GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2026 – Fall 2014 Quiz 3 (Clicker 2)

October 31, 2014

Stud	ent Name:	GT ID #: _		Clicker ID:
Instr	uctions:			
1.	A calculator and one sheet of paper of letter s with hand-written notes are allowed;	ize	4.	Circle your answers on your test which is to be turned in at the end of test; this is a backup in
2.	Clear everything other than the single sh note and a calculator on the desk;	leet	5.	case your clicker does not function properly; A duration of twenty five minutes has been
3.	Use your clicker to enter your answers;			allocated for this test.

A. Use Clicker to Enter Test Version #: This is Version #1

B. Test Problems

Problem 1-4 are related to sampling and reconstruction as depicted in Figure 1 with the input signal x(t) specified therein. Problem 5 is related to FIR systems.

 $x(t) = \cos(240\pi t + 0.2\pi) + \cos(320\pi t + 0.8\pi)$

1. Pick the sampling rate (samples/s) of the ideal C-to-D from the list below such that x[n] is a constant:

А	В	С	D	Е	F	G
160	320	80	120	180	40	200

2. Let $f_{s1} = 200$, $f_{s2} = 300$ samples/s, respectively. What is the fundamental frequency (in Hz) of y(t)?

А	В	С	D	Е	F	G
100	80	120	10	20	40	60

3. If $f_{s1} = 720$ samples/s, what is the period of x[n] in samples?

А	В	С	D	Е	F	G
20	12	10	16	24	36	18

4. A student writes the following MATLAB code to generate and play a signal: tt=0:1/2400:4; xx=sin(2*pi*10800*tt + pi/3); soundsc(xx,3000);

Determine the frequency (Hz) of the tone that is heard.

А	В	С	D	Е	F	G
1000	600	900	1800	800	1200	1500

5. A linear time-invariant system is defined by the following impulse response:

 $h[n] = \delta[n] - \delta[n-1] + \delta[n-2]$. Let the input signal be a periodic sequence with period 4 defined for n = 0, 1, 2, 3 as [1 - 1 - 1 1]. Find the value of output at n = 10, i.e., y[10], from the table below.

Α	В	С	D	Е	F	G
-1	1	3	0	-2	2	-3