DATE: 15-Nov-13 COURSE: ECE-2026

NAME: \qquad GT\#:
LAST, FIRST
ex: gtaburDEll

Circle your correct recitation section number - failing to do so will cost you 3 points
L01: Mon - (Juang)
L02: Wed - (Bloch)
L03: Mon - (Casinovi)
L04: Wed - (Bloch)
L05: Tues - (Bhatti)
L06: Thurs - (Coyle)
L07: Tues - (Bhatti)
L08: Thurs - (Coyle)
L09: Tues - (AlRegib)
L10: Thurs - (Ma)
L11: Tues - (Causey)
L12: Thurs - (Ma)
L13: Tues - (Causey)
L14: Thurs - (AlRegib)

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- JUSTIFY your reasoning sufficiently to receive partial credit. Explanations are also required (as applicable) to receive full credit for an answer. (i.e., show enough work so graders understand your approach to solving the problem)
- You must write your answer in the boxes provided on the exam paper itself. Only answers in these boxes will be graded as the final solution. If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	25	
2	30	
3	30	
4	15	
Total	100	

PROBLEM fa-13-Q.2.1:
Assume the signal $x(t)=\cos (80 \pi t-0.2 \pi)$ is passed through an ideal C-to-D converter as shown below:

(a) If $f_{\mathrm{s}}=100 \mathrm{~Hz}$, find the period N_{0} of the discrete time signal $x_{a}[n]$ (i.e., $x_{a}[n]=x_{a}\left[n+N_{0}\right]$).

$$
\begin{aligned}
X(n) & =\cos \left(\frac{80 \pi}{100} n-0.2 \pi\right) \\
& =\cos \left(\frac{4 \pi}{5} n-0.2 \pi\right) \\
& N_{0}=5
\end{aligned}
$$

(b) Find one other value for the sampling frequency, f_{s} such that the discrete time sequence $x_{b}[n]$ sampled from $x(t)$ will have the same period N_{0} (i.e., $x_{b}[n]=x_{b}\left[n+N_{0}\right]$) as that in part (a). (NOTE: There is a simple answer. Make sure to justify our answer is correct.)

$$
\begin{aligned}
& f_{s}=N_{0} f_{0} \rightarrow \text { period } \Rightarrow N_{0} \\
& f_{0}=40 \therefore 5 \cdot 40=200
\end{aligned}
$$

(c) Assume that

$$
x_{c}[n]=x_{a}[n], \quad 0 \leq n<30
$$

(i.e., $x_{c}[n]$ is the same as the signal from part (a) with a length of 30 samples.) The 30-point DFT of the signal will be mostly zero with the exception of two values in $X[k]$. Determine the indices k at which $X[k]$ is non-zero; also give their complex values (ie., nonzero $X[k]$'s)

$$
\begin{aligned}
& X_{C}(n)=\cos \left(4 \pi / 5 n-a_{2} 2 \pi\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { iFS: } k=12, \frac{1}{2} e^{-0.2 \pi} \\
& k=-12, \frac{1}{2} e^{j 0,2 \pi} \backslash D F T=N \cdot D F S \\
& \text { oFT: } k=12,15 e^{-0,2 \pi} k \\
& k=18,15 e^{j 0.2 \pi}
\end{aligned}
$$

\mathbf{k}	Complex amplitude
1Ω	$15 e^{-j 0,2 \pi}$
18	$15 e^{j 0,2 \pi}$

PROBLEM fa-13-Q.2.2:
Consider the following overall system:

Assume the input to the system is

$$
x[n]=3+\cos \left(\frac{\pi}{3} n-\frac{\pi}{8}\right)+\cos \left(\frac{\pi}{6} n\right)+\cos \left(\frac{2 \pi}{3} n+\frac{\pi}{9}\right)
$$

Also assume that $H_{1}\left(e^{j \widehat{\omega}}\right)$ and $h_{2}[n]$ have the form shown below:

$$
\begin{aligned}
H_{1}\left(e^{j \widehat{\omega}}\right) & =(2-2 \cos (6 \widehat{\omega})) e^{-j 6 \widehat{\omega}} \\
h_{2}[n] & =\left\{\begin{array}{cc}
1, & n=0, \ldots, L-1 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

(a) Find $w[n]$

(b) Find the impulse response $h_{1}[n]$

$$
\begin{aligned}
H_{1}\left(e^{\hat{w}}\right) & =\left(2-e^{j 6 \hat{\omega}}-e^{-j 6 \hat{\omega}}\right)\left(e^{-j 6 \hat{w}}\right) \\
& =2 e^{-j 6 \hat{\omega}}-1-e^{-j 1(2 \hat{u}} \\
h_{1}(n) & =-\delta(n)+2 \delta(n-6)-\delta(n-12) \\
n_{1}[n]= & -\delta(n)+2 \delta(n-6)-\delta(n-12)
\end{aligned}
$$

(c) Determine the smallest value for the parameter L in $h_{2}[n]$ such that $y[n]=0$ for all n.

$$
\begin{aligned}
& w(n) \rightarrow \hat{w} \Rightarrow\{\pi / 6\} \\
& H_{2}\left(e^{(\hat{\omega}}\right)=\frac{\sin (\hat{\omega} / 2)}{\sin (\hat{\omega} / 2)} e^{-j} \hat{\omega}(-1) / 2
\end{aligned}
$$

Zeros ©: $\hat{\omega}=K 2 \pi / L=T / 6 \rightarrow L=12 K$
check $\hat{\omega}=\mid\langle\pi / 6, k=1-\pi / 6$

$$
t=12
$$

PROBLEM fa-13-Q.2.3:
The plots below are all related in some way to $h_{1}[n]$ with frequency response

$$
H_{1}\left(e^{j \widehat{\omega}}\right)=\frac{1}{1-0.8 e^{-j \widehat{\omega}}}
$$

Determine if the statements below are True or False (Justify the answer if it is true; Provide a correction to the statement if it is false) (Place an ' X ' in the box for True or False)
(a) $h_{2}[n]=(-1)^{n} h_{1}[n]$

$$
\begin{aligned}
& (-1)^{n}=e^{-j \pi n}=\cos (\pi n) \\
& \rightarrow \text { Frequency shift of } \pi \text { which is } \\
& \text { reflected in } H_{2}\left(e^{s n}\right)
\end{aligned}
$$

(b) $h_{1}[n], h_{2}[n]$, and $h_{3}[n]$ (the inverse DTFT's of the plots above) are real-valued signets
$H_{3}\left(e^{(\hat{\omega}}\right)$ is not conjugate symmetric

$$
\left(i, e^{\prime}, H_{3}\left(e^{j \hat{\omega}}\right) \neq H_{3}^{*}\left(e^{j \hat{w}}\right)\right)
$$

$\therefore h_{3}(n)$ is nor a real sequence

$$
\text { (c) } h_{3}[n]=\delta[n-\pi / 2] * h_{1}[n]
$$

Frequency shift of $\pi / 2$

$$
\begin{aligned}
& H_{3}\left(e^{\partial \hat{n}}\right)=H_{1}\left(e^{(\hat{\omega}-\pi / 2)}\right) \\
& \therefore h_{3}(n)=e^{j \pi / 2 n} h_{1}(n)
\end{aligned}
$$

PROBLEM fa-13-Q.2.4:
We have seen that LTI systems can be represented in a variety of ways. For each of the LTI systems below, provide the missing representations. (Frequency response formulas can be given in any convenient form; you need not simplify them.)
(a)

$$
h(n)=\delta(n-1)+4 \delta(n-3)+\delta(n-5)
$$

(b)

(c)

Impulse response	$h[n]=\delta[n-2]-\delta[n-3]+2 \delta[n-6]$
Difference Equation:	$h(n)=X(n-2)-X(n-3)+7 \times(n-6)$

