DATE: 8-July-15 COURSE: ECE-2026

NAME: $\frac{\text { SOLUTIONS }}{\text { LAST, }}$
FIRST

GTUserID:
(Log-in ID)

Circle your correct recitation section number - failing to do so will cost you 3 points
L01(MW) 4-545: BARRY \quad L02(TTH) 10-1145: ZHANG \quad L03 (TTH) 12-145: ZHANG

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK TO RECEIVE CREDIT
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Circle your answers, or write them in the boxes/spaces provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π instead of 1.257)
- ALL RADIAN ANSWERS SHOULD BE IN THE RANGE (-т, пा].
- TABLES FOR DTFT PAIRS AND PROPERTIES ARE AT THE BACK OF THE EXAM AND CAN BE REMOVED FOR YOUR REFERENCE

Problem	Value	Score
1	20	
2	20	
3	20	
4	20	
5	20	

PROBLEM 1:

All parts can be solved independently of each other.
(a) Assume that an LTI system is defined with the following impulse response:

$$
h[n]=u[n-100]-u[n-300]
$$

The input to the system is $x[n]=u[n-5]-u[n-15]$ and the output is defined as $y[n]=x[n] * h[n]$ (where $y[n]=x[n] * h[n]$ denotes $x[n]$ convolved with $h[n]$).
(i). Find the first $\left(n_{f}\right)$ and last $\left(n_{l}\right)$ non-zero samples for $y[n]$ (i.e., $y[n]=0$ for $n<n_{f}$ and $n>n_{l}$) (5 points)
$x[n]$ has boundaries: $\{5->14\}$
$\mathrm{h}[\mathrm{n}]$ has boundaries: $\{100$-> 299\}
$n_{f}=5+100=105$
$n_{l}=14+299=313$

$$
n_{f}=105
$$

$$
n_{l}=313
$$

(ii) Find the maximum value (A) for $y[n]$ (i.e., $y[n]=A$ for some n and $y[n] \leq A$ for all n) (5 points) $y[n]=\sum_{k=5}^{14} x[k] h[n-k]$. When $x[n]$ completely overlaps $h[n]$

$$
\sum_{k=5}^{14}(1)(1)=10
$$

$$
A=10
$$

(b) The magnitudes for the frequency responses of two LTI systems $h_{1}[n]$ and $h_{2}[n]$ are shown below.

Circle the relationship between $h_{1}[n]$ and $h_{2}[n]$ that is TRUE. (5 points)
(1) $h_{2}[n]=\delta[n-\pi] * h_{1}[n]$
(2) $h_{2}[n]=\delta[n-\pi] h_{1}[n]$
(3) $h_{2}[n]=(-1)^{n} * h_{1}[n]$ 4) $h_{2}[n]=(-1)^{n} h_{1}[n]$

This is a frequency shift by $\boldsymbol{\pi}$
(c) Find $x[n]$, the inverse DTFT of $X\left(e^{j \widehat{\omega}}\right)=\frac{5 e^{-j 3 \widehat{\omega}}}{10-e^{-j \hat{\omega}}}$ (5 points)
$X\left(e^{j \widehat{\omega}}\right)=\frac{5 e^{-j 3 \widehat{\omega}}}{10-e^{-j \widehat{\omega}}}=\frac{0.5 e^{-j 3 \widehat{\omega}}}{1-0.1 e^{-j \widehat{\omega}}}=0.5 \frac{1}{1-0.1 e^{-j \widehat{\omega}}} e^{-j 3 \widehat{\omega}} \rightarrow x[n]=0.5(0.1)^{n-3} u[n-3]$

$$
x[n]=0.5(0.1)^{n-3} u[n-3]
$$

PROBLEM 2:

All parts can be solved independently of each other.
(a) Label and plot the frequency response $H\left(e^{j \widehat{\omega}}\right)$ when $h[n]=\left(\frac{\sin (0.2 \pi n)}{\pi n}-\frac{\sin (0.1 \pi n)}{\pi n}\right) \cos (0.5 \pi n)$ (5 points)

(b) The continuous time signal $x(t)=A \cos \left(2 \pi f_{0} t\right)$ has a fundamental frequency of f_{0}. Find the
smallest sampling frequency, f_{s} (where $x[n]=x\left(n / f_{s}\right)$) that (i) avoids aliasing and (ii) creates a fundamental period of $N_{0}=7$ (i.e., $x[n]=x\left[n+N_{0}\right]=x[n+7]$. (NOTE: Your answer will be expressed in terms of f_{0}). (5 points)

To avoid aliasing we need at least $f_{s}>2 f_{0}$.
Recall for periodic signals: $f_{s}=\frac{N_{0}}{M} f_{0}$ for $x[n]=x\left[n+N_{0}\right]$

$$
f_{s}=\frac{7}{3} f_{0}
$$

Therefore the smallest sampling frequency without aliasing is: $f_{s}=\frac{7}{3} f_{0}$
(c) An engineer wants to design a system with an impulse response: $h[n]=\delta[n+1]-\delta[n-1]$. Can his system be implemented in real-time? Circle ONE answer (YES or NO) and briefly explain.
(5 points)
YES NO
This system is not causal
(d) If the 4-point DFT $X[k]$ of the signal $x[n]$ has the values $X[0]=0, X[1]=1, X[2]=0, X[3]=0$ for $k=$ $0,1,2$, and 3 , is $x[n]$ a real signal? Circle ONE answer (YES or NO) and briefly explain. (5 points)
YES NO
$X[1]$ is the only non-zero value of the DFT which corresponds to frequency $\widehat{\omega}_{k}=\frac{2 \pi}{4}(1)=\frac{\pi}{2}$. This indicates there is no conjugate symmetry and therefore $x[n]$ is NOT a real signal.

PROBLEM 3:

The figure depicts a cascade connection of two LTI systems, where the output w[n] of system\#1 is the input to system\#2, and the output of system\#2 is the overall output:

LTI System \#1 is defined as: $w[n]=\sum_{k=0}^{2} x[n-k]$
LTI System \#2 is defined as: $h_{2}[n]=\delta[n-2]-\delta[n-3]$
(a) The DC Gain (DC) of LTI System \#1 is: (4 points)

LTI System \#1 is an L-point running sum with a DC gain of L (where $L=3$ in

$$
D C=3
$$ this case) therefore DC Gain $=3$

(b) If $x[n]=\cos \left(\widehat{\omega}_{0} n\right)$, find all values of $\widehat{\omega}_{0}$ such that $w[n]=0$. (6 points)

The nulls of an L-point running sum are located at $\widehat{\omega}=\frac{2 \pi}{L} k$
In this case, there is only one null point less than $\boldsymbol{\pi}$

$$
\widehat{\omega}_{0}= \pm \frac{2 \pi}{3}
$$

(c) Obtain and plot the overall impulse response $h[n]$ in the space below as a properly labeled stem plot. (NOTE: You must include labels on both the x - and y-axes of the plot to get full credit. (10 points)

$$
\begin{gathered}
h[n]=h_{1}[n] * h_{2}[n]=(\delta[n]+\delta[n-1]+\delta[n-2]) *(\delta[n-2]-\delta[n-3]) \\
=(\delta[n-2]+\delta[n-3]+\delta[n-4])-((\delta[n-3]+\delta[n-4]+\delta[n-5])) \\
=\delta[n-2]-\delta[n-5]
\end{gathered}
$$

PROBLEM 4:

We have seen that LTI systems can be represented in a variety of ways. For each of the LTI systems below, provide the missing representations. (Frequency response formulas can be given in any convenient form; you need not simplify them.)
(a) (5 points)

Matlab Code:	$y n=\operatorname{conv}(x n,[0,0,2,0,8,0,2]) ;$
Frequency Response Magnitude:	$\left\|H\left(e^{j \widehat{\omega}}\right)\right\|=8+4 \cos (4 \widehat{\omega})$
$h[n]=2 \delta[n-2]+8 \delta[n-4]+2 \delta[n-6] \rightarrow H\left(e^{j \widehat{\omega}}\right)=2 e^{-j 2 \widehat{\omega}}+8 e^{-j 4 \widehat{\omega}}+2 e^{-j 6 \widehat{\omega}}$	
$=(8+4 \cos (2 \widehat{\omega})) e^{-j 4 \widehat{\omega}}$	

(b) (5 points)

Frequency Response:	$H\left(e^{j \widehat{\omega}}\right)=\frac{\sin (5.5 \widehat{\omega})}{11 \sin (0.5 \widehat{\omega})} e^{-j \widehat{\omega} 10}$
Impulse Response:	$h[n]=u[n-5]-u[n-16]$

$$
H\left(e^{j \widehat{\omega}}\right)=\left(\frac{\sin (5.5 \widehat{\omega})}{11 \sin (0.5 \widehat{\omega})} e^{-j \widehat{\omega} 5}\right) e^{-j \widehat{\omega} 5} \rightarrow h[n]=\frac{1}{11}(u[n-5]-u[n-16])
$$

(c) (5 points)

Impulse response	$[n]=\delta[n]+3 \delta[n-4]+\delta[n-10]$
Difference Equation:	$y[n]=x[n]+3 x[n-4]+x[n-10]$

(d) (5 points)

Difference Equation:	$y[n]=\frac{1}{3} \sum_{k=0}^{2} x[n-k]-\frac{1}{2} \sum_{k=3}^{4} x[n-k]$
Impulse Response:	$h[n]=\frac{1}{3} \sum_{k=0}^{2} \delta[n-k]-\frac{1}{2} \sum_{k=3}^{4} \delta[n-k]$

PROBLEM 5:

Find the 16 -point DFT $(X[k])$ of the sampled segment $x[n]=2+4 \cos \left(\frac{3 \pi}{8} n+\frac{\pi}{6}\right)$ for $n=$ $0, \ldots, 15$. Enter the values in the table below. (20 points)

k	$X[k]$
0	32
1	0
2	0
3	$32 e^{\frac{j \pi}{6}}$
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	0
13	$32 e^{\frac{-j \pi}{6}}$
14	0
15	0

$x[n]=2+4 \cos \left(\frac{3 \pi}{8} n\right)$ is periodic with a period of 16 samples (i.e. $\widehat{\omega}_{0}=\frac{2 \pi}{16}$), . Since a 16 -point DFT is an integer multiple of that period, the DFT coefficients will be directly related to the DFS coefficients $\left(c_{k}\right)$ by $X[k]=N c_{k}$.

The DFS coefficients are: $c_{0}=2, c_{3}=2 e^{\frac{j \pi}{6}}, c_{-3}=2 e^{\frac{-j \pi}{6}}$
Therefore, the DFT coefficients are: $X[0]=32$, $X[3]=32 e^{\frac{j \pi}{6}}, X[-3]=X[16-3]=X[13]=32 e^{\frac{-j \pi}{6}}$

