GEORGIA INSTITUTUE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING EXAM 3

DATE: 13-Nov-17 COURSE: ECE-2026

NAME:

LAST,

FIRST

ex: gtJohnA

TSquareID:

Circle your correct recitation section number - failing to do so will cost you 2 points					
Recitation time	Mon	Tue	Wed	Thu	
09:30:10:45				L06 Harper	
12:00-13:15		L07 Causey		L08 Harper	
13:30-14:45		L09 Yang		L10 Stuber	
15:00-16:15	L01 Juang	L11 Yang	L02 Causey	L12 Stuber	
16:30-17:45	L03 Marenco		L04 Causey		

- Write your name on the front page ONLY. **DO NOT unstaple the test**
- Closed book, but a calculator is permitted.
- Three pages $\left(8\frac{1}{2}'' \times 11''\right)$ of **HAND-WRITTEN** notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the **boxes/spaces** provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π instead of 1.257)
- ALL RADIAN ANSWERS SHOULD BE IN THE RANGE ($-\pi$, π].

Problem	Value	Score
1	16	
2	24	
3	20	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1:

(a) The continuous signal $x(t) = A \cos(2\pi f_0 t)$ has a fundamental frequency of f_0 . Find the **smallest** sampling frequency, f_s (where $x[n] = x(n/f_s)$) that: (1) Avoids aliasing and (2) creates a fundamental period of $N_0 = 15$ (i.e., $x[n] = x[n + N_0] = x[n + 15]$.) (NOTE: Your answer will be expressed in terms of f_0 .) (6 points)

$$f_s = \frac{N_0}{M} f_0 = \frac{15}{M} f_0 > 2f_0 \to \frac{15}{M} > 2 \to M < 7.5$$
$$f_s = \frac{15}{7} f_0$$

 $f_s = \frac{15}{7}f_0$

(b) Consider the input/output relationship between y[n] and x[n] given below.

Let y[n] = x[n] * h[n] (representing convolution). If $h[n] = A(\delta[n-a] + \delta[n-b] + \delta[n-c])$ find *A*, *a*, *b*, and *c* such that y[n] = 12 for n = 5, ..., 11 (i.e., y[n]=12 over the interval $5 \le n \le 11$). (10 points)

Need the trailing two values of 1 and 2 (at n=-1 and -2) to align with the leading values of 2 and 1 (at n=1 and 2) as the signal is scaled by 4 and shifted. We will need three "copies" of x[n] for y[n] to be constant over the interval of $5 \le n \le 11$.

Therefore: $h[n] = 4(\delta[n-5] + \delta[n-8] + \delta[n-11])$

 $h[n] = 4(\delta[n-5] + \delta[n-8] + \delta[n-11])$

PROBLEM 2: (All parts can be solved independently)

Assume that an LTI system is defined with the following impulse response:

h[n] = u[n-8] - u[n-18]The input to the system is x[n] = u[n-a] - u[n-b] and the output is defined as y[n] = x[n] * h[n](where y[n] = x[n] * h[n] denotes x[n] convolved with h[n]).

(a) Find *a* and *b* such that y[n] is non-zero over the interval $4 \le n \le 21$. (6 points)

y[n] has boundaries: {4 -> 21} h[n] has boundaries: {8 -> 17} $4 = a + 8 \rightarrow a = -4$ $21 = (b - 1) + 17 \rightarrow b = 5$

(b) Assume that the length of x[n] is greater than the length of h[n] (i.e., (b - a) > 10)). Find the **maximum value** of y[n]. (i.e., y[n] = A for some n and $y[n] \le A$ for all n). (6 points) (HINT: Recall the **general formula** for convolution in an FIR filter is: $y[n] = \sum_{k=0}^{M} h[k]x[n-k]$)

$$y[n] = \sum_{k=8}^{17} h[k]x[n-k]$$
. When $h[n]$ completely overlaps $x[n]$
$$\sum_{k=8}^{17} (1)(1) = 10$$
 $A = 10$

(c) Let $p[n] = h[n] \times (\delta[n] + \delta[n - 15])$ where \times represents **<u>multiplication</u>** (NOT convolution). Write a complete expression for p[n]. (6 points)

$$p[n] = h[n]\delta[n] + h[n]\delta[n-15] = h[0]\delta[n] + h[15]\delta[n-15] = \delta[n-15]$$

 $p[n] = \delta[n - 15]$

(d) Define a new LTI system as $h_2[n] = h[n] - (u[n-9] - u[n-19])$ and $y_2[n] = x[n] * h_2[n]$. Write the **difference equation** between $y_2[n]$ and x[n]. (6 points) (HINT: $h_2[n]$ reduces to a very simple equation.)

$$h_2[n] = h[n] - (u[n-9] - u[n-19]) = \delta[n-8] - \delta[n-18] \rightarrow y_2[n] = x[n-8] - x[n-18]$$

 $y_2[n] = x[n-8] - x[n-18]$

PROBLEM 3: (All parts can be solved independently)

(a) Suppose an LTI system is characterized by the following frequency response:

$$H(e^{j\widehat{\omega}}) = 6e^{-j3\widehat{\omega}}(3 - 2\cos(4\widehat{\omega}))$$

(NOTE: Use this LTI system for parts (i) and (ii) below.)

(i) Find the impulse response, h[n]. (5 points)

$$H(e^{j\hat{\omega}}) = 6e^{-j3\hat{\omega}} (3 - e^{4j\hat{\omega}} - e^{-j4\hat{\omega}}) = 18e^{-j3\hat{\omega}} - 6e^{j\hat{\omega}} - 6e^{-j7\hat{\omega}}$$
$$h[n] = -6\delta[n+1] + 18\delta[n-3] - 6\delta[n-7]$$

$$h[n] = -6\delta[n+1] + 18\delta[n-3] - 6\delta[n-7]$$

(ii) If $y[n] = \left\{3 + 2\cos\left(0.25\pi n - \frac{\pi}{4}\right)\right\} * h[n]$ find an equation for y[n] in the form $y[n] = A + \frac{\pi}{4}$ $\cos(\widehat{\omega}n + \phi)$. (5 points)

$$|H(e^{j(0)})| = 6 * (3-2) = 6; |H(e^{j(0.25)})| = 6e^{-\frac{j3\pi}{4}} \left(3 - 2\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) = 6e^{-\frac{j3\pi}{4}}(5) = 30e^{-\frac{j3\pi}{4}}$$
$$y[n] = 6 * 3 + 30 * 2\cos\left(0.25\pi n - \frac{\pi}{4} - \frac{3\pi}{4}\right) = 18 + 60\cos(0.25\pi n - \pi) = 18 - 60\cos(0.25\pi n)$$

 $y[n] = 18 + 60\cos(0.25\pi n - \pi) = 18 - 60\cos(0.25\pi n)$

(b) Let $h[n] = \sum_{k=0}^{L-1} \delta[n-k]$ and $x[n] = \sum_{k=0}^{M} \cos((\widehat{\omega}_0 k)n)$ with $M\widehat{\omega}_0 \le \pi$. If y[n] = h[n] * x[n] = 0 and L = 10, find the **smallest** possible value for $\hat{\omega}_0$. (5 points)

h[n] has a frequency response of $H(e^{j\widehat{\omega}}) = \frac{\sin(\frac{10}{2})}{\sin(\frac{\widehat{\omega}}{2})}e^{-j4.5\widehat{\omega}}$ with zeros at $\widehat{\omega} = \frac{2\pi}{10}k = \frac{\pi}{5}k$ $\widehat{\omega}_0 = \frac{\pi}{r}$

Therefore, $\widehat{\omega}_0 = \frac{\pi}{r}$

(NOTE: This problem should have said y[n] = h[n] * x[n] = constant since the summation started at k=0. We will add 1 point (20% of this problem) to every student grade)

(c) Consider the following MATLAB code: (5 points)

hn = [0, 0, 2, 0, 8, 0, 2];yn = conv(xn, hn);

Find an expression for the magnitude of the frequency response.

 $h[n] = 2\delta[n-2] + 8\delta[n-4] + 2\delta[n-6] \rightarrow H(e^{j\widehat{\omega}}) = e^{-j4\widehat{\omega}}(8+4\cos(2\widehat{\omega}))$

$$\left|H\left(e^{j\widehat{\omega}}\right)\right| = 8 + 4\cos(2\widehat{\omega})$$