.

SUBSCRIBE

CE3084 Signals and Systems: Introduction (Lecture 1, Summer 2020, Georgia Tech

ECE3084 Lecture 2: Unit Step Functions (Signals and Systems, Summer 2020, Georgia Tech Course)

ECE3084 Lecture 3: Unit Impulse Functions (Signals & Systems, Summer 2020, Georgia Tech Course)

ECE3084 Lecture 4: Calculus with Step and Impulse Functions (Signals & Systems, 2020, Georgia Tech)

ECE3084 Lecture 5: Shifting, Scaling, and Mirroring Signals (Signals & Systems, 2020, Georgia Tech)

ECE3084 Lecture 6: System Properties: Linearity (Signals & Systems, Summer 2020, Georgia Tech)

ECE3084 Lecture 7: System Properties: Time Invariance (Signals & Systems, Summer 2020, Georgia Tech)

Lentertronics

ECE3084 Lecture 8: System Properties: Causality and Commentary on Respondus Lockdown Browser

ECE3084 Lecture 9: Why are LTI Systems so Awesome? (Signals & Systems, Summer

2020, Georgia Tech) 2000 Lantertronics

ECE3084 Lecture 10: Convolution: Flipping & Shifting (Signals & Systems, Summer 2020, Georgia Tech)

ECE3084 Lecture 11: Convolution with Impulses, Steps, & Doublets (Signals & Systems,

2020, GA Tech)

ECE3084 Lecture 12: Convolving Boxcars (Signals & Systems, Summer 2020, Georgia Tech)

ECE3084 Bonus Lecture 12A: Convolving Step Functions (Signals & Systems, Summer 2020. Georgia Tech)

ECE3084 Bonus Lecture 12B: Multiplying Step Functions (Signals & Systems, 2020, Georgia Tech)

ECE3084 Bonus Lecture 12C: Convolving Decaying Exponentials (Signals & Systems, 2020, Georgia Tech)

ECE3084 Lecture 13: Review of Fourier series (Signals & Systems, Summer 2020, Georgia

ECE3084 Lecture 14: Filtering Fourier series (Signals & Systems, Summer 2020, Georgia

Review Session Today

From piazza:

Exam Review Session

Hey everyone!

Ahead of your exam this week, I'll be holding a review session this Tuesday at 5pm. I'll probably work through one of the practice tests that are posted online but feel free to come with questions. This will be a very casual review.

9/29 @ 5PM @ https://bluejeans.com/1982829984

Best, Max

edit: Changed time from 4pm to 5pm

Fourier Transform Pair

Forward
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Inverse
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

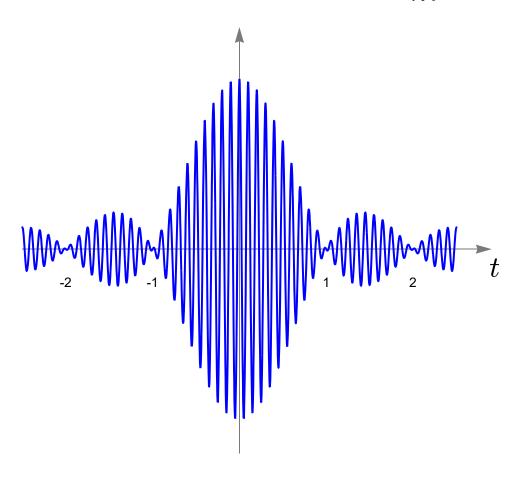

DI F 1	Table of Fourier Transfe	orm Pairs			
ABLE 1	Time-Domain: $x(t)$	Frequency-Domain: $X(j\omega)$			
Right-sided exponential	$e^{-at}u(t) (a>0)$	$\frac{1}{a+j\omega}$			
Left-sided exponential	$e^{bt}u(-t) (b>0)$	$\frac{1}{b-j\omega}$			
Square pulse	[u(t+T/2) - u(t-T/2)]	$\frac{\sin(\omega T/2)}{\omega/2}$			
"sinc" function	$\frac{\sin(\omega_0 t)}{\pi t}$	$[u(\omega + \omega_0) - u(\omega - \omega_0)] \checkmark$			
Impulse	$\delta(t)$	1			
Shifted impulse	$\delta(t-t_0)$	$e^{-j\omega t_0}$			
Complex exponential	$e^{j\omega_0 t}$	$2\pi\delta(\omega - \omega_0)$ $\pi A e^{j\phi} \delta(\omega - \omega_0) + \pi A e^{-j\phi} \delta(\omega + \omega_0)$ $\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$ $-j\pi\delta(\omega - \omega_0) + j\pi\delta(\omega + \omega_0)$			
General cosine	$A\cos(\omega_0 t + \phi)$				
Cosine	$\cos(\omega_0 t)$				
Sine	$\sin(\omega_0 t)$				
General periodic signal	$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$\sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0) \blacksquare$			
Impulse train	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k/T) \checkmark$			

Table of Fourier Transform Properties

TABLE 2	$Time-Domain \ x(t)$	Frequency-Domain $X(j\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(j\omega) + bX_2(j\omega)$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time-Reversal	x(-t)	$X(-j\omega)$
Scaling	f(at)	$\frac{1}{ a }X(j(\omega/a))$
Delay	$x(t-t_d)$	$e^{-j\omega t_d}X(j\omega)$
Modulation	$x(t)e^{j\omega_0t}$	$X(j(\omega-\omega_0))$
Modulation	$x(t)\cos(\omega_0 t)$	$\frac{1}{2}X(j(\omega-\omega_0)) + \frac{1}{2}X(j(\omega+\omega_0))$
Differentiation	$\frac{d^k x(t)}{dt^k}$	$(j\omega)^k X(j\omega)$
Convolution	x(t) * h(t)	$X(j\omega)H(j\omega)$
Multiplication	x(t)p(t)	$\frac{1}{2\pi}X(j\omega)*P(j\omega)$

Motivate Modulation Property

Find frequency response when $h(t) = \cos(20\pi t) \frac{\sin \pi t}{\pi t}$:

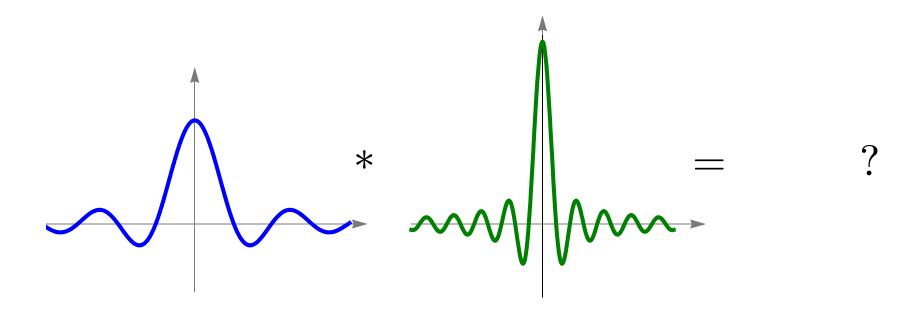
More FT Properties

• time stretch:

$$y(t) = x(at)$$

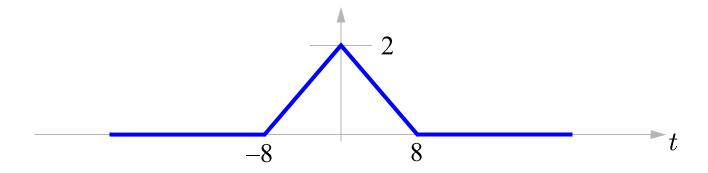
$$\leftrightarrow$$

$$y(t) = x(at)$$
 \longleftrightarrow $Y(j\omega) = \frac{1}{|a|}X(-j\omega/a)$

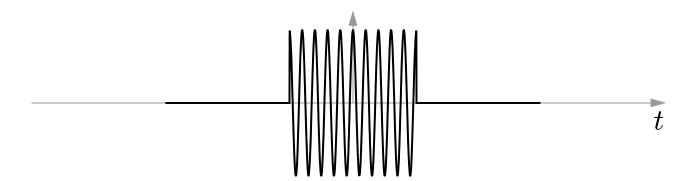

- FT of $x^*(t)$?
- FT of x(-t)?

Implications:

- real signals \Rightarrow
- real even signals \Rightarrow
- real odd signals \Rightarrow


Pop Quiz:

Find the convolution of two different sinc functions:


Pop Quiz

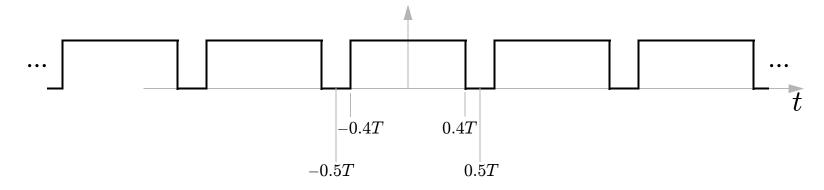
Find F.T. of this triangle:

Pop Quiz

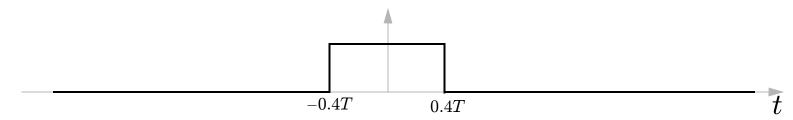
• (Multiplication) — Find FT of x(t) = c(t)r(t) $= \cos(10\pi t)(u(t+1) - u(t-1)):$

A New Route to FS Coefficients

• Write a periodic signal as:

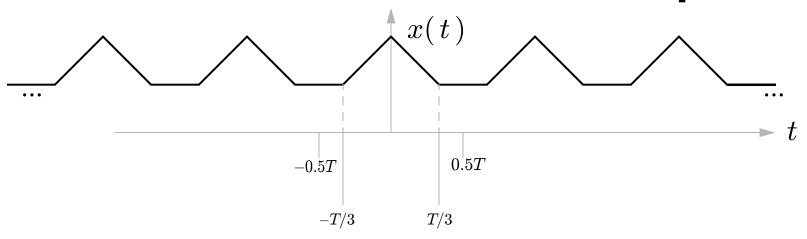

$$x(t) = \sum_{k} g(t - kT)$$

- View it as convolution x(t) = g(t) * p(t), where p(t) is impulse train
- Use convolution property

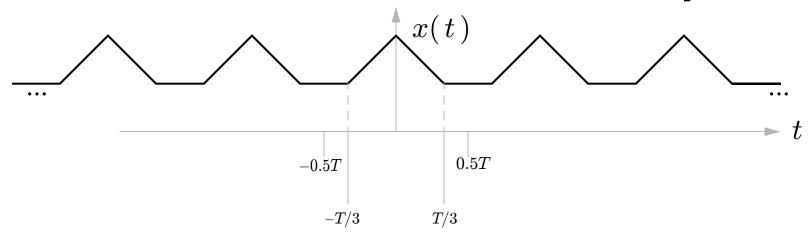

$$\Rightarrow a_k = \frac{1}{T}G(\frac{jk2\pi}{T})$$

In words: Sampling the FT of one period yields the FS coeffs.

Example: Find FS coeffs of 80% Duty

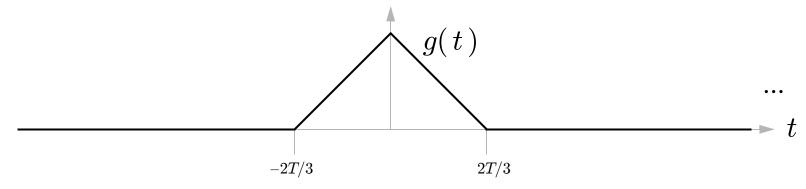


Define g(t).



Find a_k by sampling $G(j\omega)$.

Not So Obvious Example:



Not So Obvious Example:

To get FS coeffs the old way: must integrate above, 4 time regions! Not fun.

Instead: View $x(t) = \sum_{k} g(t - kT)$, where x(t) is the following triangle:

But $G(j\omega) = \text{sinc}^2$.

Therefore, the FS coeffs $\{a_k\}$ can be found by sampling sinc²