GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2024
Quiz \#2
July 17, 2024

NAME: \qquad (FIRST) (LAST)

GT username: \qquad

Important Notes:

- Closed book, except for two double-sided pages ($8.5^{\prime \prime} \times 11^{\prime \prime}$) of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes.
- Do not write on the backs of pages, only the fronts will be graded.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su24-Q2.1.

Suppose that an "overall" system (dashed box) is constructed by cascading three FIR filters as follows:
where:

- the first system has frequency response $H_{1}\left(e^{j \hat{\omega}}\right)=2-e^{-j \hat{\omega}}$;
- the second system has impulse response $h_{2}[n]=2 \delta[n]+\delta[n-1]$;
- the third system has difference equation $y[n]=\alpha w[n]+\beta w[n-2]$, with α and β unspecified:
(a) Find the output of the first system at time 2026 when the input is $x[n]=\cos (0.5 \pi n)$:
\square
(b) Find the overall output $y[n]$ when the input is a constant $x[n]=1$ (for all n), and assuming $\alpha=\beta=2$:

$$
y[n]=\square \text {. }
$$

(c) If the overall impulse response (of the dashed box) is $h[n]=A \delta[n]-\delta[n-d]$, and if $\beta \neq 0$, then it must be that:

$$
\begin{aligned}
& \alpha=\square, \square, \square \\
& \beta=\square, \square \\
& A=\square, \square \\
& d=\square
\end{aligned}
$$

PROB. Su24-Q2.2. Consider a 5-point averager with input $x[n]$ and output $y[n]=\frac{1}{5} \sum_{k=0}^{4} x[n-k]$.
(a) Which of the following best describes this filter? [HPF][LPF][BPF][NOTCH][ALL-PASS].
(b) The dc gain of this filter is \square
(c) Specify two distinct frequencies $\hat{\omega}_{1} \in[0, \pi]$ that are nulled, so that $y[n]=0$ when $x[n]=\cos \left(\hat{\omega}_{1} n\right)$:

(d) If the input is $x[n]=-5 \delta[n]+15 \delta[n-2]$, the outputs at times $n \in\{0,1, \ldots 6\}$ are:

(e) If a sinusoidal input $x[n]=A \cos \left(\hat{\omega}_{0} n+\varphi\right)$ in standard form results in the output $y[n]=\cos (0.5 \pi n)$, then it must be that:

PROB. Su24-Q2.3. Match each impulse response to its corresponding magnitude response by writing a letter (from A to M) in each answer box: (the y-axis scale is not specified, only the shapes matter)

$\square h[n]=\delta[n]-\cos (0.5 \pi n) \frac{\sin (0.2 \pi n)}{\pi n}$

$$
\square \frac{\sin (0.7 \pi n)}{\pi n}-\cos (0.6 \pi n) \frac{\sin (0.1 \pi n)}{\pi n}
$$

$$
\square[n]=\delta[n]-\cos (\pi n) \frac{\sin (0.1 \pi n)}{\pi n}
$$

$$
\square\left(\frac{\sin (0.8 \pi n)}{\pi n}-\frac{\sin (0.2 \pi n)}{\pi n}\right) *\left(\frac{\sin (0.9 \pi n)}{\pi n}-\frac{\sin (0.5 \pi n)}{\pi n}\right)
$$

$$
\square[n]=\frac{\sin (0.1 \pi n)}{\pi n}+\frac{\sin (0.7 \pi n)}{\pi n}
$$

$$
\square h[n]=\cos (0.2 \pi n) \frac{\sin (0.5 \pi n)}{\pi n}
$$

$$
\square[n]=\delta[n]-2 \cos (0.5 \pi n) \frac{\sin (0.2 \pi n)}{\pi n}
$$

PROB. Su24-Q2.4.

(a) The 6 -point DFT of $[x[0], \ldots x[3]]=[1,0,0,1]$ is:

(b) Let a and b be unspecified real numbers.

If the 4 -point DFT of $[a, b, 1]$ is $[X[0], \ldots X[3]]=[C, 2-j, D, 2+j]$, then:

Table of DTFT Pairs	
Time-Domain: $x[n]$	Frequency-Domain: $X\left(e^{j \hat{\omega}}\right)$
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$\frac{e^{-j \hat{\omega} n_{0}}}{}$
$r_{L}[n]=u[n]-u[n-L]$	$\frac{\sin \left(\frac{1}{2} L \hat{\omega}\right)}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j \hat{\omega}(L-1) / 2}$
$\frac{\sin \left(\frac{1}{2} L\left(\hat{\omega}\left(\hat{\omega}-\hat{\omega}_{0}\right)\right)\right.}{r_{L}[n] e^{j \hat{\omega}_{0} n}} e^{-j\left(\hat{\omega}-\hat{\omega}_{0}\right)(L-1) / 2}$	
$\frac{\sin \left(\hat{\omega}_{b} n\right)}{\pi n}$	$u\left(\hat{\omega}+\hat{\omega}_{b}\right)-u\left(\hat{\omega}-\hat{\omega}_{b}\right)=\left\{\begin{array}{ll\|}1 & \|\hat{\omega}\| \leq \hat{\omega}_{b} \\ 0 & \hat{\omega}_{b}<\|\hat{\omega}\| \leq \pi\end{array}\right.$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \hat{\omega}}}$

	Table of DTFT Properties	
Property Name	Time-Domain: $x[n]$	Frequency-Domain: $X\left(e^{j \hat{\omega}}\right)$
Periodic in $\hat{\omega}$		$X\left(e^{j(\hat{\omega}+2 \pi)}\right)=X\left(e^{j \hat{\omega}}\right)$
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}\left(e^{j \omega}\right)+b X_{2}\left(e^{j \hat{\omega}}\right)$
Conjugate Symmetry	$x[n]$ is real	$X\left(e^{-j \hat{\omega}}\right)=X^{*}\left(e^{j \hat{\omega}}\right)$
Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \hat{\omega}}\right)$
Time-Reversal	$x[-n]$	$X\left(e^{-j \hat{\omega}}\right)$
Delay ($n_{d}=$ integer $)$	$x\left[n-n_{d}\right]$	$e^{-j \hat{\omega} n_{d}} X\left(e^{j \hat{\omega}}\right)$
Frequency Shift	$x[n] e^{j \hat{\omega}_{0} n}$	$X\left(e^{j\left(\hat{\omega}-\hat{\omega}_{0}\right)}\right)$
Modulation	$x[n] \cos \left(\hat{\omega}_{0} n\right)$	$\frac{1}{2} X\left(e^{j\left(\hat{\omega}-\hat{\omega}_{0}\right)}\right)+\frac{1}{2} X\left(e^{j\left(\hat{\omega}+\hat{\omega}_{0}\right)}\right)$
Convolution	$x[n] * h[n]$	$X\left(e^{j \hat{\omega}}\right) H\left(e^{j \hat{\omega}}\right)$
Autocorrelation	$x[-n] * x[n]$	$\left\|X\left(e^{j \hat{\omega}}\right)\right\|^{2}$
Parseval's Theorem	$\sum_{n=-\infty}^{\infty}\|x[n]\|^{2}$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|X\left(e^{j \hat{\omega}}\right)\right\|^{2} d \hat{\omega}$

Table of Pairs for N-point DFT

Time-Domain: $x[n], \quad n=0,1,2, \ldots, N-1$	Frequency-Domain: $X[k], \quad k=0,1,2, \ldots, N-1$
If $x[n]$ is finite length, i.e., $x[n] \neq 0$ only when $n \in[0, N-1]$ and the DTFT of $x[n]$ is $X\left(e^{j \omega}\right)$	$X[k]=\left.X\left(e^{j \hat{\omega}}\right)\right\|_{\hat{\omega}=2 \pi k / N} \quad$ (frequency sampling the DTFT)
$\delta[n]$	1
1	$N \delta[k]$
$\delta\left[n-n_{0}\right]$	$\frac{\sin \left(\frac{1}{2} L(2 \pi k / N)\right)}{\sin \left(\frac{1}{2}(2 \pi k / N)\right)} e^{-j(2 \pi k / N)(L-1) / 2}$
$e^{j(2 \pi n / N) k_{0}}$	$e^{-j(2 \pi k / N) n_{0}}$
$r_{L}[n]=u[n]-u[n-L]$, when $L \leq N$	$\frac{\sin \left(\frac{1}{2} L\left(2 \pi\left(k-k_{0}\right) / N\right)\right)}{\sin \left(\frac{1}{2}\left(2 \pi\left(k-k_{0}\right) / N\right)\right)} e^{-j\left(2 \pi\left(k-k_{0}\right) / N\right)(L-1) / 2}$
$r_{L}[n] e^{j\left(2 \pi k_{0} / N\right) n}$, when $L \leq N$	$N(u[k]-u[k-L])$, when $L \leq N$
$\frac{\sin \left(\frac{1}{2} L(2 \pi n / N)\right)}{\sin \left(\frac{1}{2}(2 \pi n / N)\right)} e^{j(2 \pi n / N)(L-1) / 2}$	

Table of DFT Properties		
Property Name	Time-Domain: $x[n]$	Frequency-Domain: $X[k]$
Periodic	$x[n]=x[n+N]$	$X[k]=X[k+N]$
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}[k]+b X_{2}[k]$
Conjugate Symmetry	$x[n]$ is real	$X[N-k]=X^{*}[k]$
Conjugation	$x[N-n]$	$x^{*}[n]$
Time-Reversal	$x\left[n-n_{d}\right]$	$X[N-k]$
Delay (PERIODIC)	$x[n] e^{j\left(2 \pi k_{0} / N\right) n}$	$e^{-j(2 \pi k / N) n_{d}} X[k]$
Frequency Shift	$x[n] \cos \left(\left(2 \pi k_{0} / N\right) n\right)$	$\frac{1}{2} X\left[k-k_{0}\right]+\frac{1}{2} X\left[k+k_{0}\right]$
Modulation	$x\left[k-k_{0}\right]$	
Convolution (PERIODIC)	$x[n] * h[n]=\sum_{m=0}^{N-1} h[m] x[n-m]$	$X[k] H[k]$
Parseval's Theorem	$\sum_{n=0}^{N-1}\|x[n]\|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}\|X[k]\|^{2}$	

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2024
Quiz \#2
July 17, 2024

NAME:
VERSION A (FIRST) (LAST)

GT username: \qquad

Important Notes:

- Closed book, except for two double-sided pages ($8.5^{\prime \prime} \times 11^{\prime \prime}$) of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes.
- Do not write on the backs of pages, only the fronts will be graded.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su24-Q2.1.

Suppose that an "overall" system (dashed box) is constructed by cascading three FIR filters as follows:
where:

- the first system has frequency response $H_{1}\left(e^{j \hat{\omega}}\right)=2-e^{-j \hat{\omega}}$;
- the second system has impulse response $h_{2}[n]=2 \delta[n]+\delta[n-1]$;
- the third system has difference equation $y[n]=\alpha w[n]+\beta w[n-2]$, with α and β unspecified:
(a) Find the output of the first system at time 2026 when the input is $x[n]=\cos (0.5 \pi n)$:

$$
\begin{aligned}
H_{1}\left(e^{j \hat{\omega}}\right) & =2-e^{-j \hat{\omega}} \\
\Rightarrow v[n] & =2 x[n]-x[n-1] \\
\Rightarrow v[2026] & =2 x[2026]-x[2025] \\
& =-2-0
\end{aligned}
$$

(b) Find the overall output $y[n]$ when the input is a constant $x[n]=1$ (for all n), and assuming $\alpha=\beta=2$:

$$
y[n]=\square
$$

Overall dc gain $=($ dc gain $\# 1)($ dc gain $\# 2)($ dc gain $\# 3)$

$$
\begin{aligned}
& =(1)(3)(4) \\
& =12
\end{aligned}
$$

(c) If the overall impulse response (of the dashed box) is $h[n]=A \delta[n]-\delta[n-d]$, and if $\beta \neq 0$, then it must be that:

The impulse response of cascade of just first two is:

$$
(\underline{2} \quad-1) *(\underline{2} \quad 1)=\underline{4} \quad 0 \quad-1
$$

Convolving this with ($\left.\begin{array}{lll}\underline{\alpha} & 0 & \beta\end{array}\right)$ yields overall $h[n]$:

$\underline{4} \underline{\alpha} \quad 0$	$-\alpha$		
	4β	0	$-\beta$
$\underline{4 \alpha} 0$	$(-\alpha+4 \beta)$	0	$-\beta$
(3) $A=16$	${ }_{4}$		$=$

$$
A=16
$$

$$
\text { (3) } A=16 \underbrace{}_{(2)} \underbrace{}_{1} \beta=1, d=4
$$

$$
d=4
$$

PROB. Su24-Q2.2. Consider a 5-point averager with input $x[n]$ and output $y[n]=\frac{1}{5} \sum_{k=0}^{4} x[n-k]$.
(a) Which of the following best describes this filter? [HPF]LPF [BPF][NOTCH][ALL-PASS].
(b) The dc gain of this filter i

(c) Specify two distinct frequencies $\hat{\omega}_{1}[0, \pi]$ that are nulled, so that $y[n]=0$ when $x[n]=\cos \left(\hat{\omega}_{1} n\right)$:

$$
\begin{aligned}
& \hat{\omega}_{1}=\begin{array}{c}
0.4 \pi \\
\epsilon[0, \pi]
\end{array}, \\
& \text { or } \\
& \hat{\omega}_{1}=\begin{array}{c}
0.8 \pi \\
\epsilon[0, \pi]
\end{array} .
\end{aligned}
$$

(d) If the input is $x[n]=-5 \delta[n]+15 \delta[n-2]$, the outputs at times $n \in\{0,1, \ldots 6\}$ are:

(e) If a sinusoidal input $x[n]=A \cos \left(\hat{\omega}_{0} n+\varphi\right)$ in standard form results in the output $y[n]=\cos (0.5 \pi n)$, then it must be that:

When $\hat{\omega}=0.5 \pi$, the frequency response becomes a polynomial in $e^{-j 0.5 \pi}=-j$:

$$
\Rightarrow H\left(e^{j 0.5 \pi}\right)=0.2\left(1-j+j^{2}-j^{3}+j^{4}\right)=0.2
$$

\Rightarrow No phase change, attenuates by factor of 0.2

$\varphi=0 \begin{array}{ll} \\ & \\ \epsilon(-\pi, \pi)\end{array}$

PROB. Su24-Q2.3. Match each impulse response to its corresponding magnitude response by writing a letter (from A to M) in each answer box: (the y-axis scale is not specified, only the shapes matter)

$$
\mathrm{H} \quad \frac{\sin (0.7 \pi n)}{\pi n}-\cos (0.6 \pi n) \frac{\sin (0.1 \pi n)}{\pi n}
$$

$$
\mathrm{G} \quad h[n]=\delta[n]-\cos (\pi n) \frac{\sin (0.1 \pi n)}{\pi n}
$$

$$
\mathrm{A} \quad\left(\frac{\sin (0.8 \pi n)}{\pi n}-\frac{\sin (0.2 \pi n)}{\pi n}\right) *\left(\frac{\sin (0.9 \pi n)}{\pi n}-\frac{\sin (0.5 \pi n)}{\pi n}\right)
$$

$$
\mathrm{F} \quad h[n]=\frac{\sin (0.1 \pi n)}{\pi n}+\frac{\sin (0.7 \pi n)}{\pi n}
$$

$$
\mathrm{C} \quad h[n]=\cos (0.2 \pi n) \frac{\sin (0.5 \pi n)}{\pi n}
$$

$$
\mathrm{B} \quad h[n]=\delta[n]-2 \cos (0.5 \pi n) \frac{\sin (0.2 \pi n)}{\pi n}
$$

$$
\begin{aligned}
& \mathrm{J} h[n]=\frac{\sin (0.3 \pi n)}{\pi n} \\
& \mathrm{M} \quad h[n]=\delta[n]-\frac{\sin (0.1 \pi n)}{\pi n} \\
& \mathrm{E} \quad h[n]=\delta[n]-\frac{\sin (0.8 \pi n)}{\pi n} \\
& \text { I } h[n]=\cos (0.6 \pi n) \frac{\sin (0.1 \pi n)}{\pi n} \\
& \mathrm{D} \quad h[n]=\cos (0.5 \pi n) \frac{\sin (0.3 \pi n)}{\pi n} \\
& \mathrm{~L} h[n]=\delta[n]+\frac{\sin (0.2 \pi n)}{\pi n} \\
& \mathrm{~K} \quad h[n]=\delta[n]-\cos (0.5 \pi n) \frac{\sin (0.2 \pi n)}{\pi n}
\end{aligned}
$$

PROB. Su24-Q2.4.

(a) The 6 -point DFT of $[x[0], \ldots x[3]]=[1,0,0,1]$ is:

The DTFT is $X\left(e^{j \hat{\omega}}\right)=1+e^{-j 3 \hat{\omega}}$
\Rightarrow sampling at $k(2 \pi / 6)=k \pi / 3$ yields:

$$
X[k]=1+e^{-j k \pi}
$$

$$
= \begin{cases}2 & \text { when } k \text { is even, } \\ 0 & \text { when } k \text { is odd }\end{cases}
$$

(b) Let a and b be unspecified real numbers.

If the 4 -point DFT of $[a, b, 1]$ is $[X[0], \ldots X[3]]=[C, 2-j, D, 2+j]$, then:

Sampling $X\left(e^{j \hat{\omega}}\right)=a+b e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}}$ at $2 \pi / 4=0.5 \pi$ yields

$$
X[1]=a-j b-1
$$

Equate with given $2-j \quad \Rightarrow a=3, b=1$

$$
b=1
$$

$D=3$.

Similarly, sampling at $0(0.5 \pi)$ and $2(0.5 \pi)$ yields:

$$
\begin{aligned}
& C=X[0]=a+b+1=5, \\
& D=X[2]=a-b+1=3 .
\end{aligned}
$$

