GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2026 – Fall 2015 Quiz 3 (

Quiz 3 (Clicker – 25 Minutes)

Version #1 October 30, 2015

Student Name:	_GT ID #:	Clicker ID:	
Instructions:			
 A calculator and one sheet of paper size with hand-written notes are allow Use your clicker to enter your answ the test version (NOTE: You wi 	of letter 3. red; vers and ll enter	Enter your answers on your test in the space provided which is to be turned in at the end of test (as a backup in case your clicker malfunctions)	
numerical answers not multiple choi	ce);		
Grading out of 4 points (requires complete	d test):		
0 correct => 1/4; 1 correct=>2/4; 2 correct=>3/4; 3 correct =>3.6/4; 4 correct => 4/4			
Use Clicker to Enter Test Version #: This is Version #1			
<u>FIR FILTERING:</u> Problems 1.1 and 1.2 use the information below (Note: * represents convolution)			
Assume the impulse responses for two cascaded LTI systems $(h_1[n] \text{ and } h_2[n])$ are defined as:			
$h_1[n] = u[n-1] -$	$u[n-5]; h_2[$	$[n] = \delta[n-3] * h_1[n];$	
The overall impulse response is defined as:	$h[n] = h_1[n]$	* $h_2[n]$. Answer the following questions	
PROBLEM 1.1			
Find the discrete-time location, n_{last} , of the $h[n]$ (i.e, $h[n] = 0$ for $n > n_{last}$)	e last non-zero	sample in $n_{last} = 11$	

PROBLEM 1.2

Find the maximum numeric value of the overall impulse response, h[n], (i.e., find $\max(h[n]) \ge h[n]$, for all n)

$$\max(h[n]) = 4$$

<u>SAMPLING</u> (Problem 1.3 and Problem 1.4 are independent of each other) PROBLEM 1.3

A sinusoid is generated and played by the following MATLAB code:

tt = -0.2 : $(1/400)$: 0.8; xx = cos((pi/0.05)*tt);	fs = 3200
<pre>soundsc(xx,fs);</pre>	

Find the value of **fs** such that the tone heard through the speaker is at 80 Hz.

PROBLEM 1.4

Assume the input to an ideal C-D converter is $x(t) = \cos\left(2\pi f_0 t + \frac{\pi}{4}\right)$. When the sampling frequency is set to 400 Hz, the resulting discrete signal is $x[n] = \cos\left(0.2\pi n - \frac{\pi}{4}\right)$. Find the value of f_0 over the range $800 < f_0 \le 1200$ to make this a true statement. $f_0 = 1160$