DATE:11-Nov-19 COURSE: ECE-2026

NAME: Solutions LAST,

FIRST
CanvasID:
ex: gtAlpha

Circle your correct recitation section number - failing to do so will cost you 2 points

Recitation time	Mon	Tue	Wed	Thu
$09: 30: 10: 45$		L12 Farahmand		L06 Causey
$12: 00-13: 15$		L07 Farahmand		L08 Barry
$13: 30-14: 45$		L09 Farahmand		L10 Barry
$15: 00-16: 15$	L01 Juang	L11 Farahmand	L02 Casinovi	
$16: 30-17: 45$			L04 Casinovi	

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT. PROBLEMS WITH NO WORK AND JUST ANSWERS MAY RECEIVE 0 CREDIT, EVEN IF THE ANSWER IS CORRECT. YOU MUST SHOW SOME NUMERICAL WORK, REASONING, OR EXPLANATION FOR YOUR ANSWER. (I.E., DON'T JUST PUT AN ANSWER AND LEAVE THE WORK AREA BLANK)
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the boxes/spaces provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π or $\frac{2 \pi}{5}$ instead of 1.257)
- ALL RADIAN ANSWERS MUST BE IN THE RANGE ($-\pi, \pi]$ FOR CREDIT.

Problem	Value	Score
1	20	
2	20	
3	20	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1: Parts a and b can be solved independently of each other

(a) Consider the LTI system shown below with input $x[n]$ and output $y[n]$, whose frequency response is $H\left(e^{j \widehat{\omega}}\right)=10 e^{-j 26 \widehat{\omega}}(10+10 \cos (10 \widehat{\omega}))$:

(i.) Find the difference equation that relates $y[n]$ to $x[n]$. (5 points)

$$
\begin{aligned}
& H\left(e^{j \widehat{\omega}}\right)= 10 e^{-j 26 \widehat{\omega}}(10+10 \cos (10 \widehat{\omega}))=100 e^{-j 26 \widehat{\omega}}+50 e^{-j 16 \widehat{\omega}}+50 e^{-j 36 \widehat{\omega}} \\
& \rightarrow h[n]=50 \delta[n-16]+100 \delta[n-26]+50 \delta[n-36]
\end{aligned}
$$

$$
y[n]=50 x[n-16]+100 x[n-26]+50 x[n-36]
$$

(ii.) If $x[n]=2+2 \cos \left(\frac{\pi}{5} n\right)$ find and equation for the output $y[n]$. (Hint: It has the form $y[n]=A+$ $\left.B \cos \left(\widehat{\omega}_{0} n+\phi\right)\right)$. (5 points)

$$
H\left(e^{j 0}\right)=200 ; H\left(e^{\frac{j \pi}{5}}\right)=200 e^{-\frac{j 26 \pi}{5}} \rightarrow y[n]=400+400 \cos \left(\frac{\pi}{5} n-\frac{26 \pi}{5}\right)=400+400 \cos \left(\frac{\pi}{5} n+\frac{4 \pi}{5}\right)
$$

$$
y[n]=400+400 \cos \left(\frac{\pi}{5} n+\frac{4 \pi}{5}\right)
$$

(b) Consider the impulse response $h[n]=\frac{1}{5}(u[n-20]-u[n-33])$. Use the provided tables of DTFT pairs and properties to find the frequency response $H\left(e^{j \widehat{\omega}}\right)$ and determine the magnitude of the frequency response at $\widehat{\omega}=0$ (i.e., $H\left(e^{j 0}\right)$). (NOTE: You must express the frequency response in the form $H\left(e^{j \widehat{\omega}}\right)=A(\widehat{\omega}) e^{j \varphi(\widehat{\omega})}$, where $A(\widehat{\omega})$ presents the overall amplitude function and $\varphi(\widehat{\omega})$ represents the overall phase function of the frequency response) (10 points)

This is a "box" in discrete time of length 13 samples shifted by 20 samples.

$$
H\left(e^{j \widehat{\omega}}\right)=\frac{\sin \left(\frac{13 \widehat{\omega}}{2}\right)}{5 \sin \left(\frac{\widehat{\omega}}{2}\right)} e^{-j \widehat{\omega} 26} \rightarrow H\left(e^{j 0}\right)=\frac{13}{5}
$$

$$
H\left(e^{j \widehat{\omega}}\right)=\frac{\sin \left(\frac{13 \hat{\omega}}{2}\right)}{5 \sin \left(\frac{\omega}{2}\right)} e^{-j \hat{\omega} 26}
$$

$$
H\left(e^{j 0}\right)=\frac{13}{5}
$$

PROBLEM 2: All parts can be solved independently of each other

Use the following ideal C-to-D / D-to-C system with the defined LTI System $H\left(e^{j \widehat{\omega}}\right)$ for all parts below.

Let $x(t)=9+3 \cos (900 \pi t)+6 \cos (1100 \pi t)$
(a) If $f_{s}=2000 \mathrm{~Hz}$, find the output $y(t)$. (12 points)

$$
\begin{gathered}
x[n]=9+2 \cos (0.45 n)+6 \cos (0.55 \pi n) \\
y[n]=0 * 9+2 * 3 \cos (0.45 \pi n-4.05 \pi)+0 * 6 \cos (0.55 \pi n-4.95 \pi) \rightarrow 4 \cos (0.45 \pi n-0.05 \pi) \\
y(t)=6 \cos (900 \pi t-0.05 \pi)
\end{gathered}
$$

$$
y(t)=6 \cos (900 \pi t-0.05 \pi)
$$

(b) For what range of sampling rates is there both no aliasing and a nonzero output $y(t)$. Your answer should be expressed as $A \leq f_{s} \leq B$ where you must determine A and B. (Hint: a nonzero output for $y(t)$ means that a minimum of one of the components of $x(t)=9+3 \cos (900 \pi t)+$ $6 \cos (1100 \pi t)$ is passed by the LTI system) (8 points)

For $x(t)$ has frequencies of 900π and 1100π. This problem requires (1) No aliasing (2) At least one digital frequency in the range $0.3 \pi \leq|\widehat{\omega}| \leq 0.5 \pi$.
(1) No aliasing: $f_{s}>1100 \mathrm{~Hz}$
(2) At least one component in the range $0.3 \pi \leq|\widehat{\omega}| \leq 0.5 \pi$

$$
\begin{gathered}
\rightarrow \frac{900 \pi}{f s} \leq 0.5 \pi \rightarrow f_{s} \geq 1800 ; \frac{900 \pi}{f s} \geq 0.3 \pi \rightarrow f_{s} \leq 3000 \\
\rightarrow \frac{1100 \pi}{f s} \leq 0.5 \pi \rightarrow f_{s} \geq 2200 ; \frac{1100 \pi}{f s} \geq 0.3 \pi \rightarrow f_{s} \leq \frac{1100}{0.3} \approx 3666.67
\end{gathered}
$$

Combining the ranges yields: $1800 \leq f_{s} \leq \frac{1100}{0.3} \approx 3666.67$

$$
1800 \leq f_{s} \leq \frac{1100}{0.3} \approx 3666.67
$$

PROBLEM 3: All parts can be solved independently of each other

(a) An LTI system with output $y[n]$ has impulse response $h[n]=4 \delta[n-1]+3 \delta[n-3]-4 \delta[n-7]$. If the input to the system is the unit step function $x[n]=u[n]$, find $y[4]$ and $y[9]$.
(10 points) (NOTE: You don't need to make a table)

$$
\begin{gathered}
y[n]=4 u[n-1]+3 u[n-3]-4 u[n-7] \rightarrow y[4]=4 u[3]+3 u[1]-4 u[-3]=7 \\
y[9]=4 u[8]+3 u[6]-4 u[2]=3
\end{gathered}
$$

(b) Consider the cascaded LTI system below

where $h_{1}[n]=\sum_{k=3}^{8} \delta[n-k]$ and $h_{2}[n]=\delta[n]-\delta[n-2]$. Find and equation for $y[n]$ that is valid for all n, when $x[n]=2 \delta[n-3]$. (10 points)

Overall impulse response is: $h[n]=\delta[n-3]+\delta[n-4]-\delta[n-9]-\delta[n-10]$

$$
y[n]=2 \delta[n-6]+2 \delta[n-7]-2 \delta[n-12]-2 \delta[n-13]
$$

$$
y[n]=2 \delta[n-6]+2 \delta[n-7]-2 \delta[n-12]-2 \delta[n-13]
$$

Table of DTFT Pairs	
Time-Domain: $x[n]$	Frequency-Domain: $X\left(e^{j \hat{\omega}}\right)$
$\delta[n]$	1
$\delta\left[n-n_{d}\right]$	$e^{-j \hat{\omega} n_{d}}$
$r_{L}[n]=u[n]-u[n-L]$	$\frac{\sin \left(\frac{1}{2} L \hat{\omega}\right)}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j \hat{\omega}(L-1) / 2}$
$r_{L}[n] e^{j \hat{\omega}_{0} n}$	$u\left(\hat{\omega}+\hat{\omega}_{b}\right)-u\left(\hat{\omega}-\hat{\omega}_{b}\right)=\left\{\begin{array}{ll\|}1 & \|\hat{\omega}\| \leq \hat{\omega}_{b} \\ 0 & \hat{\omega}_{b}<\|\hat{\omega}\| \leq \pi\end{array}\right.$
$\frac{\sin \left(\frac{1}{2}\left(\hat{\omega}-\hat{\omega}_{b} n\right)\right.}{\pi n}$	$\left.\hat{\omega}_{o}\right)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \hat{\omega}}}$

	Table of DTFT Properties	
Property Name	Time-Domain: $x[n]$	Frequency-Domain: $X\left(e^{j \hat{\omega}}\right)$
Periodic in $\hat{\omega}$		$X\left(e^{j(\hat{\omega}+2 \pi)}\right)=X\left(e^{j \hat{\omega}}\right)$
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}\left(e^{j \hat{\omega}}\right)+b X_{2}\left(e^{j \hat{\omega}}\right)$
Conjugate Symmetry	$x[n]$ is real	$X\left(e^{-j \hat{\omega}}\right)=X^{*}\left(e^{j \hat{\omega}}\right)$
Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \hat{\omega}}\right)$
Time-Reversal	$x[-n]$	$X\left(e^{-j \hat{\omega}}\right)$
Delay $\left(n_{d}=\right.$ integer $)$	$x\left[n-n_{d}\right]$	$e^{-j \hat{\omega} n_{d}} X\left(e^{j \hat{\omega}}\right)$
Frequency Shift	$x[n] e^{j \hat{\omega}_{0} n}$	$X\left(e^{j\left(\hat{\omega}-\hat{\omega}_{0}\right)}\right)$
Modulation	$x[n] \cos \left(\hat{\omega}_{0} n\right)$	$\frac{1}{2} X\left(e^{j\left(\hat{\omega}-\hat{\omega}_{0}\right)}\right)+\frac{1}{2} X\left(e^{j\left(\hat{\omega}+\hat{\omega}_{0}\right)}\right)$
Convolution	$x[n] * h[n]$	$X\left(e^{j \hat{\omega}}\right) H\left(e^{j \hat{\omega}}\right)$
Autocorrelation	$x^{*}[-n] * x[n]$	$\left\|X\left(e^{j \hat{\omega}}\right)\right\|^{2}$
Parseval's Theorem	$\sum_{n=-\infty}^{\infty}\|x[n]\|^{2}$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|X\left(e^{j \hat{\omega}}\right)\right\|^{2} d \hat{\omega}$

