PROBLEM sp-04-Q.2.1:

A periodic signal $x(t)$ is represented as a Fourier series of the form

$$
x(t)=\sum_{k=-\infty}^{\infty}\left(10 \delta[k]+k^{2}-15\right) e^{j 10 \pi k t}
$$

(a) Determine the fundamental period of the signal $x(t)$, i.e., the minimum period.
$T_{0}=\quad$ sec. (Give a numerical answer.)
(b) Determine the DC value of $x(t)$. Give your answer as a number.
$D C=$
(c) Define a new signal by adding a sinusoid to $x(t)$

$$
y(t)=12 \cos (30 \pi t-\pi / 2)+x(t)
$$

The new signal, $y(t)$ can be expressed in the following Fourier Series with new coefficients $\left\{b_{k}\right\}$:

$$
y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j 10 \pi k t}
$$

Fill in the following table, giving numerical values for each $\left\{b_{k}\right\}$ in polar form:.
Hint: Find a simple relationship between $\left\{b_{k}\right\}$ and $\left\{a_{k}\right\}$.

b_{k}	Mag	Phase
b_{-3}		
b_{-2}		
b_{-1}		
b_{0}		
b_{1}		
b_{2}		
b_{3}		

PROBLEM sp-04-Q.2.2:

For each short question, pick a correct frequency ${ }^{1}$ (from the list on the right only) and enter the number in the answer box ${ }^{2}$:
Question
(a) If the C/D converter output is $x[n]=7 \cos (0.5 \pi n)$, and the sampling rate is 2000 samples/sec, then determine one possible value for the input frequency of $x(t)$:

(b) If the following MatLab code is implemented, what is the frequency of the sound that will be produced at the output of the computer's D-to-A converter.
soundsc(cos(1.6*pi*(0:9999)), 2000);
ANS =
(c) Determine the Nyquist rate for sampling the signal $x(t)$ defined by: $x(t)=\Re e\left\{e^{j 1200 \pi t}+e^{j 2000 \pi t}\right\}$.

ANS =

[^0]
PROBLEM sp-04-Q.2.3:

Pick the correct output signal (from the list on the right) and enter the number in the answer box:

System Description and Input Signal

(a) $x[n]=1+\cos (2 \pi n / 3)$ for all n
and $h[n]=\delta[n]+\delta[n-1]+\delta[n-2]$
ANS = \square

Output Signal

1 $y[n]=\delta[n-3]-\delta[n-5]$
$2 y[n]=3 \sin (2 \pi n / 3-5 \pi / 6)$ for all n
$3 y[n]=\delta[n-2]-\delta[n-4]$
and $y[n]=x[n]+x[n-1]$
ANS =
$4 y[n]=\delta[n-1]-\delta[n-3]$
(c) yy $=\operatorname{conv}([0,1,0,-1],[0,1,0,0,0])$

5 ($y[n]=3$ for all n
ANS =
6 . $y[n]=0$ for all n
(d) $x[n]=\delta[n-2]$
and $y[n]=x[n-1]$
ANS =
$7 y[n]=\delta[n-3]$
(e) $y[n]=\delta[n-3] *(\delta[n]-\delta[n-2])$

ANS =
8 None of the above
(f) Plot the signal $s[n]=u[n+2]-\delta[n-2]$.

PROBLEM sp-04-Q.2.4:

Pick the correct frequency response (from the list on the right) and enter the number in the answer box:

Time-Domain Description
(a) $y[n]=x[n]+x[n-1]+x[n-2]$

ANS = \square

Frequency Response
$1 H\left(e^{j \hat{\omega}}\right)=1-e^{-j 2 \hat{\omega}}$

$$
2 H\left(e^{j \hat{\omega}}\right)=2 e^{-j 2 \hat{\omega}} \cos (\hat{\omega})
$$

(b) $y[n]=x[n]+x[n-1]$

ANS =

$$
3 H\left(e^{j \hat{\omega}}\right)=2 j e^{-j 2 \hat{\omega}} \sin (\hat{\omega})
$$

$$
4 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (\hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j \hat{\omega} / 2}
$$

(c) $h[n]=\delta[n-1]+\delta[n-3]$

ANS =
(d) $h[n]=\delta[n-1]-\delta[n-3]$

ANS =

$7 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}$

8 None of the above
$5 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}(1+2 \cos (\hat{\omega}))$
$6 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (2 \hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j 3 \hat{\omega} / 2}$
(e) $\left\{b_{k}\right\}=\{1,0,-1\}$
(f) Select all systems (from the list on the right) that null out DC. Enter all numbers that apply.

ANS =

ANS =

PROBLEM sp-04-Q.2.1:
A periodic signal $x(t)$ is represented as a Fourier series of the form

$$
x(t)=\sum_{k=-\infty}^{\infty}\left(10 \delta[k]+k^{2}-15\right) e^{j 10 \pi k t}
$$

(a) Determine the fundamental period of the signal $x(t)$, ie., the minimum period.

$$
\begin{aligned}
& T_{0}=1 / 5 \text { sec. (Give a numerical answer.) } \\
& \omega_{0}=10 \pi \mathrm{rad} / \mathrm{sec} \Rightarrow T_{0}=2 \pi / \omega_{0}=2 \pi / 10 \pi=1 / 5
\end{aligned}
$$

(b) Determine the DC value of $x(t)$. Give your answer as a number.

$$
D C=-5 \text { or } 5 e^{j \pi}
$$

At $k=0 \quad a_{k}=10 \delta[k]+k^{2}-15=10+0-15=-5$
(c) Define a new signal by adding a sinusoid to $x(t)$

$$
y(t)=12 \cos (30 \pi t-\pi / 2)+x(t)
$$

The new signal, $y(t)$ can be expressed in the following Fourier Series with new coefficients $\left\{b_{k}\right\}$:

$$
y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j 10 \pi k t}
$$

Fill in the following table, giving numerical values for each $\left\{b_{k}\right\}$ in polar form:.
Hint: Find a simple relationship between $\left\{b_{k}\right\}$ and $\left\{a_{k}\right\}$.

b_{k}	Mag	Phase
b_{-3}	$6 \sqrt{2}$	$3 \pi / 4$
b_{-2}	11	$-\pi$
b_{-1}	14	$-\pi$
b_{0}	5	π
b_{1}	14	π
b_{2}	11	π
b_{3}	$6 \sqrt{2}$	$-3 \pi / 4$

$$
y(t)=6 e^{j 30 \pi t} e^{-j \pi / 2}+6 e^{-j 30 \pi t} e^{j \pi / 2}+x(t)
$$

So, $a_{k}=b_{k}$ except for $k= \pm 3$

$$
\begin{aligned}
b_{3} & =a_{3}+6 e^{-j \pi / 2} \\
& =9-15-6 j=-6-6 j=6 \sqrt{2} e^{-j 3 \pi / 4} \\
b_{3} & =a_{3}+6 e^{j \pi / 2}=-6+6 j=b_{3}^{*} \\
b_{1} & =1^{2}-15=-14=14 e^{j \pi} \\
b_{2} & =2^{2}-15=-11=11 e^{j \pi}
\end{aligned}
$$

PROBLEM sp-04-Q.2.2:

For each short question, pick a correct frequency ${ }^{1}$ (from the list on the right) and enter the number in the answer box ${ }^{2}$:

Question

(a) If the C/D converter output is $x[n]=7 \cos (0.5 \pi n)$, and the sampling rate is 2000 samples $/ \mathrm{sec}$, then determine one possible value for the input frequency of $x(t)$:

Frequency

8000 Hz
4000 Hz
2000 Hz
1600 Hz
1200 Hz
1000 Hz
800 Hz
500 Hz
400 Hz
(b) If the following Matlab code is implemented, what is the ferequency of the sound that will be produced at the output of the computer's D-to-A converter.

```
soundsc( cos(1.6*pi*(0:9999)), 2000);
```

ANS $=400$

$$
\begin{aligned}
\hat{\omega}= \pm 1.6 \pi \text { alias to } \begin{aligned}
\hat{\omega} & = \pm 1.6 \pi \mp 2 \pi \\
& = \pm 0.4 \pi \\
f=\frac{\hat{\omega}}{2 \pi} f_{s}=\frac{0.4 \pi}{2 \pi} \times 2000= & 400 \mathrm{~Hz}
\end{aligned}
\end{aligned}
$$

(c) Determine the Nyquist rate for sampling the signal $x(t)$ defined by: $x(t)=\Re e\left\{e^{j 1200 \pi t}+e^{j 2000 \pi t}\right\}$.

$$
\begin{aligned}
\text { ANS }=2000 \quad \omega_{\text {MAx }} & =2000 \pi \mathrm{rad} / \mathrm{s} \\
f_{\text {MAX }} & =1000 \mathrm{~Hz} \\
\text { Sampling Thm } & \Rightarrow f_{s} \geq 2 f_{\text {max }}=2000 \mathrm{~Hz}
\end{aligned}
$$

[^1]Pick the correct output signal (from the list on the right) and enter the number in the answer box:
(a) $x[n]=1+\cos (2 \pi n / 3)$ for all n
and $h[n]=\delta[n]+\delta[n-1]+\delta[n-2]$
ANS $=5 \quad$ Running Sum of 3
$1 \rightarrow 3$
$\cos (2 \pi x / 3) \rightarrow 0$
(b) $x[n]=\delta[n-1]-\delta[n-2]$
and $y[n]=x[n]+x[n-1]$
ANS $=4$

| 0 | $1-1$ |
| :--- | :--- | :--- |
| 1 | 1 |$\quad O \cup T=[0,1,0,-1]$

01
01
0
(c) $y y=\operatorname{conv}([0,1,0,-1],[0,1,0,0,0])$

ANS $=3$ delay by one
$O \cup T=[0,0,1,0,-1]$
(d) $x[n]=\delta[n-2]$
and $y[n]=x[n-1]<$ delay by one
ANS $=7$
8 None of the above
(e) $y[n]=\delta[n-3] *(\delta[n]-\delta[n-2])$

(f) Plot the signal $s[n]=u[n+2]-\delta[n-2]$.

Pick the correct frequency response (from the list on the right) and enter the number in the answer box:

Time-Domain Description
(a) $y[n]=x[n]+x[n-1]+x[n-2]$

$$
\begin{aligned}
& \text { ANS }=5 \\
& 1+e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}} \\
= & e^{-j \hat{\omega}}\left(e^{j \hat{\omega}}+1+e^{-j \hat{\omega}}\right)
\end{aligned}
$$

(b) $y[n]=x[n]+x[n-1]$

ANS $=4$ Length -2 running sum $1+e^{-j \hat{\omega}} \frac{\sin (L \hat{\omega} / 2)}{\sin (\hat{\omega} / 2)} e^{-j \hat{\omega}(L-1) / 2}$
(c) $h[n]=\delta[n-1]+\delta[n-3]$

$$
\begin{aligned}
& \text { ANS }=2 \\
& e^{-j \hat{\omega}}+e^{-j \hat{\omega} 3}
\end{aligned}=e^{-j 2 \hat{\omega}}(\underbrace{e^{j \hat{\omega}}+e^{-j \hat{\omega}}}_{2 \cos \hat{\omega}})
$$

(d) $h[n]=\delta[n-1]-\delta[n-3]$

$$
\begin{aligned}
& \text { ANS }=3 \\
& e^{-j \hat{\omega}}-e^{-j 3 \hat{\omega}}
\end{aligned}=e^{-j 2 \hat{\omega}}(\underbrace{\left.e^{j \hat{\psi}}-e^{-j \hat{\omega}}\right)}_{2 j \sin \hat{\omega}}
$$

(e) $\left\{b_{k}\right\}=\{1,0,-1\}$

$$
\frac{\text { ANS }=1}{1-e^{-j 2 \hat{\omega}}}
$$

(f) Select all systems (from the list on the right) that null out DC. Enter all numbers that apply.

$$
\text { ANS }=1,3
$$

Look for $H\left(e^{j 0}\right)=0$

Frequency Response
1 1 $H\left(e^{j \hat{\omega}}\right)=1-e^{-j 2 \hat{\omega}}$

$$
H\left(e^{j 0}\right)=1-1=0
$$

2 2 $H\left(e^{j \hat{\omega}}\right)=2 e^{-j 2 \hat{\omega}} \cos (\hat{\omega})$

$$
H\left(e^{j 0}\right)=2 \cos (0)=2
$$

$3 H\left(e^{j \hat{\omega}}\right)=2 j e^{-j 2 \hat{\omega}} \sin (\hat{\omega})$

$$
H\left(e^{j 0}\right)=0 \quad \sin (0)=0
$$

$4 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (\hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j \hat{\omega} / 2}$

$$
H\left(e^{j 0}\right) \neq 0
$$

$5 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}(1+2 \cos (\hat{\omega}))$

$$
H\left(e^{j 0}\right)=1+2=3
$$

$6 H\left(e^{j \hat{\omega}}\right)=\frac{\sin (2 \hat{\omega})}{\sin \left(\frac{1}{2} \hat{\omega}\right)} e^{-j 3 \hat{\omega} / 2}$

$$
H\left(e^{j 0}\right) \neq 0
$$

$7 H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}$

$$
H\left(e^{j 0}\right)=1
$$

8 None of the above

[^0]: ${ }^{1}$ Some questions might have more than one answer, but you only need to pick one correct answer.
 ${ }^{2}$ It is possible to use an answer more than once.

[^1]: ${ }^{1}$ Some questions might have more than one answer, but you only need to pick one correct answer.
 ${ }^{2}$ It is possible to use an answer more than once.

