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1 The unit step function

1.1 Definition

Let’s start with the definition of the unit step function, u(t):

f
u(t>:{o ort<0

1 fort>0

We do not define u(t) at ¢ = 0. Rather, at £ = 0 we think of it as in transition
between 0 and 1.

It is called the unit step function because it takes a unit step at ¢ = 0. It is sometimes
called the Heaviside function. The graph of u(t) is simple.

u(t)

t

We will use u(t) as an idealized model of a natural system that goes from 0 to 1 very
quickly. In reality it will make a smooth transition, such as the following.

1/—

Figure 1. u(t) is an idealized version of this curve

But, if the transition happens on a time scale much smaller than the time scale of
the phenomenon we care about then the function u(t) is a good approximation. It is
also much easier to deal with mathematically.

One of our main uses for u(t) will be as a switch. It is clear that multiplying a
function f(t) by u(t) gives

0 fort <0

ut)f () = {f(t) for t > 0.

We say the effect of multiplying by w(t) is that for t < 0 the function f(t) is switched
off and for ¢ > 0 it is switched on.
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1.2 Integrals of u/(t)

From calculus we know that

b
/u'(t) dt =u(t) + ¢ and / u'(t) dt = u(b) — u(a).

For example:

In fact, the following rule for the integral of u/(t) over any interval is obvious
/b ) = 1 %f 0 %s insidg the in'terval (a,b) )
a 0 if 0 is outside the interval [a, b].

Note: If one of the limits is 0 we throw up our hands and refuse to do the integration.

Let 0~ be infinitesimally to the left of 0 and 07 infinitesimally to the right of 0. That
is,
0" <0<0".

For a function, f(07) is defined as the left hand limit at 0 or equivalently the limit
from below at 0, provided this limit exists. Likewise f(07) is the right hand limit or
the limit from above.

fO7) =lim f(t)  f(07) =lim f(t)

10 10

Here are some examples of integrals of «’ that involve 0~ and 0*:

o+

/ u'(t)dt =1 (because —oo < 0 < 07F),

—00

o
/ u'(t)dt =0 (because —oo < 07 < 0),
ot

/ u'(t)dt =1 (because 0~ <0< 07).



18.031 Step and Delta Functions 3

1.3 Preview of generalized functions and derivatives

Of course u(t) is not a continuous function, so in the 18.01 sense its derivative at
t = 0 does not exist. Nonetheless we saw that we could make sense of the integrals
of u/(t). So rather than throw it away we call «/(t) the generalized derivative of u(t).
You can’t do everything with «/(¢) you can do with an ordinary function, but it can
go anywhere we have an input function in 18.03. In the next section we will look in
more detail at u/(t) —and call it §(¢). For now we’ll content ourselves with computing
the Laplace transform of u and '

1.4 The Laplace transform of u(¢) and u/(¢)

This is easy since u(t) is identical to the constant function 1 on the interval (0, co) of
the Laplace transform. Therefore

Llu(t)) =1/s.

o

(We could also compute this directly from the definition £(u) = / u(t)e™™ dt.)

For ', we use the formula £(u') = sL(u) — u(07) and the fact that «(0~) = 0 to get
1
D=1
s

L(u)=s

1.5 The unit step response

Suppose we have an LTI system with system function H(s). The unit step response
of this system is defined as its response to input u(t) with rest initial conditions.

1
Theorem. The Laplace transform of the unit step response is H(s) —.
s
Proof. This is a triviality since in the frequency domain: output = transfer function
X input.
Example 1. Consider the system & + 2z = f(t), with input f and response z. Find

the unit step response.

answer: We have f(t) = u(t) and rest initial conditions. The system function is
1/(s+2), so by the theorem, the unit step response written in terms of frequency is
given by

1
X(s) = ——=
(s) s(s+2)
. . e 1/1 1 : : .
The partial fractions decomposition is X (s) = 3 (— o 2) , s0 in the time domain
s s
1 1

the unit step response is z(t) = = — e~ *  for t > 0. (Of course x(t) = 0 for t < 0.)

2 2
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Example 2. In the previous example, find the long-term behavior of the unit step
response in two ways.

answer: Method 1: Compute the limit directly.

1 1 1
lim z(t) = lim = — e % = .
t—r00 t—o0 2 2 2

Method 2: Use the final value theorem. (If you haven’t covered that in class just skip
this method —or go back and read about the final value theorem in the reading on
Laplace transform.) We have sX(s) = 1/(s + 2). Since all its poles are negative, we
can apply the final value theorem:

1
lim z(t) = lim s X (s) = —.
s—0 2

t—o00

We see that both methods agree!

2 The unit impulse

In this section we will learn about the unit impulse function 6(¢). We will use it as
input to LTI systems. At first the systems will be simple enough to find the post-
initial conditions directly and use them to solve the equations for the response. For
more complicated systems we will use the Laplace transform to solve the equation
without first determining the post-initial conditions.

2.1 The mathematics of the delta function

Let’s delve a little deeper into u'(t). It’s clear «/(t) = 0 if t # 0. At t = 0 the curve
is vertical so the slope is infinite, i.e. 4/(0) = co. (If you think of u(t) as an idealized

version of the curve in Figure 1, then we would say the derivative near 0 gets very
large.) We define
o(t) =u'(t)

and call it the delta function or the Dirac delta function or the unit impulse function.
We have seen the following properties of §(t).

. 5<t):{o if ¢ £ 0

oo ift=0.

2. /6(t)dt:u(t) and /Oo S(t)dt = 1.

Based on property 1, we ‘graph’ 4(¢) as an infinite spike at the origin. The integrals
show that the ‘area’ under this graph equals 1 and it is all concentrated at the origin.
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o(t) 5(t — a)

s}

0 0
We also show §(t — a) which is just d(¢) shifted to the right.

2.2 The non-idealized delta function

Just like the unit step function, the ¢ function is really an idealized view of nature.
In reality, a delta function is nearly a spike near 0 which goes up and down on a time
interval much smaller than the scale we are working on. The integral, i.e. area under
the curve, is always 1. It’s graph might actually look something like

t
Figure 2. Non-idealized delta function; area under the graph = 1.

The total amount input is still the integral (see Section 2.4 below), or, in geometric
terms, the area under the graph. For a unit impulse we assume the area is 1.

2.3 Delta functions are your friend
2.3.1 Integrals with §(¢t)

Recall how painful integration could be. In contrast, integrals with delta functions
are always easy and involve no techniques of integration.

Suppose we scale 0(t): the integrals are just scaled.
ot oo

/55 30(t) dt =3, /j 36(t) dt = 0, / 30(t) dt = 3, /O 36(¢) dt = 0.

+

The integral fab f(t)d(t) dt is also easy. If f(t) is continuous at ¢ = 0 then

/b 03 dt = {f(O) if (a,b) contains 0

0 if [a, b] does not contain 0.

That is, integrating against d(¢) just amounts to evaluating f(t) at ¢ = 0.
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Note 1. If one of the endpoints a or b is 0, the integral cannot be evaluated, so we
just throw up our hands and refuse to do it.

Note 2. Technicality: We must have f(¢) continuous at ¢ = 0.

2.3.2 Justification of the formula for /f(t)é(t) dt

We should start by admitting that in formal mathematics this is simply given as
the definition of (t), so our arguments will just go to show that it is a reasonable
definition. We’ll do this in three ways.

Quick reason: §(t) is 0 everywhere except t = 0, So f(t)d(t) is 0 for all t # 0 and
at t = 0 it just scales the delta function by f(0). That is, f(t)d(t) = f(0)o(¢).
Reason 1. Since we can interpret the integral as area, we need to show that the
‘area’ under f(t)d(t) is f(0). Figure 2 (above) shows a tall, thin curve near ¢t = 0
which approximates 6(¢). Since f(t) is continuous we know that f(¢) ~ f(0) near
t = 0. Thus, f(t)d(t) is approximated by the graph in the figure scaled by f(0).
Finally, since the area under the curve in Figure 2 is one, if we scale it by f(0) it will
have area equal to f(0). As the graph in Figure 2 gets narrower and taller it goes to
that of 0(¢). As this happens, the approximation we just made will become exact, i.e.
as we wanted to show, the area under the f(¢)d(t) = f(0).

Reason 2. This is a direct argument using integration by parts. First, since 6(¢) = 0

for ¢ # 0 the integral fab f(#)d(t) dt must be zero for any interval [a, b] not containing
0. Next, suppose a < 0 < b, then we get

b b
/ f()o(t)dt :/ f)u'(t)dt  (since 6 =)
= f(t)u(t)|2—/ f'(t)u(t)dt (integration by parts)

Now, since u(b) = 1, u(a) = 0 and u(t) = 0 for ¢ < 0 this becomes

— f) - / F'(t) di
= f(b) — f@)}

b) — f(t
= f(b) — f(b) + £(0)
= f(0)

Comparing the first and last expressions in this long sequence of steps, we've shown
the result.
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2.3.3 Shifting by a

If we shift by a we have, / f(t)é(t —a) = f(a). More generally:

if [¢, d] does not contain a.

/d F0O(t — a) dt = {(J]”(a) if (¢, d) contains a

Example 3. (Practice with §.) Quickly cover up the answers on the left and try to
evaluate each of the integrals on the right.

3
/ 5(t)2e* dt =2, (evaluate 2e*” at t = 0)
1
3 2
/ 5(t)2e* dt =0, (0 is not in [1,3])
1
3 , .
/ 5(t)2e* dt =2, (evaluate 2¢* at t = 0)
o
/ §(t)2e~ ) gt =2, (evaluate 2e~ () at ¢ = ()
o
3 2 442
/ 5(t — 2)2e* dt = 2¢l6, (evaluate 2e%*" at t = 2)
~1
5 2
/ 5(t — 2)2e* dt =0, (2 is not in [3,5])
3
3 2 412
/ S(t —2)2e* dt = 2¢l6 (evaluate 2e%" at t = 2),
o
/ 5(t — 2)2e” @) gt = 2= t*®)  (evaluate 2~ (1) at ¢ = 2).

2.4 The physical interpretation of delta functions as a unit
impulse

In general, we will be using ¢ functions as the input to LTI systems. So, in this
subsection we want to explore what this means. Our goal is to understand what is
meant by an impulse and to see that §(¢) can be thought of as an (idealized) unit
impulse.

Example 4. Consider the rate equation & + kx = f(¢). To be specific, assume z is
in units of kilograms and ¢ is in minutes. This is a rate equation and the derivative &
and the input f(¢) are rates, in units of kg/min. We then have that the total amount

¢
of kg input from time 0~ to time ¢ is / f(r)dr.
-

Consider the following possible inputs f(t), shown graphically as box functions.



