GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2026 - Fall 2015
Quiz 3 (Clicker - 25 Minutes)

Version \#1

October 30, 2015

Student Name: \qquad GT ID \#: \qquad Clicker ID: \qquad
Instructions:

1. A calculator and one sheet of paper of letter size with hand-written notes are allowed;
2. Use your clicker to enter your answers and the test version (NOTE: You will enter numerical answers not multiple choice);
Grading out of 4 points (requires completed test):
0 correct => 1/4; 1 correct=>2/4; 2 correct=>3/4; 3 correct $=>3.6 / 4 ; 4$ correct $=>4 / 4$
Use Clicker to Enter Test Version \#: This is Version \#1
FIR FILTERING: Problems 1.1 and 1.2 use the information below (Note: * represents convolution)
Assume the impulse responses for two cascaded LTI systems $\left(h_{1}[n]\right.$ and $\left.h_{2}[n]\right)$ are defined as:

$$
h_{1}[n]=u[n-1]-u[n-5] ; h_{2}[n]=\delta[n-3] * h_{1}[n] ;
$$

The overall impulse response is defined as: $h[n]=h_{1}[n] * h_{2}[n]$. Answer the following questions

PROBLEM 1.1

Find the discrete-time location, $n_{\text {last }}$, of the last non-zero sample in $h[n]$ (i.e, $h[n]=0$ for $n>n_{\text {last }}$)

$$
n_{\text {last }}=11
$$

3. Enter your answers on your test in the space provided which is to be turned in at the end of test (as a backup in case your clicker malfunctions)

PROBLEM 1.2

Find the maximum numeric value of the overall impulse response, $h[n]$, (i.e., find $\max (h[n]) \geq h[n]$, for all n)

$$
\max (h[n])=4
$$

SAMPLING (Problem 1.3 and Problem 1.4 are independent of each other) PROBLEM 1.3

A sinusoid is generated and played by the following MATLAB code:

```
tt = -0.2 : (1/400) : 0.8;
xx = cos((pi/0.05)*tt);
soundsc(xx,fs);
```

$$
\mathbf{f s}=3200
$$

Find the value of $\mathbf{f s}$ such that the tone heard through the speaker is at 80 Hz .

PROBLEM 1.4

Assume the input to an ideal C-D converter is $x(t)=\cos \left(2 \pi f_{0} t+\frac{\pi}{4}\right)$. When the sampling frequency is set to 400 Hz , the resulting discrete signal is $x[n]=\cos \left(0.2 \pi n-\frac{\pi}{4}\right)$. Find the value of f_{0} over the range $800<f_{0} \leq 1200$ to make this a true statement.

$$
f_{0}=1160
$$

