Lecture 10: Thu Sep 17, 2020

Reminder:

- HW4 due tonight.
- Coming soon: Quiz 1 is two weeks from today.

Lecture

- review Fourier series
- introduce Fourier transform

Reading Assignment

Handouts for **ECE 3084**

•	syllabus

	2/	10.4	4	4
•	- 41	1X4	ho	O.L
•		νот	UU	\mathbf{u}

]	Rev	iew of Fourier Series
(6.1	Fourier synthesis sum and analysis integral
(6.2	System response to a periodic signal
(3.3	Properties of Fourier series
(6.4	Fourier series of a symmetric "square"
		6.4.1 Lowpass filtering the square
(6.5	What makes Fourier series tick?
(3.6	Under the hood
]	Fou	rier Transforms
7	7.1	Motivation
7	7.2	A key observation
7	7.3	Your first Fourier transform: decaying exponential
		7.3.1 Frequency response example
7	7.4	Your first Fourier transform property: time shift
7	7.5	Your second Fourier transform: delta function
		7.5.1 Sanity check
7	7.6	Your second Fourier transform property: den in time
7	7.7	Rectangular boxcar functions
		7.7.1 Fourier transform of a symmetric rectangular boxcar
		7.7.2 Inverse Fourier transform of single symmetric boxcar
		7.7.3 Observations about our boxcar examples
7	7.8	Fourier transforms of deltas and sinusoids
4	7.9	Fourier transform of periodic signals

2025 Reading

10	Freq	quency Response	285
	10-1	The Frequency Response Function for LTI Systems	. 285
		10-1.1 Plotting the Frequency Response	287
		10-1.1.1 Logarithmic Plot	288
		10-1.1.1 Logarithmic Plot 10-1.2 Magnitude and Phase Changes Response to Real Sinusoidal Signals 10-2.1 Cosine Inputs	. 288
	10-2	Response to Real Sinusoidal Signals	289
		10-2.1 Cosine Inputs	290
		10-2.2 Symmetry of $H(j\omega)$	290
		10-2.3 Response to a General Sum of Sip	293
		10-2.4 Periodic Input Signals	294
	10-3	Ideal Filters	295
		10-3.1 Ideal Delay System	295
		10-3.2 Ideal Lowpas	296
		10-3.3 Ideal Hig	297
		10-3.4 Ideal Banc	297
	10-4	Application of Idea	298
	10-5	Time-Domain or Freq Domain?	300
	10-6	Summary/Future	301
	10-7	Problems	302
11	C	Athenes The Francisco Transfer	205
11	Con	ntinuous-Time Fourier Transform	307
	11-1	Definition of the Fourier Transform	
	11-2	Fourier Transform and the Spectrum	
	00.00020	11-2.1 Limit of the Fourier Series	
	11-3	Existence and Convergence of the Fourier Transform	
	11-4	Examples of Fourier Transform Pairs	
		11-4.1 Right-Sided Real Exponential Signals	313
			314
		11-4.2 Rectangular Pulse Signals	314
		11-4.5 Bandiffilled Signals	317
		11-4.4 Impulse in Time or Frequency	318
		11-4.5 Sinusoids	
	11-5	Properties of Fourier Transform Pairs	
	11-5	Properties of Fourier Transform Pairs	322
		11-5.2 Symmetry Properties of Fourier Transfo	324
	11-6	The Convolution Property	326
	11.0	11-5.1 The Scaling Property 11-5.2 Symmetry Properties of Fourier Transfo The Convolution Property 11-6.1 Frequency Response	326
		11-6.2 Fourier Transform of a Convolution	327
		11-6.3 Examples of the Use of the Convolution Property	
		11-6.3.1 Convolution of Two Bandlimited Functions	
		11-6.3.2 Product of Two Sinc Functions	
		11-6.3.3 Partial Fraction Expansions	
	11-7	Basic LTI Systems	332
		11-7.1 Time Delay	332
		11-7.2 Differentiation	333
		11-7.3 Systems Described by Differential Equations	
	11-8	The Multiplication Property	335
		11-8.1 The General Signal Multiplication Property	335
		11-8.2 The Frequency Shifting Property	336
	11-9	Table of Fourier Transform Properties and Pairs	33
	11-10		
	11-11	Summary	34
	11-12	Problems	342

Spe	ctrum Representation	3
3-1	The Spectrum of a Sum of Sinusoids	3
	3-1.1 Notation Change	3
	3-1.2 Graphical Plot of the Spectrum	3
3-2	Beat Notes	3
	3-2.1 Multiplication of Sinusoids	3
	3-2.2 Beat Note Waveform	4
	3-2.3 Amplitude Modulation	4
3-3	Periodic Waveforms	4
	3-3.1 Synthetic Vor	4
	3-3.2 Examp ¹	4
3-4	Fourier Series	4
	3-4.1 Fourier	4
	3-4.2 Fourier S auon	4
3-5	Spectrum of the Fo Series	5
3-6	Fourier Analysis of Periodic Signals	5
	3-6.1 The Square Wave	5
	3-6.1.1 DC Value of a Square Wave	. 4 . 5 . 5 . 5
	3-6.2 Spectrum for a Square Wave	5
	3-6.3 Synthesis of a Square Wave	5
	3-6.4 Triangle Wave	5
	3-6.5 Synthesis of a Triangle Wave	5
	3-6.6 Convergence of Fourier Synthesis	5
3-7	Time-Frequency Spectrum	5
	3-7.1 Stepped Frequency	5
	3-7.2 Spectrogram Analysis	5
3-8	Frequency Modulation: Chirp Signals	6
	3-8.1 Chirp or Linearly Swept Frequency	6
	3-8.2 A Closer Look at Instantaneous Frequency	6
3-9	Summary and Links	6
3-10	Problems	6

Periodic Signals

A periodic signal satisfies x(t) = x(t + T) for all t.

The smallest nonzero T that works is the fundamental period.

Key fact from 2026:

Any (!) periodic signal can be written as a sum of sinusoids:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk_2\pi t/T}$$
 "FS synthesis"

with *harmonically* related frequencies, whose amplitudes and phases are determined by the Fourier series coefficients:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk_2\pi t/T} dt$$
 "FS analysis"

Any interval of length T, e.g. [0, T), [-T/2, T/2), etc.

Implications of Even or Odd

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk_2 \pi t/T} dt$$

- If x(t) is even, then a_k are ...
- If x(t) is odd, a_k are ...

Implications of Even or Odd

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk2\pi t/T} dt$$
$$= \frac{1}{T} \int_T x(t) \left(\cos(k2\pi t/T) - j\sin(k2\pi t/T)\right) dt$$

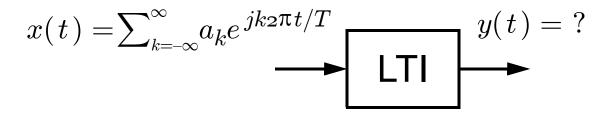
- If x(t) is even, then a_k are ...
- If x(t) is odd, a_k are ...

Implications of Even or Odd

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk2\pi t/T} dt$$
$$= \frac{1}{T} \int_T x(t) \left(\cos(k2\pi t/T) - j\sin(k2\pi t/T)\right) dt$$

- If x(t) is even, then a_k are real and even.
- If x(t) is odd, a_k are purely imaginary. E.g., consider FS for $\sin(200\pi t)$.

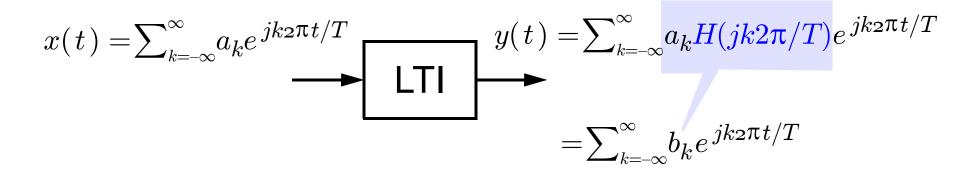
Filtering a Periodic Signal



Pop Quiz (True or False):

- (a) Output is always periodic.
- (b) Output fundamental period is the same.

Filtering a Periodic Signal



Pop Quiz (True or False):

- (a) Output is always periodic.
- (b) Output fundamental period is the same.

Consider cos(80Hz)+cos(90Hz) after LPF(85 Hz).)

More Fun FS Facts

• Linearity: When both have same period, FS coeffs of $\alpha x(t) + \beta y(t)$ are generally $\alpha a_k + \beta b_k$

(Caveat: unless period changes! e.g.,
$$x(t) = 10 \text{ Hz} + 20 \text{ Hz}, y(t) = -10 \text{ Hz} + 40 \text{ Hz}$$
)

- Filter by $h(t) \Rightarrow$ multiply a_k by $H(jk_2\pi/T)$
- Delay by $t_0 \Rightarrow$ multiply a_k by $e^{-jk_2\pi t_0/T}$
- Differentiate \Rightarrow multiply a_k by $jk_2\pi/T$
- (Parseval's relationship): The power of a periodic signal is:

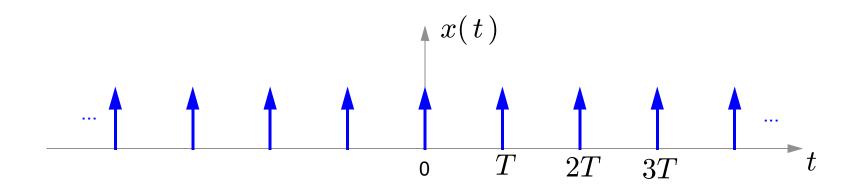
$$P = \frac{1}{T} \int_{T} x^{2}(t) dt = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}$$

Parseval's Relationship

The power of a periodic signal is:

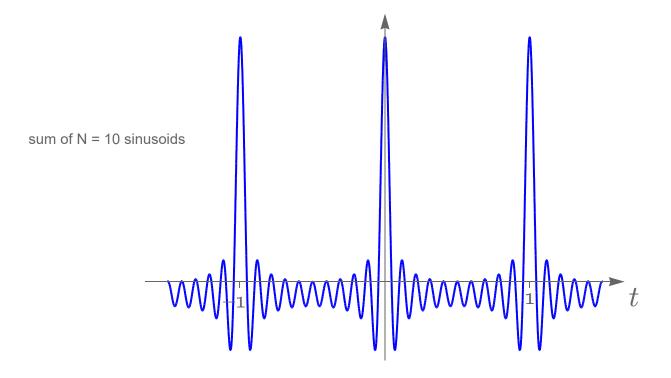
$$\frac{1}{T} \int_{T} x^{2}(t) dt = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}$$

Example: Pulse Train



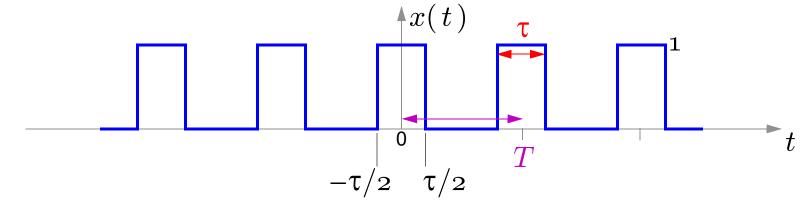
What are Fourier series coeffs?

MATLAB Demo



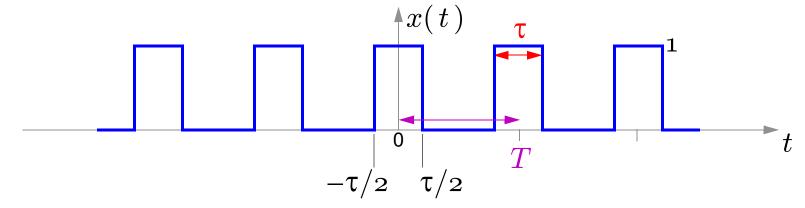
```
t = -1.5:1e-4:1.5;
for N = [1 2 3 5 10 100 1e3 1e4],
    x = 0;
    for k=1:N, x = x + cos(2*pi*k*t); end;
    plot(t,x);
    title(['sum of N = ',num2str(N),' sinusoids']);
    input('Hit return to continue ','s');
end
```

Example 1: Duty-Cycle = τ/T



Prediction: x(t) is even $\Rightarrow a_k$ is ...

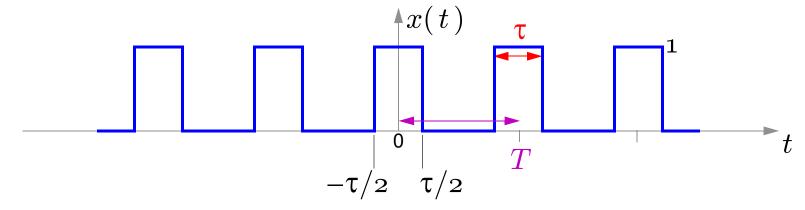
Example 1: Duty-Cycle = τ/T



Prediction: x(t) is even $\Rightarrow a_k$ purely real.

Compute a_0 separately: $a_0 =$

Example 1: Duty-Cycle = τ/T



Prediction: x(t) is even $\Rightarrow a_k$ purely real.

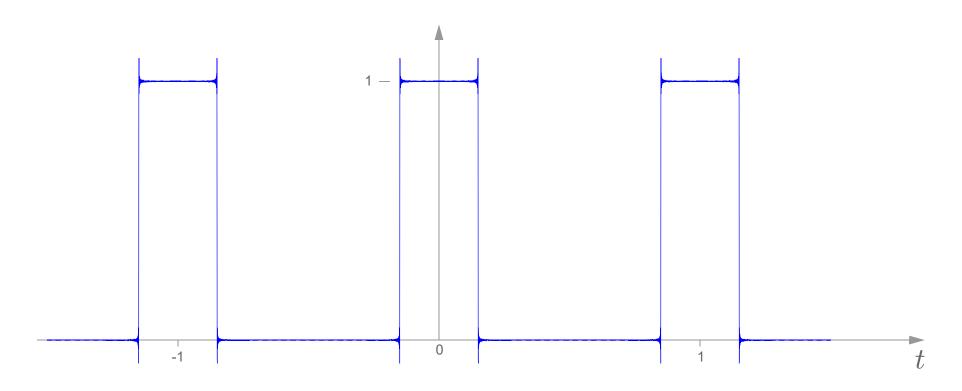
Compute a_0 separately: $a_0 = \frac{\tau}{T}$

Compute the rest (for $k \neq 0$):

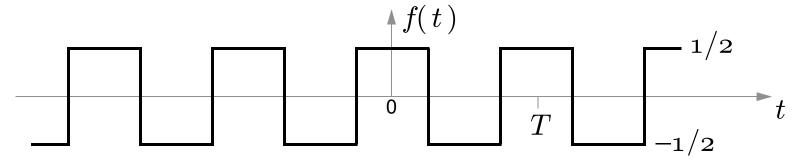
$$a_k = \frac{1}{T} \int_{-\tau/2}^{\tau/2} e^{-jk2\pi t/T} dt = \left. \frac{e^{-jk2\pi t/T}}{-jk2\pi} \right|_{-\tau/2}^{\tau/2} = \frac{\sin(k\pi\tau/T)}{k\pi}$$

$$= \frac{\tau}{T} \operatorname{sinc}(k\frac{\tau}{T}).$$

Example 1: 30% Duty Cycle



Example 2: 50% duty cycle, No DC

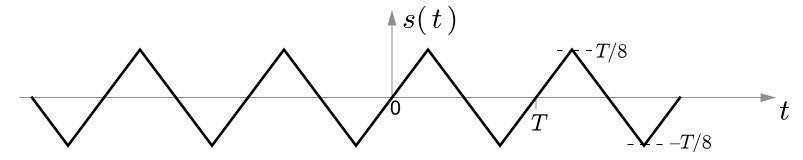


$$f(t) = x(t) - 1/2$$

 \Rightarrow only a_0 changes:

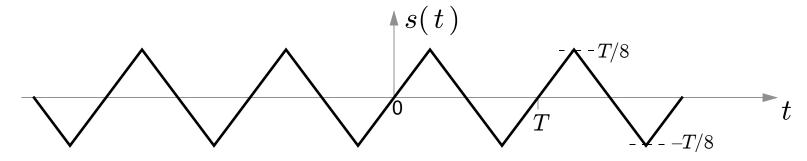
$$\Rightarrow f(t) = \sum_{k \neq 0} a_k e^{jk_2\pi t/T}$$

Example 3: SAWTOOTH



Prediction: s(t) is odd \Rightarrow its FS coeffs c_k will be ...

Example 3: SAWTOOTH



Prediction: s(t) is odd \Rightarrow its FS coeffs c_k will be purely *imaginary*

Let b_k be FS coeffs of f(t) (previous page)

Previous signal is derivative of this one!

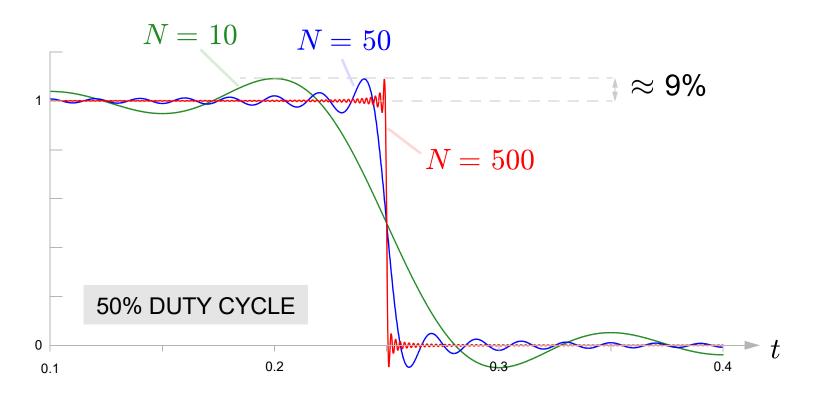
$$\Rightarrow f(t) = \frac{d}{dt}s(t)$$

$$\Rightarrow b_k = (jk_2\pi/T)c_k$$

$$\Rightarrow c_k = \frac{b_k}{jk_2\pi/T} = \frac{\tau \text{sinc}(k\tau/T)}{jk_2\pi} = \frac{\sin(k\pi\tau/T)}{j_2(k\pi)^2/T} \text{ for } k \neq 0, \ c_0 = 0$$

Gibbs Phenom

If periodic x(t) has discontinuities, the *finite* approx $\sum_{k=-N}^{N} a_k e^{jk_2\pi t/T}$ exhibits ringing and overshoot at discontinuity:



- height of overshoot stays at about 9%, regardless of N
- width of ringing diminishes as N increases

Recall: Sinusoid-In, Sinusoid Out

$$x(t) = e^{j\omega_0 t}$$

$$LTI \qquad y(t) = H(j\omega_0) e^{j\omega_0 t}$$

Where

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$
 "frequency response"

What's different now?

⊳ apply this integral to *any* signal, not just impulse response:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
 "Fourier transform" of signal $x(t)$

> analogous to DTFT from 2026. Only difference: here CT, not DT.