GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL of ELECTRICAL \& COMPUTER ENGINEERING
QUIZ \#2

DATE: 22-Feb-10
COURSE: ECE-2025

NAME:

LAST,

3 points
FIRST
GT username:
(ex: gpburdell3)

3 points
Recitation Section: Circle the date \& time when your Recitation Section meets (not Lab):

	L05:Tues-Noon (Michaels)	L06:Thur-Noon (Bhatti)
	L07:Tues-1:30pm (Michaels)	L08:Thur-1:30pm (Bhatti)
L01:M-3pm (Lee)	L09:Tues-3pm (Fekri)	
L03:M-4:30pm (Lee)	L11:Tues-4:30pm (Fekri)	

- Write your name on the front page ONLY. DO NOT unstaple the test.
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- JUSTIFY your reasoning clearly to receive partial credit.

Explanations are also REQUIRED to receive FULL credit for any answer.

- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided.
If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	30	
2	30	
3	40	
No/Wrong Rec	-3	

PROBLEM sp-10-Q.2.1:

Shown below are spectrograms (labeled as $\mathbf{S 1} \mathbf{- S 6)}$ for six signals. The (vertical) frequency axis for each plot has units of Hz ; the horizontal axis is time, $0 \leq t \leq 14 \mathrm{~s}$. For each signal description below, identify the corresponding spectrogram. Write each answer in the box provided.
(a) \square $x(t)=\cos (50 \pi t+2 \cos (10 \pi t))$
(b) \square $x(t)=\cos (50 \pi t-1)+\cos (50 \pi t-2)$
(c) \square $x(t)=\cos \left(50 \pi t-\pi t^{2}\right)$
(d) \square $x(t)=\cos (50 \pi t+80 \cos (0.25 \pi t))$
(e) \square $x(t)=\cos (20 \pi t)+\cos (50 \pi t)$
(f) \square $x(t)=\cos (20 \pi t) \cos (50 \pi t)$

-S5-

PROBLEM sp-10-Q.2.2:

The following Matlab code defines vectors $x t$ and $z t$, which correspond to the signals $x(t)$ and $z(t)$.

```
tt = -1000:0.00001:1000; %- in seconds
xt = zeros(size(tt));
for k = [-3,-1,0,1,3] %- loop on k for only these indices
    xt = xt + (j*k - 3)*exp(j*8*pi*k*tt);
end
zt = xt - 5 + 6*cos(24*pi*tt - pi/2);
```

(a) Determine the fundamental period of the signal $x(t)$ defined in the MatLab code above.

$$
T_{0}=\quad \text { secs }
$$

(b) The signal $x(t)$ has a Fourier Series with coefficients $\left\{a_{k}\right\}$, defined by the MatLab code. Fill in the table below with the numerical values of the $\left\{a_{k}\right\}$ coefficients in polar form.
(c) The new signal defined for $z(t)$ is also periodic with a Fourier Series, so it can be expressed in the following Fourier Series with new coefficients $\left\{b_{k}\right\}$:

$$
z(t)=\sum_{k=-3}^{3} b_{k} e^{j 8 \pi k t}
$$

In the following tables, enter the numerical values for each $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ in polar form.
Note: A magnitude value must be nonnegative; angles must be in radians.

Signal: $x(t)$		
a_{k}	Mag ≥ 0	Phase, $-\pi<\varphi_{k} \leq \pi$
a_{3}		
a_{2}		
a_{1}		
a_{0}		
a_{-1}		
a_{-2}		
a_{-3}		

Signal: $z(t)$		
b_{k}	Mag ≥ 0	Phase, $-\pi<\psi_{k} \leq \pi$
b_{3}		
b_{2}		
b_{1}		
b_{0}		
b_{-1}		
b_{-2}		
b_{-3}		

Note: Whenever a b_{k} coefficient is equal the corresponding a_{k} coefficient, just write $\boldsymbol{S A M E}$ in the b_{k} table.

PROBLEM sp-10-Q.2.3:

(a) A real signal $x(t)$ has the two-sided spectrum shown below. The frequency axis has units of $\mathrm{rad} / \mathrm{s}$. Write the formula for $x(t)$ as a sum of cosines.

(b) Determine the fundamental frequency $f_{0}($ in Hz$)$ of a signal $x(t)$ whose spectrum has lines at the six frequencies in the set $\{ \pm 1000, \pm 1600, \pm 2200\} \mathrm{Hz}$.

$$
f_{0}=\quad \mathrm{Hz}
$$

(c) In AM radio, the transmitted signal is voice (or music) modulating a carrier signal. A typical transmitted signal is:

$$
s_{\mathrm{AM}}(t)=(v(t)+A) \cos \left(2 \pi\left(680 \times 10^{3}\right) t\right)
$$

where A is a constant. Assume that $A=9$ and $v(t)=9 \cos (2 \pi(8000) t)$. Sketch the spectrum for $s_{\mathrm{AM}}(t)$ over the positive frequency region only. Label the frequency axis with f (in kiloHz).

(d) Suppose that the Fourier series coefficients of a periodic signal $q(t)$ are defined via the integral:

$$
a_{k}=\frac{1}{9} \int_{0}^{9} q(t) e^{-j(2 \pi / 9) k t} d t \quad \text { where } \quad q(t)= \begin{cases}0 & 0 \leq t<6 \\ 10 & 6 \leq t<9\end{cases}
$$

Evaluate a_{k} for $k=5$; express your answer as a complex number in polar form, i.e., $r_{k} e^{j \theta_{k}}$.
\square
$r_{k}=$
$\theta_{k}=$

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL of ELECTRICAL \& COMPUTER ENGINEERING
QUIZ \#2

DATE: 22-Feb-10
COURSE: ECE-2025

NAME: ANSWER KEY
LAST,
FIRST
GT username: VERSION \#1
(ex: gp.burdell3)
3 points 3 points
3 points
Recitation Section: Circle the date \& time when your Recitation Section meets (not Lab):

	L05:Tues-Noon (Michaels)	L06:Thur-Noon (Bhatti)
	L07:Tues-1:30pm (Michaels)	L08:Thur-1:30pm (Bhatti)
L01:M-3pm (Lee)	L09:Tues-3pm (Fekri)	
L03:M-4:30pm (Lee)	L11:Tues-4:30pm (Fekri)	

- Write your name on the front page ONLY. DO NOT unstaple the test.
- Closed book, but a calculator is permitted.
- One page ($8 \frac{1^{\prime \prime}}{} \times 11^{\prime \prime}$) of HAND-WRITTEN notes permitted. OK to write on both sides.
- JUSTIFY your reasoning clearly to receive partial credit.

Explanations are also REQUIRED to receive FULL credit for any answer.

- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided.
If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	30	
2	30	
3	40	
No/Wrong Rec	-3	

PROBLEM sp-10-Q.2.1:
Shown below are spectrograms (labeled as S1-S6) for six signals. The (vertical) frequency axis for each plot has units of Hz ; the horizontal axis is time, $0 \leq t \leq 14 \mathrm{~s}$. For each signal description below, identify the corresponding spectrogram. Write each answer in the box provided.
(a)

S1 $x(t)=\cos (50 \pi t+2 \cos (10 \pi t))$
(b)

S6 $x(t)=\cos (50 \pi t-1)+\cos (50 \pi t-2)$
(c) $\mathbf{S 4} \quad x(t)=\cos \left(50 \pi t-\pi t^{2}\right)$
(d)

S5 $x(t)=\cos (50 \pi t+80 \cos (0.25 \pi t))$
(e) $\mathbf{S 3} x(t)=\cos (20 \pi t)+\cos (50 \pi t)$
(f) $\mathbf{S 2} \quad x(t)=\cos (20 \pi t) \cos (50 \pi t)$

PROBLEM sp-10-Q.2.2:
The following MATLAB code defines vectors $x t$ and $z t$, which correspond to the signals $x(t)$ and $z(t)$.

```
tt = -1000:0.00001:1000; %- in seconds
xt = zeros(size(tt));
for k = [-3,-1,0,1,3] %- loop on k for only these indices
    xt = xt + (j*k - 3)*exp(j*8*pi*k*tt);
end
zt = xt - 5 + 6*cos(24*pi*tt - pi/2);
```

(a) Determine the fundamental period of the signal $x(t)$ defined in the MATLAB code above.

$$
T_{0}=0.25 \mathrm{~s}
$$

(b) The signal $x(t)$ has a Fourier Series with coefficients $\left\{a_{k}\right\}$, defined by the MatLab code. Fill in the table below with the numerical values of the $\left\{a_{k}\right\}$ coefficients in polar form.
(c) The new signal defined for $z(t)$ is also periodic with a Fourier Series, so it can be expressed in the following Fourier Series with new coefficients $\left\{b_{k}\right\}$:

$$
z(t)=\sum_{k=-3}^{3} b_{k} e^{j 8 \pi k t}
$$

In the following tables, enter the numerical values for each $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ in polar form.
Note: A magnitude value must be nonnegative; angles must be in radians.

Signal: $x(t)$						
a_{k}	$\mathrm{Mag} \geq 0$	Phase, $-\pi<\varphi_{k} \leq \pi$				
a_{3}	$3 \sqrt{2}=4.243$	$3 \pi / 4=2.356$				
a_{2}	0	0				
a_{1}	$\sqrt{10}=3.162$	2.82				
a_{0}	3	π				
a_{-1}	$\sqrt{10}=3.162$	$-\varphi_{1}$				
a_{-2}	0	$-\varphi_{2}$				
a_{-3}	$3 \sqrt{2}=4.243$	$-\varphi_{3}$	\quad	b_{k}	$M a g \geq 0$	Phase, $-\pi<\psi_{k} \leq \pi$
:---:	:---:	:---:				
b_{3}	3	π				
b_{2}	0	0				
b_{1}	$\sqrt{10}=3.162$	2.82				
b_{0}	8	π				
b_{-1}	$\sqrt{10}=3.162$	$-\psi_{1}$				
b_{-2}	0	$-\psi_{2}$				
b_{-3}	3	$-\psi_{3}$				

Note: Whenever a b_{k} coefficient is equal the corresponding a_{k} coefficient, just write SAME in the b_{k} table.

PROBLEM sp-10-Q.2.3:
(a) A real signal $x(t)$ has the two-sided spectrum shown below. The frequency axis has units of rad/s. Write the formula for $x(t)$ as a sum of cosines.

(b) Determine the fundamental frequency $f_{0}(\mathrm{in} \mathrm{Hz})$ of a signal $x(t)$ whose spectrum has lines at the six frequencies in the set $\{ \pm 1000, \pm 1600, \pm 2200\} \mathrm{Hz}$.

$$
f_{0}=200 \mathrm{~Hz}
$$

(c) In AM radio, the transmitted signal is voice (or music) modulating a carrier signal. A typical transmitted signal is:

$$
s_{\mathrm{AM}}(t)=(v(t)+A) \cos \left(2 \pi\left(680 \times 10^{3}\right) t\right)
$$

where A is a constant. Assume that $A=9$ and $v(t)=9 \cos (2 \pi(8000) t)$. Sketch the spectrum for $s_{\mathrm{AM}}(t)$ over the positive frequency region only. Label the frequency axis with f (in kiloHz).

Need one spectrum line for each complex exponential below:

$$
4.5 e^{j 2 \pi\left(680 \times 10^{3}\right) t}+2.25 e^{j 2 \pi\left(688 \times 10^{3}\right) t}+2.25 e^{j 2 \pi\left(672 \times 10^{3}\right) t}
$$

(d) Suppose that the Fourier series coefficients of a periodic signal $q(t)$ are defined via the integral:

$$
a_{k}=\frac{1}{9} \int_{0}^{9} q(t) e^{-j(2 \pi / 9) k t} d t \quad \text { where } \quad q(t)= \begin{cases}0 & 0 \leq t<6 \\ 10 & 6 \leq t<9\end{cases}
$$

Evaluate a_{k} for $k=5$; express your answer as a complex number in polar form, i.e., $r_{k} e^{j \theta_{k}}$.

$$
r_{k}=0.5513 \quad \theta_{k}=2.094=2 \pi / 3 \mathrm{rads}
$$

