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𝑓 = 𝑓   

ℎ[𝑛] = 4(𝛿[𝑛 − 5] + 𝛿[𝑛 − 8] + 𝛿[𝑛 − 11])     
 
 

PROBLEM 1: 
(a) The continuous signal 𝑥(𝑡) = 𝐴 cos(2𝜋𝑓 𝑡) has a fundamental frequency of 𝑓 .  Find the smallest 

sampling frequency, 𝑓  (where 𝑥[𝑛] = 𝑥(𝑛/𝑓 )) that: (1) Avoids aliasing and (2) creates a 
fundamental period of 𝑁 = 15 (i.e., 𝑥[𝑛] = 𝑥[𝑛 + 𝑁 ] = 𝑥[𝑛 + 15].)  (NOTE: Your answer will be 
expressed in terms of 𝑓 .) (6 points) 

 

 

𝑓 =
𝑁

𝑀
𝑓 =

15

𝑀
𝑓 > 2𝑓 →

15

𝑀
> 2 → 𝑀 < 7.5 

𝑓 =
15

7
𝑓  

 

 

 

 

 

 
 
 
(b) Consider the input/output relationship between 𝑦[𝑛] and 𝑥[𝑛] given below. 

 
 
Let 𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] (representing convolution). If ℎ[𝑛] = 𝐴(𝛿[𝑛 − 𝑎] + 𝛿[𝑛 − 𝑏] + 𝛿[𝑛 − 𝑐]) 
find 𝐴, 𝑎, 𝑏,  and 𝑐 such that 𝑦[𝑛] = 12 for 𝑛 = 5, … ,11 (i.e., 𝑦[𝑛]=12 over the interval 5 ≤ 𝑛 ≤
11). (10 points) 

 
 

Need the trailing two values of 1 and 2 (at n=-1 and -2) to align with the leading values of 2 and 1 (at n=1 and 
2) as the signal is scaled by 4 and shifted.  We will need three “copies” of x[n] for y[n] to be constant over the 
interval of 5 ≤ 𝑛 ≤ 11.  
 
Therefore: ℎ[𝑛] = 4(𝛿[𝑛 − 5] + 𝛿[𝑛 − 8] + 𝛿[𝑛 − 11]) 
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𝑦 [𝑛] = 𝑥[𝑛 − 8] − 𝑥[𝑛 − 18]  
 

 
𝑝[𝑛] = 𝛿[𝑛 − 15] 

 

PROBLEM 2: (All parts can be solved independently) 
 
Assume that an LTI system is defined with the following impulse response: 

ℎ[𝑛] = 𝑢[𝑛 − 8] − 𝑢[𝑛 − 18] 
The input to the system is 𝑥[𝑛] = 𝑢[𝑛 − 𝑎] − 𝑢[𝑛 − 𝑏] and the output is defined as 𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] 
(where 𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] denotes 𝑥[𝑛] convolved with ℎ[𝑛]).   
 
(a) Find 𝑎 and 𝑏 such that 𝑦[𝑛] is non-zero over the interval 4 ≤ 𝑛 ≤ 21. (6 points) 
 
y[n] has boundaries: {4 -> 21} 
h[n] has boundaries: {8 -> 17} 
4 =𝑎 + 8 → 𝑎 = −4 
21 = (𝑏 − 1) + 17 → 𝑏 = 5 
 

 

(b) Assume that the length of 𝑥[𝑛] is greater than the length of ℎ[𝑛] (i.e., (𝑏 − 𝑎) > 10)).  Find the 
maximum value of 𝑦[𝑛]. (i.e., 𝑦[𝑛] = 𝐴 for some 𝑛 and 𝑦[𝑛] ≤ 𝐴 for all 𝑛). (6 points) (HINT: Recall 

the general formula for convolution in an FIR filter is: 𝑦[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]) 

𝑦[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘] .  When ℎ[𝑛] completely overlaps 𝑥[𝑛] 

(1)(1) = 10 

 
 
(c) Let 𝑝[𝑛] = ℎ[𝑛] × (𝛿[𝑛] + 𝛿[𝑛 − 15]) where × represents multiplication (NOT convolution).  Write 

a complete expression for 𝑝[𝑛]. (6 points) 

𝑝[𝑛] = ℎ[𝑛]𝛿[𝑛] + ℎ[𝑛]𝛿[𝑛 − 15] = ℎ[0]𝛿[𝑛] + ℎ[15]𝛿[𝑛 − 15] = 𝛿[𝑛 − 15] 

  

 

 

 

(d) Define a new LTI system as ℎ [𝑛] = ℎ[𝑛] − (𝑢[𝑛 − 9] − 𝑢[𝑛 − 19]) and 𝑦 [𝑛] = 𝑥[𝑛] ∗ ℎ [𝑛]. Write 
the difference equation between 𝑦 [𝑛] and 𝑥[𝑛]. (6 points) (HINT: ℎ [𝑛] reduces to a very simple 
equation.) 

ℎ [𝑛] = ℎ[𝑛] − (𝑢[𝑛 − 9] − 𝑢[𝑛 − 19]) = 𝛿[𝑛 − 8] − 𝛿[𝑛 − 18] → 𝑦 [𝑛] = 𝑥[𝑛 − 8] − 𝑥[𝑛 − 18] 

 

 

  

𝑎 = −4  

𝑏 = 5  

𝐴 = 10 
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ℎ[𝑛] =   −6𝛿[𝑛 + 1] + 18𝛿[𝑛 − 3] − 6𝛿[𝑛 − 7]  
 
 

𝑦[𝑛] =   18 + 60 cos(0.25𝜋𝑛 − 𝜋) = 18 − 60 cos(0.25𝜋𝑛)  
 
 

 𝜔 =

    

𝐻 𝑒 = 8 + 4 cos(2𝜔)  
 

PROBLEM 3: (All parts can be solved independently) 
 
(a) Suppose an LTI system is characterized by the following frequency response: 

𝐻 𝑒 = 6𝑒 (3 − 2 cos(4𝜔)) 

(NOTE: Use this LTI system for parts (i) and (ii) below.) 
(i) Find the impulse response, ℎ[𝑛]. (5 points) 

𝐻 𝑒 = 6𝑒 3 − 𝑒 − 𝑒 = 18𝑒 − 6𝑒 − 6𝑒   

ℎ[𝑛] = −6𝛿[𝑛 + 1] + 18𝛿[𝑛 − 3] − 6𝛿[𝑛 − 7] 
 
 
 
 

(ii) If 𝑦[𝑛] = 3 + 2 cos 0.25𝜋𝑛 − ∗ ℎ[𝑛] find an equation for 𝑦[𝑛] in the form 𝑦[𝑛] = 𝐴 +

cos(𝜔𝑛 + 𝜙). (5 points)  

𝐻 𝑒 ( ) = 6 ∗ (3 − 2) = 6; 𝐻 𝑒 ( . ) = 6𝑒 3 − 2 cos 4
𝜋

4
= 6𝑒 (5) = 30𝑒  

𝑦[𝑛] = 6 ∗ 3 + 30 ∗ 2 cos 0.25𝜋𝑛 −
𝜋

4
−

3𝜋

4
= 18 + 60 cos(0.25𝜋𝑛 − 𝜋) = 18 − 60 cos(0.25𝜋𝑛) 

 
 

 

 

(b) Let  ℎ[𝑛] = ∑ 𝛿[𝑛 − 𝑘] and 𝑥[𝑛] = ∑ cos((𝜔 𝑘)𝑛) with 𝑀𝜔 ≤ 𝜋.  
If 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] = 0 and 𝐿 = 10, find the smallest possible value for 𝜔 . (5 points) 

ℎ[𝑛] has a frequency response of 𝐻 𝑒 = 𝑒 .  with zeros at 𝜔 = 𝑘 = 𝑘 

Therefore, 𝜔 =   

(NOTE: This problem should have said 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 since the summation 
started at k=0.  We will add 1 point (20% of this problem) to every student grade) 

(c) Consider the following MATLAB code: (5 points) 
hn = [0,0,2,0,8,0,2];  
yn = conv(xn, hn); 

Find an expression for the magnitude of the frequency response. 
ℎ[𝑛] = 2𝛿[𝑛 − 2] + 8𝛿[𝑛 − 4] + 2𝛿[𝑛 − 6] → 𝐻 𝑒 = 𝑒 (8 + 4 cos(2𝜔)) 


