NAME: \qquad GT username: \qquad (e.g., gtxyz123)

To earn 2 points, circle your recitation section:

L01 (Tai)	L07 (Tai)	L09 (Hessler)	L11 (Hessler)
L02 (Duan)	L08 (Sadiq)	L10 (Sadiq)	L12 (Duan)

Important Notes:

- Do not unstaple the test.
- One two-sided page (8.5 " $\times 11^{\prime \prime}$) of hand-written notes permitted.
- Calculators are allowed, but no smartphones/tablets/readers/etc.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score
1	32	
2	30	
3	36	
RECITATION	2	
Total		

PROB. Sp22-Q2.1. (32 points, 1 point for each answer in part (b), 3 points for each remaining answer)
Let $x(t)$ be the following sum of one sinusoid plus the square of another:

$$
x(t)=2 \cos (72 \pi t+\varphi)+4 \cos ^{2}\left(2 \pi f_{c} t\right)
$$

where the φ and f_{c} parameters are unspecified. They can be different in each part below.
(a) TRUE FALSE $\square \square$ There exist values of f_{c} for which $x(t)$ is not periodic.
(b) When $\varphi=0$ and $f_{c}=12 \mathrm{~Hz}$, we can write this signal as $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k 2 \pi f_{0} t}$, where:

(c) Specify an $f_{c}>0$ and a $\varphi \in(-\pi, \pi]$ so that $x(t)$ is a constant (independent of time t):

(d) Assume $\varphi=0$. Find the fundamental frequency of $x(t)$ for each value of the f_{c} parameter listed below: (Hint: Restrict your answers to the set $\{2,4,6,12,18,36\}$, each of these answers should appear once in the boxes below!)
(i) $f_{c}=18 \mathrm{~Hz} \Rightarrow f_{0}=\square \mathrm{Hz}$
(ii) $f_{c}=21 \mathrm{~Hz} \Rightarrow f_{0}=\square \mathrm{Hz}$
(iii) $f_{c}=22 \mathrm{~Hz} \Rightarrow f_{0}=\square \mathrm{Hz}$.
(iv) $f_{c}=24 \mathrm{~Hz} \Rightarrow f_{0}=\square \mathrm{Hz}$.
(v) $f_{c}=27 \mathrm{~Hz} \Rightarrow f_{0}=\square \mathrm{Hz}$.
(vi) $f_{c}=31 \mathrm{~Hz} \Rightarrow f_{0}=\square \mathrm{Hz}$.

PROB. Sp22-Q2.2. (30 points, 5 points per answer)
Suppose that the rectangular sequence $x[n]=u[n]-u[n-12]$ shown here:

is the input to an FIR filter whose difference equation is

$$
y[n]=x[n]+b_{1} x[n-1]+x[n-2]
$$

Shown below are six different filter outputs $y[n]$, labeled K through P , that result from six different values of the filter coefficient b_{1}. (The time axis is labeled and identical for all six plots, but the y-axis scales are unlabeled and could be different for each plot.) Match each value for b_{1} below to the corresponding output $y[n]$. Indicate answers by writing a letter (from $\{\mathrm{K}, \ldots . \mathrm{P}\}$) into each answer box.
(i) $\quad b_{1}=-3$ \square

(ii) $\quad b_{1}=-2$

(iii) $b_{1}=-1$

(iv) $b_{1}=0$

(v) $\quad b_{1}=1$

(vi) $b_{1}=2$

PROB. Sp22-Q2.3. (36 points, 4 points per answer)
Shown below on the left are nine different spectra (labeled A through J) for the input $x(t)$ to the pictured C-to-D converter.

Shown below on the right are the nine different spectra for the output $y(t)$ of the pictured D-to-C converter, but in a scrambled order. Match the spectrum for $x(t)$ to the corresponding spectrum for $y(t)$. Indicate your answers by writing a letter (from $\{\mathrm{A}, \ldots \mathrm{J}\}$) into each answer box. In all cases the sample rate for both the C-D and D-C is $f_{s}=24 \mathrm{~Hz}$.

March 11, 2022
NAME: $\frac{\text { ANSWER KEY }}{\text { (FIRST) }} \frac{\text { (LAST) }}{}$
GT username: \qquad (e.g., gtxyz123)

To earn 2 points, circle your recitation section:

L01 (Tai)	L07 (Tai)	L09 (Hessler)	L11 (Hessler)
L02 (Duan)	L08 (Sadiq)	L10 (Sadiq)	L12 (Duan)

Important Notes:

- Do not unstaple the test.
- One two-sided page (8.5 " $\times 11^{\prime \prime}$) of hand-written notes permitted.
- Calculators are allowed, but no smartphones/tablets/readers/etc.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Write your answers in the provided answer boxes.
If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score
1	32	
2	30	
3	36	
RECITATION	2	
Total		

PROB. Sp22-Q2.1. (32 points, 1 point for each answer in part (b), 3 points for each remaining answer)
Let $x(t)$ be the following sum of one sinusoid plus the square of another:

$$
\begin{aligned}
x(t) & =2 \cos (72 \pi t+\varphi)+4 \cos ^{2}\left(2 \pi f_{c} t\right) \\
& =2 \cos (72 \pi t+\varphi)+2+2 \cos \left(4 \pi f_{c} t\right)
\end{aligned}
$$

where the φ and f_{c} parameters are unspecified. They can be different in each part below.
(a) \square There exist values of f_{c} for which $x(t)$ is not periodic. Not periodic when f_{c} is irrational
(b) When $\varphi=0$ and $f_{c}=12 \mathrm{~Hz}$, we can write this signal as $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k 2 \pi f_{0} t}$, where:

$$
\begin{aligned}
a_{0}=\begin{array}{|c|}
\hline
\end{array}, a_{1} & =\square, a_{2}=\square 1, a_{3}=\square \\
x(t) & =2 \cos (72 \pi t)+2+2 \cos (48 \pi t) \Rightarrow a_{4}=\square f_{0}=\operatorname{gcd}(36,24)=12 \mathrm{~Hz} \\
\text { Euler } \Rightarrow x(t) & =e^{j 22 \pi t}+e^{-j 72 \pi t}+2+e^{j 48 \pi t}+e^{-j 48 \pi t} \\
& =a_{3} e^{j 2 \pi(3) f_{0} t}+a_{-3} e^{j 2 \pi(-3) f_{0} t}+a_{0}+a_{2} e^{j 2 \pi(2) f_{0} t}+a_{-2} e^{j 2 \pi(-2) f_{0} t}
\end{aligned}
$$

(c) Specify an $f_{c}>0$ and a $\varphi \in(-\pi, \pi]$ so that $x(t)$ is a constant (independent of time t):

$$
f_{c}=18 \mathrm{~Hz} \quad \text { and } \quad \varphi=\pi \text {. }
$$

(d) Assume $\varphi=0$. Find the fundamental frequency of $x(t)$ for each value of the f_{c} parameter listed below: (Hint: Restrict your answers to the set $\{2,4,6,12,18,36\}$, each of these answers should appear once in the boxes below!)
(i) $f_{c}=18 \mathrm{~Hz} \Rightarrow f_{0}=36 \mathrm{~Hz}$.
(ii) $f_{c}=21 \mathrm{~Hz} \Rightarrow f_{0}=6 \mathrm{~Hz}$.
(iii) $f_{c}=22 \mathrm{~Hz} \Rightarrow f_{0}=\square 4 \mathrm{~Hz}$.
(iv) $f_{c}=24 \mathrm{~Hz} \Rightarrow f_{0}=12 \mathrm{~Hz}$.
(v) $f_{c}=27 \mathrm{~Hz} \Rightarrow f_{0}=18 \mathrm{~Hz}$.
(vi) $f_{c}=31 \mathrm{~Hz} \Rightarrow f_{0}=\square 2 \mathrm{~Hz}$.

PROB. Sp22-Q2.2. (30 points, 5 points per answer)
Suppose that the rectangular sequence $x[n]=u[n]-u[n-12]$ shown here:

is the input to an FIR filter whose difference equation is

$$
y[n]=x[n]+b_{1} x[n-1]+x[n-2]
$$

Shown below are six different filter outputs $y[n]$, labeled K through P , that result from six different values of the filter coefficient b_{1}. (The time axis is labeled and identical for all six plots, but the y -axis scales are unlabeled and could be different for each plot.) Match each value for b_{1} below to the corresponding output $y[n]$. Indicate answers by writing a letter (from $\{\mathrm{K}, \ldots . \mathrm{P}\}$) into each answer box.
(i) $\quad b_{1}=-3$ \square
(ii) $b_{1}=-2$

$$
\xlongequal{y[0]} \xlongequal{y[1]} \quad \underline{\underline{y[2]}}
$$

(i)
(i) $b_{1}=-2 \quad \mathrm{O}$
$1 \quad-1 \quad 0$
(iii) $b_{1}=-1$

$1 \quad 0 \quad 1$
(iv) $b_{1}=0$

1
$1 \quad 2$
(v) $b_{1}=1$

1
2
$3 \quad 4$
(vi) $b_{1}=2$

1

PROB. Sp22-Q2.3. (36 points, 4 points per answer)
Shown below on the left are nine different spectra (labeled A through J) for the input $x(t)$ to the pictured C -to-D converter.

Shown below on the right are the nine different spectra for the output $y(t)$ of the pictured D-to-C converter, but in a scrambled order. Match the spectrum for $x(t)$ to the corresponding spectrum for $y(t)$. Indicate your answers by writing a letter (from $\{\mathrm{A}, \ldots \mathrm{J}\}$) into each answer box. In all cases the sample rate for both the C-D and D-C is $f_{s}=24 \mathrm{~Hz}$.

Fold about $f_{s} / 2=12 \mathrm{~Hz}$

