GEORGIA INSTITUTE OF TECHNOLOGY

 SCHOOL of ELECTRICAL and COMPUTER ENGINEERINGECE 2026 - Fall 2014 Quiz 3 (Clicker 2)
October 31, 2014
Student Name: \qquad GT ID \#: \qquad Clicker ID: \qquad
Instructions:

1. A calculator and one sheet of paper of letter size with hand-written notes are allowed;
2. Clear everything other than the single sheet note and a calculator on the desk;
3. Use your clicker to enter your answers;
4. Circle your answers on your test which is to be turned in at the end of test; this is a backup in case your clicker does not function properly;
5. A duration of twenty five minutes has been allocated for this test.

A. Use Clicker to Enter Test Version \#: This is Version \#1

B. Test Problems

Problem 1-4 are related to sampling and reconstruction as depicted in Figure 1 with the input signal $x(t)$ specified therein. Problem 5 is related to FIR systems.

$$
x(t)=\cos (240 \pi t+0.2 \pi)+\cos (320 \pi t+0.8 \pi)
$$

Figure 1

1. Pick the sampling rate (samples/s) of the ideal C-to-D from the list below such that $x[n]$ is a constant:

A	B	C	D	E	F	G
160	320	80	120	180	40	200

2. Let $f_{s 1}=200, f_{s 2}=300$ samples/s, respectively. What is the fundamental frequency (in Hz) of $y(t)$?

A	B	C	D	E	F	G
100	80	120	10	20	40	60

3. If $f_{s 1}=720$ samples $/ \mathrm{s}$, what is the period of $x[n]$ in samples?

A	B	C	D	E	F	G
20	12	10	16	24	36	18

4. A student writes the following MATLAB code to generate and play a signal:
```
tt=0:1/2400:4; xx=sin(2*pi*10800*tt + pi/3); soundsc(xx,3000);
```

Determine the frequency (Hz) of the tone that is heard.

A	B	C	D	E	F	G
1000	600	900	1800	800	1200	1500

5. A linear time-invariant system is defined by the following impulse response:
$h[n]=\delta[n]-\delta[n-1]+\delta[n-2]$. Let the input signal be a periodic sequence with period 4 defined for $n=0,1,2,3$ as $[1-1-11]$. Find the value of output at $n=10$, i.e., $y[10]$, from the table below.

A	B	C	D	E	F	G
-1	1	3	0	-2	2	-3

