

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING  
GEORGIA INSTITUTE OF TECHNOLOGY  
ECE 3084-B: SIGNALS AND SYSTEMS  
FALL 2020  
TUE-THU 3:30 PM - 4:45 PM, VAN LEER C341

PREREQUISITE: ECE 2026 and ECE 2040.

COURSE OBJECTIVE:

To investigate signals and systems via Fourier and Laplace transforms and linear system theory, and to explore their application to a wide variety of engineering problems.

EXPECTATIONS ASSOCIATED WITH HYBRID FORMAT:

- online lectures
- occasional in-person recitation-like meetings to discuss concepts from lectures
- final grades based on homework, quizzes, and final exam: attendance not a factor
- in-person meetings will be recorded and posted online for those unable to attend

CLASS WEBSITE: <http://barry.ece.gatech.edu/3084>

OFFICIAL TEXT:

*Signals and Systems*, Chi-Tsong Chen, Oxford University Press, 2004, ISBN 0195156617.

RECOMMENDED READING:

*Signals and Systems for All Electrical Engineers*, Lanterman, Michaels, and Egerstedt; notes posted on class website.

*Signal Processing First*, McClellan, Schafer, and Yoder, especially chapters 9 – 12.

*Fundamentals of Signals and Systems, Third Edition*, Kamen and Heck, Prentice Hall, 2006, ISBN 0131687379.

ECE 3084 resource page, <http://ece3084.ece.gatech.edu>

MIT Signals and Systems Course,  
<http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/>

INSTRUCTOR:

John R. Barry  
Office Hours: after lecture, or by appointment

HONOR CODE:

You are expected to uphold the honor code (<http://www.honor.gatech.edu>).  
Violations will be reported.

## HOMEWORK:

Approximately 10 homework sets.

|          |                                        |     |
|----------|----------------------------------------|-----|
| GRADING: | Homework                               | 20% |
|          | Quiz 1 (Thu Oct 1)                     | 25% |
|          | Quiz 2 (Thu Nov 12)                    | 25% |
|          | Final Exam (date TBA, week of Dec 1-8) | 30% |

## TENTATIVE LIST OF TOPICS

The subject of this class provides the foundation for mathematical representations and abstractions for analysis and design of pretty much everything — from electrical circuits to self-driving cars.

- Signals
- Systems
- System properties: Linearity, Time-Invariance, Causality
- LTI and Convolution
- Correlation and Matched Filtering
- Frequency Response
- Fourier Series
- Fourier Transform
- Modulation
- Baseband Signal Representation
- Solving Differential Equations via Laplace
- Partial Fraction Expansion
- Laplace Analysis of Circuits
- Transfer Functions: Poles, Zeros, and Stability
- Step and Frequency Responses: 1st and 2nd Order Systems
- Relationship Between Laplace and Z Transforms
- Filter Design and Implementation
- Feedback Control
- Control Systems: Analysis and Design