GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL of ELECTRICAL \& COMPUTER ENGINEERING

DATE: 14-Mar-08
COURSE: ECE-2025

NAME:
LAST,
FIRST
3 points
Recition Section: Circter
Recitation Section: Circle the date \& time when your Recitation Section meets (not Lab):

	L05:Tues-Noon (Chang)		
	L07:Tues-1:30pm (Chang)		L08:Thurs-1:30pm (Coyle)
L01:M-3pm (McClellan)	L09:Tues-3pm (Lanterman)	L02:W-3pm (Clements)	L10:Thur-3pm (Coyle)
	L11:Tues-4:30pm (Lanterman)	L04:W-4:30pm (Clements)	

- Write your name on the front page ONLY. DO NOT unstaple the test.
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- JUSTIFY your reasoning clearly to receive partial credit.

Explanations are also required to receive FULL credit for any answer.

- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	25	
2	25	
3	25	
4	25	
No/Wrong Rec	-3	

In all parts below, the sampling rates of the C / D and D / C converters are equal, and the input to the Ideal C / D converter is a signal $x(t)$ whose spectrum is shown below, where the frequency f is in hertz.

(a) Determine the Nyquist rate (in hertz) for sampling the signal $x(t) . \quad f_{\text {Nyquist }}=\square \mathrm{Hz}$
(b) If the sampling rate is $f_{s}=200$ samples/sec., plot the spectrum of the discrete-time signal $x[n]$ over the range of frequencies $-\pi \leq \hat{\omega} \leq \pi$. Make sure to label the frequency, amplitude and phase of each spectral component.

(c) If the sampling rate is $f_{s}=200$ samples/sec., list all frequencies (positive and negative) that will be present in the spectrum of the output signal, $y(t)$. Give your answer in hertz.

PROBLEM sp-08-Q.2.2:

Pick the correct output signal (from the list on the right) and enter the number in the answer box:

System Description and Input Signal

(a) $x[n]=\delta[n-1]-\delta[n-2]$
and $y[n]=x[n]+x[n-1]$
ANS = \square

Output Signal

$$
1 \mathbf{1} y[n]=\delta[n-3]-\delta[n-5]
$$

$$
22 y[n]=3 \cos (2 \pi n / 3+2 \pi / 3) \quad \text { for all } n
$$

(b) $x[n]=\delta[n-8]$
and $y[n]= \begin{cases}x\left[2^{n}\right] & n \geq 0 \\ 0 & n<0\end{cases}$
3 (3) $y[n]=\delta[n-2]-\delta[n-4]$
$44[n]=\delta[n-1]-\delta[n-3]$
(c) $y y=\operatorname{conv}([0,1,0,-1],[0,1,0,0,0])$

ANS =
5 (5) $y[n]=3$ for all n

6 . $y[n]=0$ for all n
(d) $x[n]=1+\cos (2 \pi n / 3)$ for all n
and $h[n]=\delta[n]+\delta[n-1]+\delta[n-2]$
ANS =
7 7 $y[n]=\delta[n-3]$

8 None of the above
(e) $y[n]=\delta[n-3] *(\delta[n]-\delta[n-2])$

ANS =

PROBLEM sp-08-Q.2.3:

Pick the correct frequency response (from the list on the right) and enter the number in the answer box:

Time-Domain Description
(a) $y[n]=x[n]+x[n-1]+x[n-2]$

ANS = \qquad

Frequency Response
1 . $H\left(e^{j \hat{\omega}}\right)=1-e^{-j 2 \hat{\omega}}$

$$
2 H\left(e^{j \hat{\omega}}\right)=2 e^{-j 2 \hat{\omega}} \cos (\hat{\omega})
$$

(b) $h[n]=u[n]-u[n-2]$

ANS =

$$
3 H\left(e^{j \hat{\omega}}\right)=2 j e^{-j 2 \hat{\omega}} \sin (\hat{\omega})
$$

$$
4 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (\hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j \hat{\omega} / 2}
$$

(c) $h[n]=\delta[n-1]-\delta[n-3]$

ANS =

$$
5 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}
$$

$$
6 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (2 \hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j 3 \hat{\omega} / 2}
$$

$$
7 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}(1+2 \cos (\hat{\omega}))
$$

(e) Select one system ${ }^{1}$ (from the list on the right) that will null out DC.
\square
ANS =

8 None of the above

[^0]
PROBLEM sp-08-Q.2.4:

The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems, i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.
(a) Suppose that System \#1 is an FIR filter described by the system function:

$$
H_{1}(z)=3 z^{-2}-2 z^{-3}-z^{-4}+4 z^{-5}
$$

and System \#2 is described by the impulse response

$$
h_{2}[n]=\delta[n-1]-\delta[n-3]
$$

If the input signal is an impulse, i.e., $x[n]=\delta[n]$, determine the output signal, $y[n]$. Give your answer as a plot.

(b) Determine the impulse response sequence, $h_{1}[n]$, of the first system. Give your answer as a plot.

3 points	3 points	3 points

Recitation Section: Circle the date \& time when your Recitation Section meets (not Lab):

	L05:Tues-Noon (Chang)		
	L07:Tues-1:30pm (Chang)		L08:Thurs-1:30pm (Coyle)
L01:M-3pm (McClellan)	L09:Tues-3pm (Lanterman)	L02:W-3pm (Clements)	L10:Thur-3pm (Coyle)
	L11:Tues-4:30pm (Lanterman)	L04:W-4:30pm (Clements)	

- Write your name on the front page ONLY. DO NOT unstaple the test.
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- JUSTIFY your reasoning clearly to receive partial credit.

Explanations are also required to receive FULL credit for any answer.

- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	25	
2	25	
3	25	
4	25	
No/Wrong Rec	-3	

In all parts below, the sampling rates of the C / D and D / C converters are equal, and the input to the Ideal C / D converter is a signal $x(t)$ whose spectrum is shown below, where the frequency f is in hertz.

(a) Determine the Nyquist rate (in hertz) for sampling the signal $x(t) . \quad f_{\text {Nyquist }}=350 \mathrm{~Hz}$

$$
2 \times f_{\text {MAX }} \text { and } f_{\text {MAX }}=175 \mathrm{~Hz}
$$

(b) If the sampling rate is $f_{s}=200$ samples/sec., plot the spectrum of the discrete-time signal $x[n]$ over the range of frequencies $-\pi \leq \hat{\omega} \leq \pi$. Make sure to label the frequency, amplitude and phase of each spectral component.

$$
\begin{aligned}
& \hat{\omega}=\omega / f_{s}+2 \pi l \\
& \omega=0 \rightarrow \hat{\omega}=0+2 \pi l \\
& \begin{aligned}
& \omega=2 \pi(50) \rightarrow 2 \pi(50) / 200=\pi / 2 \\
&\left.\begin{array}{rl}
\omega & =2 \pi(175) \rightarrow \hat{\omega}
\end{array}\right)=2 \pi(175) / 200+2 \pi l \quad \frac{7 \pi}{4}-2 \pi=-\pi / 4 \\
&=7 \pi / 4+2 \pi l \leftarrow \text { use } l=-1 \text { to get between }-\pi \div \pi
\end{aligned}
\end{aligned}
$$

(c) If the sampling rate is $f_{s}=200$ samples/sec., list all frequencies (positive and negative) that will be present in the spectrum of the output signal, $y(t)$.

$$
\begin{aligned}
& \omega=\hat{\omega} f_{s}=200 \hat{\omega} \\
& \hat{\omega}=0 \rightarrow \omega=0 \\
& \hat{\omega}=\pi / 4 \rightarrow \omega=200(\pi / 4)=50 \pi=2 \pi(25) \\
& \hat{\omega}=\pi / 2 \rightarrow \omega=200(\pi / 2)=100 \pi=2 \pi(50) \\
& y(t) \text { has } 0, \pm 50 \pi r a d / \mathrm{s}, \pm 100 \pi \mathrm{rad} / \mathrm{s} \\
& \sigma
\end{aligned}
$$

PROBLEM sp-08-Q.2.2:

Pick the correct output signal (from the list on the right) and enter the number in the answer box:

System Description and Input Signal

(a) $x[n]=\delta[n-1]-\delta[n-2]$
and $y[n]=x[n]+x[n-1]$
ANS $=4$
$y[n]=\delta[n-1]-\delta[n-2]$
$+\delta[n-2]-\delta[n-3]$
$=\delta[n-1]-\delta[n-3]$
(b) $x[n]=\delta[n-8]$
and $y[n]= \begin{cases}x\left[2^{n}\right] & n \geq 0 \\ 0 & n<0\end{cases}$
(3) $y[n]=\delta[n-2]-\delta[n-4]$

ANS $=7$
$y[0]=x[1]=0$ so $y[n]$ is an
$y[1]=x[2]=0 \quad$ impulse at $n=3$
$y[2]=x[4]=0$
$y[3]=x[8]=1$
$y[4]=x[16]=0 \ldots$.
(c) $\mathrm{yy}=\operatorname{conv}([0,1,0,-1],[0,1,0,0,0])$

6 6 $y[n]=0$ for all n
(d) $x[n]=1+\cos (2 \pi n / 3)$ for all n
and $h[n]=\delta[n]+\delta[n-1]+\delta[n-2]$

7 ($y[n]=\delta[n-3]$
at $\hat{\omega}=0, H\left(e^{j 0}\right)=3$
at $\hat{\omega}=2 \pi / 3, H\left(e^{j 2 \pi / 3}\right)=0$
$\therefore y[n]=3$
(e) $y[n]=\delta[n-3] *(\delta[n]-\delta[n-2])$
$5 y[n]=3$ for all n
4 4 $y[n]=\delta[n-1]-\delta[n-3]$

Output Signal

(1) $y[n]=\delta[n-3]-\delta[n-5]$
(2) $y[n]=3 \cos (2 \pi n / 3+2 \pi / 3)$ for all n

ANS $=1$
shift by 3 to the right, i.e., delay
$y[n]=\delta[n-3]-\delta[n-5]$

PROBLEM sp-08-Q.2.3:
Pick the correct frequency response (from the list on the right) and enter the number in the answer box:

Time-Domain Description
(a) $y[n]=x[n]+x[n-1]+x[n-2]$

$$
\begin{aligned}
A N S & =7 \\
H\left(e^{j \hat{\omega}}\right) & =1+e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}} \\
= & e^{-j \hat{\omega}}\left(e^{j \hat{\omega}}+1+e^{-j \hat{\omega}}\right) \\
= & e^{-j \hat{\omega}}(1+2 \cos \hat{\omega})
\end{aligned}
$$

(b) $h[n]=u[n]-u[n-2]=\delta[x]+\delta[n-1]$ ANS $=4$ 2-pt running sum

$$
H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega} / 2} \frac{\sin (\hat{\omega})}{\sin (\hat{\omega} / 2)}
$$

Use Dirichlet with $L=2$
(c) $h[n]=\delta[n-1]-\delta[n-3]$

$$
\text { ANS }=3
$$

$$
H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}-e^{-j 3 \hat{\omega}}
$$

$$
=e^{-j 2 \hat{\omega}}(\underbrace{e^{j \hat{\omega}}-e^{-j \hat{\omega}}}_{2 j \sin (\hat{\omega})})
$$

(d) $\left\{b_{k}\right\}=\{1,0,-1\}$

$$
\begin{aligned}
& \text { ANS }=1 \\
& H\left(e^{j \hat{\omega}}\right)=1-e^{-j 2 \hat{\omega}}
\end{aligned}
$$

(e) Select one system ${ }^{1}$ (from the list on the right) that will null out DC.

$$
\text { ANS }=1 \text { or } 3
$$

Which ones are zero at $\hat{\omega}=0$?

Frequency Response

$$
\begin{aligned}
& 1 H\left(e^{j \hat{\omega}}\right)=1-e^{-j 2 \hat{\omega}} \\
& H\left(e^{j 0}\right)=1-1=0 \\
& 2 H\left(e^{j \hat{\omega}}\right)=2 e^{-j 2 \hat{\omega}} \cos (\hat{\omega}) \\
& H\left(e^{j 0}\right)=2
\end{aligned}
$$

$$
\begin{aligned}
& 3 H\left(e^{j \hat{\omega}}\right)=2 j e^{-j 2 \hat{\omega}} \sin (\hat{\omega}) \\
& H\left(e^{j 0}\right)=2 j(0)=0
\end{aligned}
$$

$$
\begin{aligned}
& 4 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (\hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j \hat{\omega} / 2} \\
& H\left(e^{j 0}\right)=2
\end{aligned}
$$

$$
5 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}
$$

$$
H\left(e^{j 0}\right)=1
$$

$$
\begin{aligned}
& 6 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (2 \hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j 3 \hat{\omega} / 2} \\
& H\left(e^{j o}\right)=4 \\
& 7 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}(1+2 \cos (\hat{\omega})) \\
& H\left(e^{j o}\right)=1+2=3
\end{aligned}
$$

8 None of the above

PROBLEM sp-08-Q.2.4:
The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems, ie., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.
(a) Suppose that System \#1 is an FIR filter described by the system function:

$$
H_{1}(z)=3 z^{-2}-2 z^{-3}-z^{-4}+4 z^{-5}
$$

and System \#2 is described by the impulse response

$$
h_{2}[n]=\delta[n-1]-\delta[n-3]
$$

If the input signal is an impulse, i.e., $x[n]=\delta[n]$, determine the output signal, $y[n]$. Give your answer as a plot.

$$
\begin{aligned}
& H_{2}(z)=z^{-6}-z^{-3} \\
& H_{1}(z) H_{2}(z)=\left(3 z^{-2}-2 z^{-3}-z^{-4}+4 z^{-5}\right)\left(z^{-1}-z^{-3}\right) \\
&=3 z^{-3}-2 z^{-4}-4 z^{-5}+6 z^{-4}+z^{-7}-4 z^{-8} \\
& y[n]=3 \delta[n-3]-2 \delta[n-4]-4 \delta[n-5]+6 \delta[n-6]+\delta[n-7]-4 \delta[n-8] \\
& Y(z)=H_{1}(z) H_{2}(z) X(z) \quad \text { and } X(z)=1 \text { when } X[n]=\delta[n] .
\end{aligned}
$$

(b) Determine the impulse response sequence, $h_{1}[n]$, of the first system. Give your answer as a plot.

The coefficients of $H_{1}(z)$ are the $h[n]$ values.

$$
h_{1}[n]=3 \delta[n-2]-2 \delta[n-3]-\delta[n-4]+4 \delta[n-5]
$$

[^0]: ${ }^{1}$ There might be several systems that null the sinusoid, but finding one is sufficient.

