GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Spring 2025 Quiz #3

April 7, 2025

NAME:				GT usernar	ne:	
_	(FIRST)	(LAST)			(e.g.,	, gtxyz123)
	Circle yo	ur recitation section:	L01 (Daniela)	L05 (Chun-Wei)	L07 (Chun-Wei)	L09 (Daniela)

L02 (Greg)

L06 (Kennedy)

L08 (Kennedy)

L10 (Greg)

Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page ($8.5" \times 11"$) of hand-written notes.
- Calculators are allowed, but no other electronics (no smartphones/watches/readers/tablets/laptops/etc).
- · JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π . For example, write 0.1 π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes.
- Only the fronts of the each page will be scanned and graded.

Problem	Value	Score Earned
1	32	
2	36	
3	32	
Total		

PROB. Sp25-Q3.1. An FIR filter is described by the difference equation:

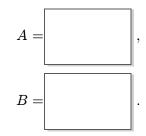
$$y[n] = Ax[n-1] + Bx[n-2] + Ax[n-3] + Bx[n-4] + Ax[n-5].$$

The constants A and B are unspecified and different in the two parts below.

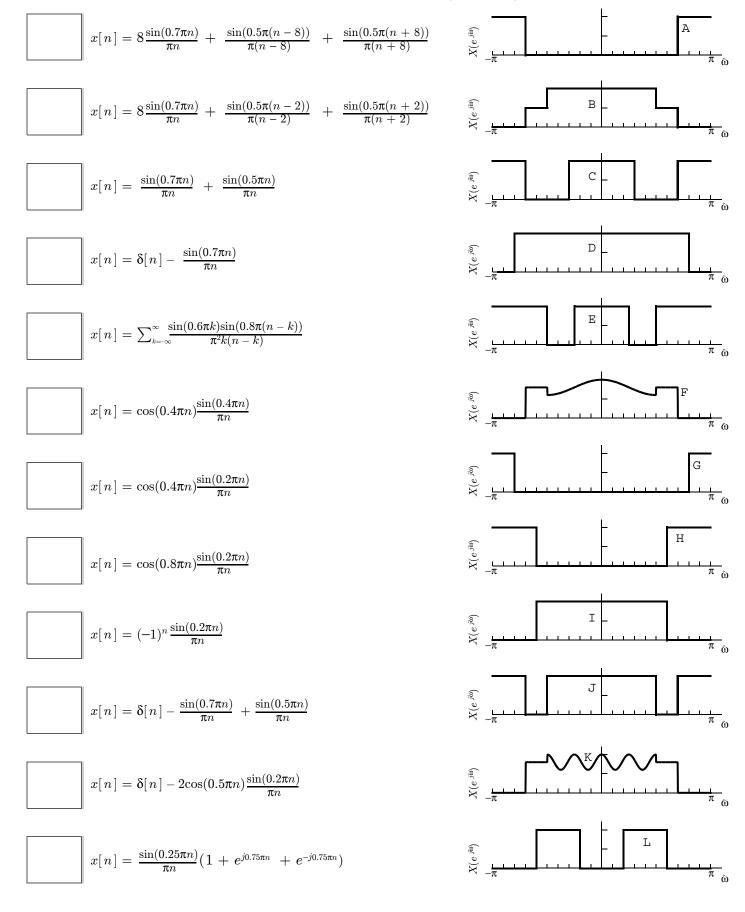
(a) Suppose A = 1 and B = 1. What digital frequencies does this filter null? Express your answer by listing *all* of the value(s) of $\hat{\omega} \in [0, \pi]$, if any, for which the output in response to an input of $\cos(\hat{\omega}n)$ is zero for all time:

(b) Find A and B if the output in response to:

 $x[n] = 2 + 2\cos(\pi(n-1))$ is $y[n] = 24 \quad \text{(for all } n, \text{ a constant)}.$

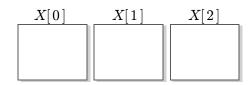


PROB. Sp25-Q3.2. Match each discrete-time signal on the left to its corresponding DTFT plot on the right. (The y-axis scales may differ, they are not labeled, the shapes are enough.) Indicate your answer by writing a letter from {A, B, ... L} into each answer box.



PROB. Sp25-Q3.3. (The different parts of this problem are unrelated.)

(a) The 3-point DFT of [x[0], x[1], x[2]] = [5, -1, -1] is:



(b) Suppose that the k-th coefficient after taking the 32-point DFT of [x[0], ... x[31]] is X[k] = (j)^k. List all of the value(s) of n∈{0, ... 31}, if any, for which x[n] ≠ 0:

(c) The 4-point DFT of [x[0], ..., x[3]] = [5, 7, 1, 7] is [X[0], ..., X[3]] = [20, 4, -8, 4]. Find the 4-point DFT of [y[0], ..., y[3]] = [7, 5, 7, 1]. (*Hint:* use the DFT delay property.) Y[0] Y[1] Y[2] Y[3]

Table of DTFT Pairs			
Time-Domain: x[n]	Frequency-Domain: $X(e^{j\hat{\omega}})$		
$\delta[n]$	1		
$\delta[n-n_0]$	$e^{-j\hat\omega n_0}$		
$r_L[n] = u[n] - u[n - L]$	$\frac{\sin(\frac{1}{2}L\hat{\omega})}{\sin(\frac{1}{2}\hat{\omega})} e^{-j\hat{\omega}(L-1)/2}$		
$r_L[n]e^{j\hat{\omega}_0n}$	$\frac{\sin(\frac{1}{2}L(\hat{\omega} - \hat{\omega}_0))}{\sin(\frac{1}{2}(\hat{\omega} - \hat{\omega}_0))} e^{-j(\hat{\omega} - \hat{\omega}_0)(L-1)/2}$		
$\frac{\sin(\hat{\omega}_b n)}{\pi n}$	$u(\hat{\omega} + \hat{\omega}_b) - u(\hat{\omega} - \hat{\omega}_b) = \begin{cases} 1 & \hat{\omega} \le \hat{\omega}_b \\ 0 & \hat{\omega}_b < \hat{\omega} \le \pi \end{cases}$		
$a^n u[n] (a < 1)$	$\frac{1}{1 - ae^{-j\hat{\omega}}}$		

Table of DTFT Properties			
Property Name	Time-Domain: $x[n]$	Frequency-Domain: $X(e^{j\hat{\omega}})$	
Periodic in $\hat{\omega}$		$X(e^{j(\hat{\omega}+2\pi)}) = X(e^{j\hat{\omega}})$	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(e^{j\hat{\omega}}) + bX_2(e^{j\hat{\omega}})$	
Conjugate Symmetry	x[n] is real	$X(e^{-j\hat{\omega}}) = X^*(e^{j\hat{\omega}})$	
Conjugation	$x^*[n]$	$X^*(e^{-j\hat{\omega}})$	
Time-Reversal	x[-n]	$X(e^{-j\hat{\omega}})$	
Delay $(n_d = \text{integer})$	$x[n-n_d]$	$e^{-j\hat{\omega}n_d}X(e^{j\hat{\omega}})$	
Frequency Shift	$x[n]e^{j\hat{\omega}_0n}$	$X(e^{j(\hat{\omega}-\hat{\omega}_0)})$	
Modulation	$x[n]\cos(\hat{\omega}_0 n)$	$\frac{1}{2}X(e^{j(\hat{\omega}-\hat{\omega}_0)}) + \frac{1}{2}X(e^{j(\hat{\omega}+\hat{\omega}_0)})$	
Convolution	x[n] * h[n]	$X(e^{j\hat{\omega}})H(e^{j\hat{\omega}})$	
Autocorrelation	x[-n] * x[n]	$ X(e^{j\hat{\omega}}) ^2$	
Parseval's Theorem	$\sum_{n=-\infty}^{\infty} x[n] ^2$	$\frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\hat{\omega}}) ^{2}d\hat{\omega}$	

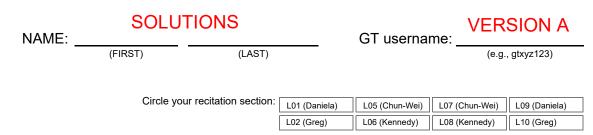
Table of Pairs for N-point DFT			
<i>Time-Domain:</i> $x[n], n = 0, 1, 2,, N - 1$	Frequency-Domain: $X[k], k = 0, 1, 2, \dots, N-1$		
If $x[n]$ is finite length, i.e., $x[n] \neq 0$ only when $n \in [0, N-1]$ and the DTFT of $x[n]$ is $X(e^{j\hat{\omega}})$	$\left. X[k] = X(e^{j\hat{\omega}}) \right _{\hat{\omega} = 2\pi k/N} $ (frequency sampling the DTFT)		
$\delta[n]$	1		
1	$N\delta[k]$		
$\delta[n-n_0]$	$e^{-j(2\pi k/N)n_0}$		
$e^{j(2\pi n/N)k_0}$	$N\delta[k-k_0]$, when $k_0 \in [0, N-1]$		
$r_L[n] = u[n] - u[n - L], \text{ when } L \le N$	$\frac{\sin(\frac{1}{2}L(2\pi k/N))}{\sin(\frac{1}{2}(2\pi k/N))} e^{-j(2\pi k/N)(L-1)/2}$		
$r_L[n]e^{j(2\pi k_0/N)n}$, when $L \le N$	$\frac{\sin(\frac{1}{2}L(2\pi(k-k_0)/N))}{\sin(\frac{1}{2}(2\pi(k-k_0)/N))}e^{-j(2\pi(k-k_0)/N)(L-1)/2}$		
$\frac{\sin(\frac{1}{2}L(2\pi n/N))}{\sin(\frac{1}{2}(2\pi n/N))} e^{j(2\pi n/N)(L-1)/2}$	$N(u[k] - u[k - L]), \text{ when } L \leq N$		

Table of DFT Properties			
Property Name	$\begin{array}{c} Time\text{-}Domain: \ x[n] \\ \text{for } n \in \{0, \ \dots \ N\text{-}1\} \end{array}$	Frequency-Domain: $X[k]$	
Periodic	periodic extension $\tilde{x}[n] = \tilde{x}[n+N]$	X[k] = X[k+N]	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$	
Conjugate Symmetry	x[n] is real	$X[N-k] = X^*[k]$	
Conjugation	$x^*[n]$	$X^*[N-k]$	
Time-Reversal	x[N-n]	X[N-k]	
Delay (PERIODIC)	$\widetilde{x}[n-n_d]$	$e^{-j(2\pi k/N)n_d}X[k]$	
Frequency Shift	$x[n]e^{j(2\pi k_0/N)n}$	$X[k-k_0]$	
Modulation	$x[n]\cos((2\pi k_0/N)n)$	$\frac{1}{2}X[k-k_0] + \frac{1}{2}X[k+k_0]$	
Convolution (PERIODIC)	$\tilde{x}[n] * h[n] = \sum_{m=0}^{N-1} h[m]\tilde{x}[n-m]$	X[k]H[k]	
Parseval's Theorem	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$		

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Spring 2025 Quiz #3

April 7, 2025



Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page ($8.5" \times 11"$) of hand-written notes.
- Calculators are allowed, but no other electronics (no smartphones/watches/readers/tablets/laptops/etc).
- · JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π . For example, write 0.1 π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes.
- Only the fronts of the each page will be scanned and graded.

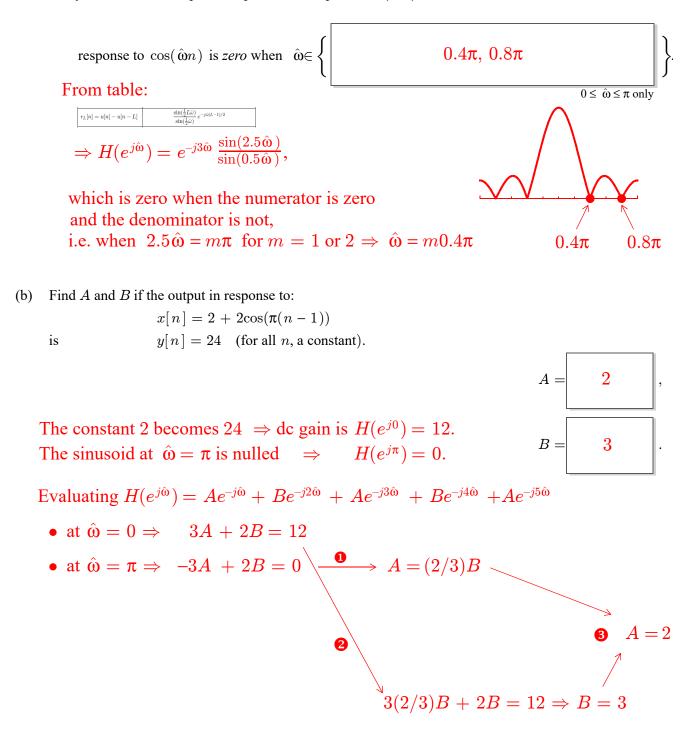
Problem	Value	Score Earned
1	32	
2	36	
3	32	
Total		

PROB. Sp25-Q3.1. An FIR filter is described by the difference equation:

$$y[n] = Ax[n-1] + Bx[n-2] + Ax[n-3] + Bx[n-4] + Ax[n-5].$$

The constants A and B are unspecified and different in the two parts below.

 (a) Suppose A = 1 and B = 1. What digital frequencies does this filter null? Express your answer by listing all of the value(s) of ω∈[0, π], if any, for which the output in response to an input of cos(ω̂n) is zero for all time:



PROB. Sp25-Q3.2. Match each discrete-time signal on the left to its corresponding DTFT plot on the right. (The y-axis scales may differ, they are not labeled, the shapes are enough.) Indicate your answer by writing a letter from {A, B, ... P} into each answer box.

PROB. Sp25-Q3.3. (The different parts of this problem are unrelated.)

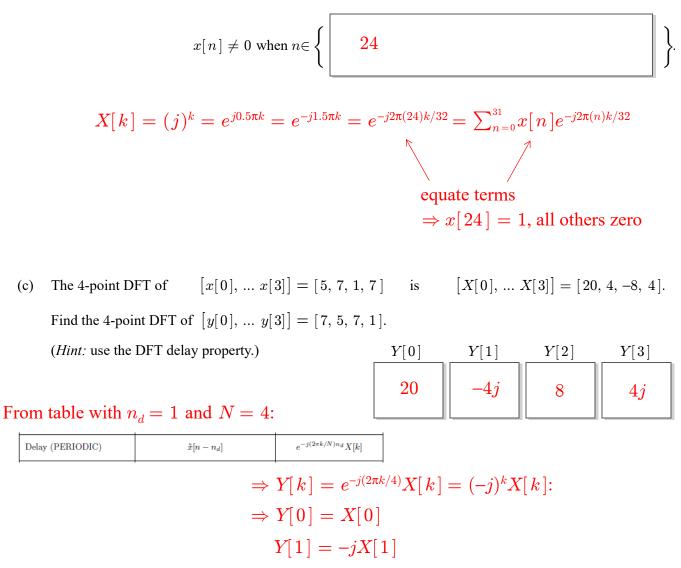
The 3-point DFT of [x[0], x[1], x[2]] = [5, -1, -1] is: (a)

Start with DTFT: $X(e^{j\hat{\omega}}) = 5 - e^{-j\hat{\omega}} - e^{-j2\hat{\omega}}$, then sample:

(c)

$$X[0] = X(e^{j\hat{\omega}})\Big|_{\hat{\omega}=0} = 5 - 1 - 1 = 3$$
$$X[1] = X(e^{j\hat{\omega}})\Big|_{\hat{\omega}=2\pi/3} = 5 - e^{-j2\pi/3} - e^{-j4\pi/3} = 6$$
real in time domain $\Rightarrow X[2] = X^*[1] = 6$

Suppose that the k-th coefficient after taking the 32-point DFT of [x[0], ..., x[31]] is $X[k] = (j)^k$. (b) List *all* of the value(s) of $n \in \{0, ..., 31\}$, if any, for which $x[n] \neq 0$:



$$Y[2] = -X[2]$$

Y[3] = jX[3]