GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Quiz #2

July 17, 2024

NAME:		GT username:		
_	(FIRST)	(LAST)	_	(e.g., gtxyz123)

Important Notes:

- Closed book, except for two double-sided pages (8.5"×11") of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- o JUSTIFY your reasoning CLEARLY to receive partial credit.
- \circ Express all angles as a fraction of π . For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.
 Only these answers will be graded. Write your answers in the provided answer boxes.
- o Do not write on the backs of pages, only the fronts will be graded.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su24-Q2.1.

Suppose that an "overall" system (dashed box) is constructed by cascading three FIR filters as follows:

where:

- the first system has frequency response $H_1(\,e^{\,j\hat{\mathbf{0}}}\,)=2-\,e^{-j\hat{\mathbf{0}}}\,;$
- the second system has impulse response $h_2[\,n\,]=2\delta[\,n\,]+\delta[\,n-1\,];$
- the third system has difference equation $y[\,n\,] = \alpha w[\,n\,] \,+\, \beta w[\,n-2\,]$, with α and β unspecified:
- (a) Find the output of the *first* system at time 2026 when the input is $x[n] = \cos(0.5\pi n)$:

$$v[2026] =$$

(b) Find the *overall* output y[n] when the input is a constant x[n] = 1 (for all n), and assuming $\alpha = \beta = 2$:

$$y[\,n\,]=$$

(c) If the *overall* impulse response (of the dashed box) is $h[n] = A\delta[n] - \delta[n-d]$, and if $\beta \neq 0$, then it must be that:

$$\alpha =$$
 ,

$$\beta =$$
,

$$A =$$

$$d =$$

PROB. Su24-Q2.2. Consider a 5-point averager with input x[n] and output $y[n] = \frac{1}{5} \sum_{k=0}^{4} x[n-k]$.

- (a) Which of the following best describes this filter? [HPF][LPF][BPF][NOTCH][ALL-PASS].
- (b) The dc gain of this filter is
- (c) Specify two distinct frequencies $\hat{\omega}_1 \in [0, \pi]$ that are *nulled*, so that y[n] = 0 when $x[n] = \cos(\hat{\omega}_1 n)$:

$\hat{\omega}_1 =$	$\in [0,\pi]$
or	
$\hat{\omega}_1 =$	$\in [0,\pi]$

(d) If the input is $x[n] = -5\delta[n] + 15\delta[n-2]$, the outputs at times $n \in \{0, 1, \dots 6\}$ are:

$$y[0] =$$
,

$$y[1] =$$

$$y[\,2\,] =$$

$$y[3] =$$

$$y[4] =$$

$$y[5] =$$
,

$$y[6] =$$

(e) If a sinusoidal input $x[n] = A\cos(\hat{\omega}_0 n + \varphi)$ in standard form results in the output $y[n] = \cos(0.5\pi n)$, then it must be that:

$$\phi = \boxed{\hspace{2cm} \left[\begin{array}{c} \\ \in (-\pi,\,\pi] \end{array} \right]}$$

PROB. Su24-Q2.3. Match each impulse response to its corresponding magnitude response by writing a letter (from A to M) in each answer box: (the y-axis scale is not specified, only the shapes matter)

$$h[n] = \delta[n] - \frac{\sin(0.8\pi n)}{\pi n}$$

$$h[n] = \cos(0.6\pi n) \frac{\sin(0.1\pi n)}{\pi n}$$

$$h[n] = \cos(0.5\pi n) \frac{\sin(0.3\pi n)}{\pi n}$$

$$h[n] = \delta[n] + \frac{\sin(0.2\pi n)}{\pi n}$$

$$h[n] = \delta[n] - \cos(0.5\pi n) \frac{\sin(0.2\pi n)}{\pi n}$$

$$\frac{\sin(0.7\pi n)}{\pi n} - \cos(0.6\pi n) \frac{\sin(0.1\pi n)}{\pi n}$$

$$h[n] = \delta[n] - \cos(\pi n) \frac{\sin(0.1\pi n)}{\pi n}$$

$$\left(\frac{\sin(0.8\pi n)}{\pi n} - \frac{\sin(0.2\pi n)}{\pi n}\right) * \left(\frac{\sin(0.9\pi n)}{\pi n} - \frac{\sin(0.5\pi n)}{\pi n}\right)$$

$$h[n] = \frac{\sin(0.1\pi n)}{\pi n} + \frac{\sin(0.7\pi n)}{\pi n}$$

$$h[n] = \cos(0.2\pi n) \frac{\sin(0.5\pi n)}{\pi n}$$

$$h[n] = \delta[n] - 2\cos(0.5\pi n) \frac{\sin(0.2\pi n)}{\pi n}$$

PROB. Su24-Q2.4.

(a) The 6-point DFT of [x[0], ... x[3]] = [1, 0, 0, 1] is:

$$X[1] =$$
,

$$X[2] =$$

$$X[3] =$$

$$X[4] =$$
,

$$X[5] =$$
 .

(b) Let a and b be unspecified real numbers. If the 4-point DFT of [a, b, 1] is $[X[0], \dots X[3]] = [C, 2-j, D, 2+j]$, then:

$$a = \boxed{ }$$
 ,

$$b =$$

$$C = \boxed{ }$$

$$D = \boxed{ }$$
 .

Table of DTFT Pairs			
$Time-Domain: \ x[n]$	Frequency-Domain: $X(e^{j\hat{\omega}})$		
$\delta[n]$	1		
$\delta[n-n_0]$	$e^{-j\hat{\omega}n_0}$		
$r_L[n] = u[n] - u[n - L]$	$\frac{\sin(\frac{1}{2}L\hat{\omega})}{\sin(\frac{1}{2}\hat{\omega})} e^{-j\hat{\omega}(L-1)/2}$		
$r_L[n]e^{j\hat{\omega}_0n}$	$\frac{\sin(\frac{1}{2}L(\hat{\omega}-\hat{\omega}_0))}{\sin(\frac{1}{2}(\hat{\omega}-\hat{\omega}_0))}e^{-j(\hat{\omega}-\hat{\omega}_0)(L-1)/2}$		
$\frac{\sin(\hat{\omega}_b n)}{\pi n}$	$u(\hat{\omega} + \hat{\omega}_b) - u(\hat{\omega} - \hat{\omega}_b) = \begin{cases} 1 & \hat{\omega} \le \hat{\omega}_b \\ 0 & \hat{\omega}_b < \hat{\omega} \le \pi \end{cases}$		
$a^n u[n] (a < 1)$	$\frac{1}{1 - ae^{-j\hat{\omega}}}$		

Table of DTFT Properties			
Property Name	Time-Domain: $x[n]$	Frequency-Domain: $X(e^{j\hat{\omega}})$	
Periodic in $\hat{\omega}$		$X(e^{j(\hat{\omega}+2\pi)}) = X(e^{j\hat{\omega}})$	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(e^{j\hat{\omega}}) + bX_2(e^{j\hat{\omega}})$	
Conjugate Symmetry	x[n] is real	$X(e^{-j\hat{\omega}}) = X^*(e^{j\hat{\omega}})$	
Conjugation	$x^*[n]$	$X^*(e^{-j\hat{\omega}})$	
Time-Reversal	x[-n]	$X(e^{-j\hat{\omega}})$	
Delay $(n_d = integer)$	$x[n-n_d]$	$e^{-j\hat{\omega}n_d}X(e^{j\hat{\omega}})$	
Frequency Shift	$x[n]e^{j\hat{\omega}_0n}$	$X(e^{j(\hat{\omega}-\hat{\omega}_0)})$	
Modulation	$x[n]\cos(\hat{\omega}_0 n)$	$ \frac{1}{2}X(e^{j(\hat{\omega}-\hat{\omega}_0)}) + \frac{1}{2}X(e^{j(\hat{\omega}+\hat{\omega}_0)}) $	
Convolution	x[n] * h[n]	$X(e^{j\hat{\omega}})H(e^{j\hat{\omega}})$	
Autocorrelation	x[-n] * x[n]	$ X(e^{j\hat{\omega}}) ^2$	
Parseval's Theorem	$\sum_{n=-\infty}^{\infty} x[n] ^2$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\hat{\omega}}) ^2 d\hat{\omega}$	

Date: 28-Apr-2013

Table of Pairs for N -point DFT			
Time-Domain: $x[n], n = 0, 1, 2,, N - 1$	Frequency-Domain: $X[k], k = 0, 1, 2, \dots, N-1$		
If $x[n]$ is finite length, i.e., $x[n] \neq 0$ only when $n \in [0, N-1]$ and the DTFT of $x[n]$ is $X(e^{j\hat{\omega}})$	$X[k] = X(e^{j\hat{\omega}})\Big _{\hat{\omega}=2\pi k/N}$ (frequency sampling the DTFT)		
$\delta[n]$	1		
1	$N\delta[k]$		
$\delta[n-n_0]$	$e^{-j(2\pi k/N)n_0}$		
$e^{j(2\pi n/N)k_0}$	$N\delta[k-k_0]$, when $k_0 \in [0, N-1]$		
$r_L[n] = u[n] - u[n-L], \text{ when } L \leq N$	$\frac{\sin(\frac{1}{2}L(2\pi k/N))}{\sin(\frac{1}{2}(2\pi k/N))}e^{-j(2\pi k/N)(L-1)/2}$		
$r_L[n]e^{j(2\pi k_0/N)n}$, when $L \leq N$	$\frac{\sin(\frac{1}{2}L(2\pi(k-k_0)/N))}{\sin(\frac{1}{2}(2\pi(k-k_0)/N))}e^{-j(2\pi(k-k_0)/N)(L-1)/2}$		
$\frac{\sin(\frac{1}{2}L(2\pi n/N))}{\sin(\frac{1}{2}(2\pi n/N))}e^{j(2\pi n/N)(L-1)/2}$	$N(u[k] - u[k - L])$, when $L \le N$		

Table of DFT Properties			
Property Name	$Time-Domain: \ x[n]$	Frequency-Domain: $X[k]$	
Periodic	x[n] = x[n+N]	X[k] = X[k+N]	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$	
Conjugate Symmetry	x[n] is real	$X[N-k] = X^*[k]$	
Conjugation	$x^*[n]$	$X^*[N-k]$	
Time-Reversal	x[N-n]	X[N-k]	
Delay (PERIODIC)	$x[n-n_d]$	$e^{-j(2\pi k/N)n_d}X[k]$	
Frequency Shift	$x[n]e^{j(2\pi k_0/N)n}$	$X[k-k_0]$	
Modulation	$x[n]\cos((2\pi k_0/N)n)$	$\frac{1}{2}X[k-k_0] + \frac{1}{2}X[k+k_0]$	
Convolution (PERIODIC)	$x[n] * h[n] = \sum_{m=0}^{N-1} h[m]x[n-m]$	X[k]H[k]	
Parseval's Theorem	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N} x_k^{N-1}$	$\sum_{k=0}^{\infty} X[k] ^2$	

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Quiz #2

July 17, 2024

NAME:	VERSION A		GT username:	
	(FIRST)	(LAST)	_	(e.g., gtxyz123)

Important Notes:

- Closed book, except for two double-sided pages (8.5"×11") of hand-written notes.
- o No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- o JUSTIFY your reasoning CLEARLY to receive partial credit.
- \circ Express all angles as a fraction of π . For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.
 Only these answers will be graded. Write your answers in the provided answer boxes.
- o Do not write on the backs of pages, only the fronts will be graded.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su24-Q2.1.

Suppose that an "overall" system (dashed box) is constructed by cascading three FIR filters as follows:

where:

- the first system has frequency response $H_1(e^{j\hat{\omega}}) = 2 e^{-j\hat{\omega}}$;
- the second system has impulse response $h_2[\,n\,]=2\delta[\,n\,]+\delta[\,n-1\,];$
- the third system has difference equation $y[\,n\,] = \alpha w[\,n\,] \,+\, \beta w[\,n-2\,]$, with α and β unspecified:
- (a) Find the output of the *first* system at time 2026 when the input is $x[n] = \cos(0.5\pi n)$:

$$H_1(e^{j\hat{\omega}}) = 2 - e^{-j\hat{\omega}}$$
 $v[2026] = -2$ $\Rightarrow v[n] = 2x[n] - x[n-1]$ $\Rightarrow v[2026] = 2x[2026] - x[2025]$ $= -2 - 0$

(b) Find the *overall* output y[n] when the input is a constant x[n] = 1 (for all n), and assuming $\alpha = \beta = 2$:

$$y[n] = \boxed{ 12}$$

Overall dc gain =
$$(dc gain #1)(dc gain #2)(dc gain #3)$$

= $(1)(3)(4)$
= 12

(c) If the *overall* impulse response (of the dashed box) is $h[n] = A\delta[n] - \delta[n-d]$, and if $\beta \neq 0$, then it must be that:

The impulse response of cascade of just first two is:

$$(2 -1) * (2 1) = 4 0 -1$$

$$\alpha = \boxed{ }$$

Convolving this with $(\underline{\alpha} \ 0 \ \beta)$ yields overall h[n]:

$$\beta = \begin{vmatrix} 1 & 1 \end{vmatrix}$$

A =

$$\frac{4\alpha}{4\beta} \quad 0 \quad -\alpha$$

$$\frac{4\alpha}{4\beta} \quad 0 \quad -\beta$$

$$\frac{4\alpha}{4\alpha} \quad 0 \quad (-\alpha+4\beta) \quad 0 \quad -\beta$$

$$\mathbf{3} \quad A = 16$$

$$\mathbf{2} \quad \alpha = 4\beta = 4$$

$$d = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

16

PROB. Su24-Q2.2. Consider a 5-point averager with input x[n] and output $y[n] = \frac{1}{5} \sum_{k=0}^{4} x[n-k]$.

- (a) Which of the following best describes this filter? [HPF] [HPF] [BPF] [NOTCH] [ALL-PASS].
- (b) The dc gain of this filter is 1
- (c) Specify two distinct frequencies $\hat{\omega}_1 \in [0, \pi]$ that are *nulled*, so that y[n] = 0 when $x[n] = \cos(\hat{\omega}_1 n)$:

$$\hat{\omega}_1 = \boxed{\begin{array}{c} 0.4\pi \\ \text{or} \\ \hat{\omega}_1 = \boxed{\begin{array}{c} 0.8\pi \\ \text{e}_{[0,\pi]} \end{array}}$$

(d) If the input is $x[n] = -5\delta[n] + 15\delta[n-2]$, the outputs at times $n \in \{0, 1, \dots 6\}$ are:

$$y[1] = -1$$

Convolve <u>0.2</u> 0.2 0.2 0.2 with <u>-5</u> 0 15:

$$y[2] =$$
2

$$y[3] = 2$$

$$y[5] = 3$$

$$y[6] = \boxed{3}$$

(e) If a sinusoidal input $x[n] = A\cos(\hat{\omega}_0 n + \varphi)$ in standard form results in the output $y[n] = \cos(0.5\pi n)$, then it must be that:

When $\hat{\omega} = 0.5\pi$, the frequency response becomes a polynomial in $e^{-j0.5\pi} = -j$:

$$\Rightarrow H(e^{j0.5\pi}) = 0.2(1 - j + j^2 - j^3 + j^4) = 0.2$$

 \Rightarrow No phase change, attenuates by factor of 0.2

$$\hat{\mathbf{\omega}}_0 = \boxed{egin{array}{c} 0.5\pi \ \in [0,\pi] \end{array}}$$

$$A = \begin{bmatrix} 5 \\ \end{bmatrix}$$

$$\phi = \boxed{ \quad \quad 0 \quad \quad }_{\in (-\pi, \, \pi]}$$

PROB. Su24-Q2.3. Match each impulse response to its corresponding magnitude response by writing a letter (from A to M) in each answer box: (the y-axis scale is not specified, only the shapes matter)

$$M \qquad h[n] = \delta[n] - \frac{\sin(0.1\pi n)}{\pi n}$$

$$\mathbf{E} \qquad h[n] = \delta[n] - \frac{\sin(0.8\pi n)}{\pi n}$$

$$\mathbf{H} \qquad \frac{\sin(0.7\pi n)}{\pi n} - \cos(0.6\pi n) \frac{\sin(0.1\pi n)}{\pi n}$$

$$\mathbf{G} \qquad h[n] = \delta[n] - \cos(\pi n) \frac{\sin(0.1\pi n)}{\pi n}$$

$$F$$
 $h[n] = \frac{\sin(0.1\pi n)}{\pi n} + \frac{\sin(0.7\pi n)}{\pi n}$

PROB. Su24-Q2.4.

(a) The 6-point DFT of [x[0], ... x[3]] = [1, 0, 0, 1] is:

The DTFT is
$$X(e^{j\hat{\omega}}) = 1 + e^{-j3\hat{\omega}}$$

 \Rightarrow sampling at $k(2\pi/6) = k\pi/3$ yields:

$$X[k] = 1 + e^{-jk\pi}$$

$$= \begin{cases} 2 & \text{when } k \text{ is even,} \\ 0 & \text{when } k \text{ is odd.} \end{cases}$$

$$X[2] =$$
 ,

$$X[4] =$$

(b) Let a and b be unspecified real numbers. If the 4-point DFT of [a, b, 1] is [X[0], ... X[3]] = [C, 2-j, D, 2+j], then:

Sampling
$$X(e^{j\hat{\omega}})=a+be^{-j\hat{\omega}}+\,e^{-j2\hat{\omega}}$$
 at $2\pi/4=0.5\pi$ yields

 $X[\,1\,] = a - \,jb \,-\,1.$

Equate with given $2-j \implies a = 3, b = 1$

$$C = \begin{bmatrix} & 5 & \\ & & \end{bmatrix}$$

$$D = \boxed{ }$$
 3

Similarly, sampling at $0(0.5\pi)$ and $2(0.5\pi)$ yields:

$$C = X[0] = a + b + 1 = 5,$$

$$D = X[2] = a - b + 1 = 3.$$