DATE: 13-Nov-17 COURSE: ECE-2026

NAME:
LAST,
FIRST

TSquareID:
ex: gtJohnA

Circle your correct recitation section number - failing to do so will cost you 2 points

Recitation time	Mon	Tue	Wed	Thu
$09: 30: 10: 45$				L06 Harper
$12: 00-13: 15$		L07 Causey		L08 Harper
$13: 30-14: 45$		L09 Yang		L10 Stuber
$15: 00-16: 15$	L01 Juang	L11 Yang	L02 Causey	L12 Stuber
$16: 30-17: 45$	L03 Marenco		L04 Causey	

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- Three pages $\left(8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the boxes/spaces provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π instead of 1.257)
- ALL RADIAN ANSWERS SHOULD BE IN THE RANGE (-пा, п].

Problem	Value	Score
1	16	
2	24	
3	20	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1:

(a) The continuous signal $x(t)=A \cos \left(2 \pi f_{0} t\right)$ has a fundamental frequency of f_{0}. Find the smallest sampling frequency, f_{s} (where $x[n]=x\left(n / f_{s}\right)$) that: (1) Avoids aliasing and (2) creates a fundamental period of $N_{0}=15$ (i.e., $x[n]=x\left[n+N_{0}\right]=x[n+15]$.) (NOTE: Your answer will be expressed in terms of f_{0}.) (6 points)

$$
\begin{gathered}
f_{s}=\frac{N_{0}}{M} f_{0}=\frac{15}{M} f_{0}>2 f_{0} \rightarrow \frac{15}{M}>2 \rightarrow M<7.5 \\
f_{s}=\frac{15}{7} f_{0}
\end{gathered}
$$

$$
f_{s}=\frac{15}{7} f_{0}
$$

(b) Consider the input/output relationship between $y[n]$ and $x[n]$ given below.

Let $y[n]=x[n] * h[n]$ (representing convolution). If $h[n]=A(\delta[n-a]+\delta[n-b]+\delta[n-c])$ find A, a, b, and c such that $y[n]=12$ for $n=5, \ldots, 11$ (i.e., $y[n]=12$ over the interval $5 \leq n \leq$ 11). (10 points)

Need the trailing two values of 1 and 2 (at $\mathrm{n}=-1$ and -2) to align with the leading values of 2 and 1 (at $\mathrm{n}=1$ and 2) as the signal is scaled by 4 and shifted. We will need three "copies" of $x[n]$ for $y[n]$ to be constant over the interval of $5 \leq n \leq 11$.

Therefore: $h[n]=4(\delta[n-5]+\delta[n-8]+\delta[n-11])$

$$
h[n]=4(\delta[n-5]+\delta[n-8]+\delta[n-11])
$$

PROBLEM 2: (All parts can be solved independently)

Assume that an LTI system is defined with the following impulse response:

$$
h[n]=u[n-8]-u[n-18]
$$

The input to the system is $x[n]=u[n-a]-u[n-b]$ and the output is defined as $y[n]=x[n] * h[n]$ (where $y[n]=x[n] * h[n]$ denotes $x[n]$ convolved with $h[n]$).
(a) Find a and b such that $y[n]$ is non-zero over the interval $4 \leq n \leq 21$. (6 points)
$y[n]$ has boundaries: $\{4->21\}$
$\mathrm{h}[\mathrm{n}]$ has boundaries: $\{8->17\}$
$4=a+8 \rightarrow a=-4$
$21=(b-1)+17 \rightarrow b=5$

$$
a=-4
$$

$$
b=5
$$

(b) Assume that the length of $x[n]$ is greater than the length of $h[n]$ (i.e., $(b-a)>10)$). Find the maximum value of $y[n]$. (i.e., $y[n]=A$ for some n and $y[n] \leq A$ for all n). (6 points) (HINT: Recall the general formula for convolution in an FIR filter is: $y[n]=\sum_{k=0}^{M} h[k] x[n-k]$)
$y[n]=\sum_{k=8}^{17} h[k] x[n-k]$. When $h[n]$ completely overlaps $x[n]$

$$
\sum_{k=8}^{17}(1)(1)=10
$$

$$
A=10
$$

(c) Let $p[n]=h[n] \times(\delta[n]+\delta[n-15])$ where \times represents multiplication (NOT convolution). Write a complete expression for $p[n]$. (6 points)

$$
p[n]=h[n] \delta[n]+h[n] \delta[n-15]=h[0] \delta[n]+h[15] \delta[n-15]=\delta[n-15]
$$

$$
p[n]=\delta[n-15]
$$

(d) Define a new LTI system as $h_{2}[n]=h[n]-(u[n-9]-u[n-19])$ and $y_{2}[n]=x[n] * h_{2}[n]$. Write the difference equation between $y_{2}[n]$ and $x[n]$. (6 points) (HINT: $h_{2}[n]$ reduces to a very simple equation.)

$$
h_{2}[n]=h[n]-(u[n-9]-u[n-19])=\delta[n-8]-\delta[n-18] \rightarrow y_{2}[n]=x[n-8]-x[n-18]
$$

$$
y_{2}[n]=x[n-8]-x[n-18]
$$

PROBLEM 3: (All parts can be solved independently)

(a) Suppose an LTI system is characterized by the following frequency response:

$$
H\left(e^{j \widehat{\omega}}\right)=6 e^{-j 3 \widehat{\omega}}(3-2 \cos (4 \widehat{\omega}))
$$

(NOTE: Use this LTI system for parts (i) and (ii) below.)
(i) Find the impulse response, $h[n]$. (5 points)

$$
\begin{aligned}
H\left(e^{j \widehat{\omega}}\right)= & 6 e^{-j 3 \widehat{\omega}}\left(3-e^{4 j \widehat{\omega}}-e^{-j 4 \widehat{\omega}}\right)=18 e^{-j 3 \widehat{\omega}}-6 e^{j \widehat{\omega}}-6 e^{-j 7 \widehat{\omega}} \\
& h[n]=-6 \delta[n+1]+18 \delta[n-3]-6 \delta[n-7]
\end{aligned}
$$

$$
h[n]=-6 \delta[n+1]+18 \delta[n-3]-6 \delta[n-7]
$$

(ii) If $y[n]=\left\{3+2 \cos \left(0.25 \pi n-\frac{\pi}{4}\right)\right\} * h[n]$ find an equation for $y[n]$ in the form $y[n]=A+$ $\cos (\widehat{\omega} n+\phi) .(5$ points $)$

$$
\begin{aligned}
& \left.\left|H\left(e^{j(0)}\right)\right|=6 *(3-2)=6 ; \mid H\left(e^{j(0.25}\right)\right) \left\lvert\,=6 e^{-\frac{j 3 \pi}{4}}\left(3-2 \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)=6 e^{-\frac{j 3 \pi}{4}}(5)=30 e^{-\frac{j 3 \pi}{4}}\right. \\
& y[n]=6 * 3+30 * 2 \cos \left(0.25 \pi n-\frac{\pi}{4}-\frac{3 \pi}{4}\right)=18+60 \cos (0.25 \pi n-\pi)=18-60 \cos (0.25 \pi n)
\end{aligned}
$$

$$
y[n]=18+60 \cos (0.25 \pi n-\pi)=18-60 \cos (0.25 \pi n)
$$

(b) Let $h[n]=\sum_{k=0}^{L-1} \delta[n-k]$ and $x[n]=\sum_{k=0}^{M} \cos \left(\left(\widehat{\omega}_{0} k\right) n\right)$ with $M \widehat{\omega}_{0} \leq \pi$.

If $y[n]=h[n] * x[n]=0$ and $L=10$, find the smallest possible value for $\widehat{\omega}_{0}$. (5 points)
$h[n]$ has a frequency response of $H\left(e^{j \widehat{\omega}}\right)=\frac{\sin \left(\frac{10^{\wedge}}{2}\right)}{\sin \left(\frac{\omega}{2}\right)} e^{-j 4.5 \widehat{\omega}}$ with zeros at $\widehat{\omega}=\frac{2 \pi}{10} k=\frac{\pi}{5} k$
Therefore, $\widehat{\omega}_{0}=\frac{\pi}{5}$

$$
\widehat{\omega}_{0}=\frac{\pi}{5}
$$

(NOTE: This problem should have said $y[n]=h[n] * x[n]=$ constant since the summation started at $k=0$. We will add 1 point (20% of this problem) to every student grade)
(c) Consider the following MATLAB code: (5 points)
hn $=[0,0,2,0,8,0,2]$;
yn = conv(xn, hn);
Find an expression for the magnitude of the frequency response.

$$
h[n]=2 \delta[n-2]+8 \delta[n-4]+2 \delta[n-6] \rightarrow H\left(e^{j \widehat{\omega}}\right)=e^{-j 4 \widehat{\omega}}(8+4 \cos (2 \widehat{\omega}))
$$

$$
\left|H\left(e^{j \widehat{\omega}}\right)\right|=8+4 \cos (2 \widehat{\omega})
$$

