GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL ANd COMPUTER ENGINEERING

ECE 2026 - Spring 2023

Quiz \#2

March 10, 2023

NAME: \qquad GT username: \qquad

Circle your recitation section:

| L01 (Chen) | L07 (Davenport) | L09 (Hessler) | L11 (Hessler) |
| :--- | :--- | :--- | :--- | :--- |
| L02 (Duan) | L08 (Duan) | L10 (Chen) | |

Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page (8.5 " $\times 11$ ") of hand-written notes.
- Calculators are allowed, but no other electronics (no smartphones/watches/readers/tablets/laptops/etc).
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned
1	35	
2	35	
3	30	
Total		

PROB. Sp23-Q2.1. Let $y(t)=2 \cos (30 \pi t+0.3 \pi)+x(t) \cos (45 \pi t)$. (a) If $x(t)=12($ a constant for all $t)$,
then the Fourier series for $y(t)$ is $y(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t}$, where $f_{0}=\square \mathrm{Hz}$, and where:

(b) If $x(t)=16 \cos (5 \pi t)$,
then the FS for $y(t)$ is $y(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t}$, where $f_{0}=\square \mathrm{Hz}$, and where:

(c) If $x(t)=A \cos \left(2 \pi f_{c} t+\varphi\right)$ causes $y(t)$ to be periodic with fundamental frequency $f_{0}=30 \mathrm{~Hz}$, then it must be that:

$$
A=\prod_{>0}, \quad f_{c}=\square_{>0} \mathrm{~Hz}, \varphi=\square_{\in(-\pi, \pi)} \text { rads. }
$$

PROB. Sp23-Q2.2. Consider the signal $x(t)$ whose spectrum is shown below, where the constant $r>0$ is real and nonnegative but otherwise unspecified:

Suppose we sample $x(t)$ with sampling rate f_{s}, and then feed the samples to an ideal D-to-C converter with the same f_{s} parameter, producing the continuous-time output $y(t)$, as shown here.
 The parameters r and f_{s} may be different in each part below.
(a) In order for $y(t)=x(t)$, the sampling rate must satisfy $f_{s}>\square \mathrm{Hz}$.
(b) Give three examples of sampling rates for which $y(t)$ is a constant, independent of time t :

(c) If $f_{s}=3 \mathrm{~Hz}$ and $y(t)=20+A \cos \left(2 \pi f_{1} t+\varphi\right)$, then:

(d) If $y(t)=10 \cos (64 \pi t)$ then $f_{s}=\square>0$ Hz, and $r=\square$.

PROB. Sp23-Q2.3. As shown in the figure, suppose that two FIR filters are connected in cascade, so that an input $x[n]$ to the first system produces an intermediate signal $w[n]$, which becomes the input to the second, producing an overall output $y[n]$, where:

- FIR\#1 has impulse response $h_{1}[n]=3 \delta[n]+\beta \delta[n-1]$,
- FIR\#2 has impulse response $h_{2}[n]=\delta[n]-\delta[n-1]$.

The constant β is different in each part below.
(a) If $\beta=15$ and $x[n]=\frac{1}{1+n^{2}}$ then $\quad w[3]=\square$.
(b) If $\beta=3$, the difference equation relating the overall output to input is $y[n]=\sum_{k} b_{k} x[n-k]$, where:

(c) If $\beta=6$ and $x[n]=n u[n]$ (i.e., $x[n]=0$ for $n<0$, and $x[n]=n$ for $n \geq 0$), specify numerical values for the following outputs:

(d) If $x[n]=\delta[n]+\delta[n-1]$ results in an output stem plot with the following shape, then it must be that

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Spring 2023

Quiz \#2

March 10, 2023

Circle your recitation section:

L01 (Chen)	L07 (Davenport)	L09 (Hessler)	L11 (Hessler)
L02 (Duan)	L08 (Duan)	L10 (Chen)	

Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page (8.5 " $\times 11$ ") of hand-written notes.
- Calculators are allowed, but no other electronics (no smartphones/watches/readers/tablets/laptops/etc).
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned
1	35	
2	35	
3	30	
Total		

PROB. Sp23-Q2.1. Let $y(t)=2 \cos (30 \pi t+0.3 \pi)+x(t) \cos (45 \pi t)$. (a) If $x(t)=12($ a constant for all $t)$,
then the Fourier series for $y(t)$ is $y(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t}$, where $f_{0}=7.5 \quad \mathrm{~Hz}$, and where:
$=\operatorname{gcd}(15,22.5)$

a_{-5}	a_{-4}		a_{-2}	a_{-1}	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
		6	$e^{-j 0.3 \pi}$				$e^{j 0.3 \pi}$	6		

(b) If $x(t)=16 \cos (5 \pi t)$, then the FS for $y(t)$ is $y(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t}, \quad$ where $f_{0}=\int_{>0} \mathrm{~Hz}$, and where: $=\operatorname{gcd}(15,20,25)$

| a_{-5} | a_{-4} | a_{-3} | a_{-2} | a_{-1} | a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 4 | $e^{-j 0.3 \pi}$ | | | | | | $e^{j 0.3 \pi}$ | 4 | 4 |

(Leave an answer box empty to signify that the corresponding a_{k} is zero, specify only the nonzero FS coefficients.)
(c) If $x(t)=A \cos \left(2 \pi f_{c} t+\varphi\right)$ causes $y(t)$ to be periodic with fundamental frequency $f_{0}=30 \mathrm{~Hz}$, then it must be that:

$$
\left.A=\begin{array}{|cc}
4 & 7.5 \\
>0
\end{array}\right\} \quad \mathrm{Hz}, \varphi=f_{c}=\begin{array}{|c}
0.7 \pi \\
\in(-\pi, \pi) \\
\\
\text { rads. }
\end{array}
$$

Frequencies for $y(t)$ at $\left\{15,22.5-f_{c}, 22.5+f_{c}\right\}$,

$$
30 \mathrm{~Hz} \text { when } f_{c}=7.5 \mathrm{~Hz}
$$

$\Rightarrow y(t)=2 \cos (30 \pi t+0.3 \pi)+\frac{A}{2} \cos (30 \pi t-\varphi)+\frac{A}{2} \cos (60 \pi t+\varphi)$
cancel when $\varphi=0.7 \pi$ and $A=4$

PROB. Sp23-Q2.2. Consider the signal $x(t)$ whose spectrum is shown below, where the constant $r>0$ is real and nonnegative but otherwise unspecified:

Suppose we sample $x(t)$ with sampling rate f_{s}, and then feed the samples to an ideal D-to-C converter with the same f_{s} parameter, producing the continuous-time output $y(t)$, as shown here.
 The parameters r and f_{s} may be different in each part below.
(a) In order for $y(t)=x(t)$, the sampling rate must satisfy $f_{s} \gg 96 \quad \mathrm{~Hz}$.
(b) Give three examples of sampling rates for which $y(t)$ is a constant, independent of time t :

$$
\begin{aligned}
& \quad f_{0}=\operatorname{gcd}(32,48)=16 \quad f_{s}=\underbrace{}_{>0} \mathrm{~Hz}, f_{s}=\underbrace{}_{>0} \mathrm{~Hz}, f_{s}=\square_{>0} 4 \mathrm{~Hz}^{8} \mathrm{~Hz} . \\
& \Rightarrow f_{s}=\frac{16}{\ell} \text { for any } \ell \in\{1,2,3, \ldots\}
\end{aligned}
$$

(c) If $f_{s}=3 \mathrm{~Hz}$ and $y(t)=20+A \cos \left(2 \pi f_{1} t+\varphi\right)$, then:

$$
A=\begin{array}{|c}
34.0 \\
>0 \\
\hline
\end{array}, \quad f_{1}=\begin{gathered}
1 \\
\\
\hline(-\pi, \pi) \\
-0.3 \pi \\
\text { rads }
\end{gathered}
$$

$$
\begin{aligned}
x(t) & =2 r \cos (2 \pi(32) t+0.3 \pi)+2 r \cos (2 \pi(48) t+0.3 \pi) \\
\Rightarrow y(t) & =2 r \cos (2 \pi(32-(11)(3)) t+0.3 \pi)+2 r \cos (2 \pi(48-(16)(3)) t+0.3 \pi) \\
= & \underbrace{2 r \cos (2 \pi}_{A}(\underbrace{(1)}_{f_{1}} t \underbrace{-0.3 \pi}_{\varphi})+\underbrace{2 r \cos (0+0.3 \pi)}_{20} \Rightarrow 2 r=A=\frac{20}{\cos (0.3 \pi)} \\
& \approx 34.0
\end{aligned}
$$

(d) If $y(t)=10 \cos (64 \pi t)$ then $f_{s}=\square 80 \quad \mathrm{~Hz}$, and $r=\begin{array}{r}8.25 \\ \\ \hline 0\end{array}$

48 Hz aliases to 32 Hz when $f_{s}=80 \mathrm{~Hz}$

$$
\begin{aligned}
\Rightarrow y(t) & =2 r \cos (2 \pi(32) t+0.3 \pi)+2 r \cos (2 \pi(48-80) t+0.3 \pi) \\
& =2 r \cos (2 \pi(32) t+0.3 \pi)+2 r \cos (2 \pi(32) t-0.3 \pi) \\
= & \underbrace{4 r \cos (0.3 \pi)}_{10} \cos (64 \pi t)
\end{aligned} \quad\left\{\begin{array}{l}
\text { phas } \\
2 r e^{j 0.3}
\end{array}\right\}
$$

PROB. Sp23-Q2.3. As shown in the figure, suppose that two FIR filters are connected in cascade, so that an input $x[n]$ to the first system produces an intermediate signal $w[n]$, which becomes the input to the second, producing an overall output $y[n]$, where:

- FIR\#1 has impulse response $h_{1}[n]=3 \delta[n]+\beta \delta[n-1]$,
- FIR\#2 has impulse response $h_{2}[n]=\delta[n]-\delta[n-1]$.

The constant β is different in each part below.
(a) If $\beta=15$ and $x[n]=\frac{1}{1+n^{2}}$ then $\quad w[3]=\square 3.3 \quad \begin{aligned} & =3 x[3]+15 x[2] \\ & =\frac{3}{1+3^{2}}+\frac{15}{1+2^{2}}=3.3\end{aligned}$
(b) If $\beta=3$, the difference equation relating the overall output to input is $y[n]=\sum_{k} b_{k} x[n-k]$, where:

(c) If $\beta=6$ and $x[n]=n u[n]$ (i.e., $x[n]=0$ for $n<0$, and $x[n]=n$ for $n \geq 0$), specify numerical values for the following outputs:

(d) If $x[n]=\delta[n]+\delta[n-1]$ results in an output stem plot with the following shape, then it must be that

$$
\beta=-3
$$

$$
\begin{array}{cccc}
3 & \beta-3 & -\beta \\
& 3 & \beta-3 & -\beta \\
\hline 3 & \beta & -3 & -\beta
\end{array} \Rightarrow \begin{gathered}
\\
\end{gathered}
$$

