GEORGIA INSTITUTUE OF TECHNOLOGY
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
EXAM 2
DATE:18-Oct-19 COURSE: ECE-2026

NAME: Solutions
LAST,
FIRST
CanvasID:
ex: gtJohnA

Circle your correct recitation section number - failing to do so will cost you 2 points

Recitation time	Mon	Tue	Wed	Thu
$09: 30: 10: 45$		L12 Farahmand		L06 Causey
$12: 00-13: 15$		L07 Farahmand		L08 Barry
$13: 30-14: 45$		L09 Farahmand		L10 Barry
$15: 00-16: 15$	L01 Juang	L11 Farahmand	L02 Casinovi	
$16: 30-17: 45$			L04 Casinovi	

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT. PROBLEMS WITH NO WORK AND JUST ANSWERS MAY RECEIVE 0 CREDIT, EVEN IF THE ANSWER IS CORRECT. YOU MUST SHOW SOME NUMERICAL WORK, REASONING, OR EXPLANATION FOR YOUR ANSWER. (I.E., DON'T JUST PUT AN ANSWER AND LEAVE THE WORK AREA BLANK)
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the boxes/spaces provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π or $\frac{2 \pi}{5}$ instead of 1.257)
- ALL RADIAN ANSWERS MUST BE IN THE RANGE ($-\pi, \pi]$ FOR CREDIT.

Problem	Value	Score
1	20	
2	20	
3	20	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1: Parts \mathbf{a} and \mathbf{b} can be solved independently of each other

(a) A periodic signal $x(t)$ has Fourier Series coefficients a_{k} that are computed over one period as:

$$
a_{k}=\frac{1}{T_{0}} \int_{-2}^{4}(4-t) e^{-j \frac{\pi}{4} k t} d t
$$

(i) Find the fundamental period T_{0} and a_{0}. (5 points)

$$
T_{0}=8 \text { (from the equation); } a_{0}=\frac{1}{8}\left(\frac{1}{2}\right)(6)(6)=2.25
$$

$$
T_{0}=\ldots 8 \text { seconds } \quad a_{0}=__2.25 _
$$

(ii) A new signal $y(t)=2 x(t-3)$ has Fourier Series coefficients defined as b_{k}. Express b_{k} in terms of a_{k} (Fourier Series of $x(t)$ in the equation above). (NOTE: Your answer will be in the form $b_{k}=Q a_{k}$ where you must define Q) (5 points)

$$
\begin{gathered}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{\frac{j \pi}{4} k t} \\
y(t)=2 x(t-3)=2 \sum_{k=-\infty}^{\infty} a_{k} e^{\frac{j \pi}{4} k(t-3)}=2 \sum_{k=-\infty}^{\infty} a_{k} e^{\frac{j \pi}{4} k t} e^{-\frac{j 3 \pi}{4} k}=\sum_{k=-\infty}^{\infty} 2 e^{-\frac{j 3 \pi}{4} k} a_{k} e^{\frac{j \pi}{4} k t} \\
b_{k}=2 e^{-\frac{j 3 \pi}{4} k} a_{k} \\
b_{k}= \\
-2 e^{-\frac{j 3 \pi}{4} k} \ldots \quad a_{k}
\end{gathered}
$$

(b) Consider the following periodic signal

$$
x(t)=-20-4 \cos (12 \pi t+0.4 \pi)+2 \cos (30 \pi t-0.6 \pi)-5 \cos (42 \pi t-0.3 \pi)
$$

Find its fundamental frequency f_{0} and fill in the table below of its Fourier series coefficients a_{k}. (10 points)

$$
\begin{gathered}
f_{0}=G C D(6,15,21)=3 \\
k=2,5,7
\end{gathered}
$$

$$
f_{0}=3 \mathrm{~Hz}
$$

k	0	1	2	3	4	5	6	7	8
a_{k}	$20 e^{-j \pi}$	0	$2 e^{-j 0.6 \pi}$	0	0	$e^{-j 0.6 \pi}$	0	$2.5 e^{j 0.7 \pi}$	0

PROBLEM 2: All parts can be solved independently of each other

Consider the ideal C-to-D / D-to-C system in the figure below for all problems below.

(a) If $x(t)=20+\cos (68 \pi t-0.2 \pi)+\cos (170 \pi t-0.8 \pi)-\cos (238 \pi t+0.8 \pi)$ and $f_{s}=595 \mathrm{~Hz}$, then $x[n]=x\left[n+N_{0}\right]$ (i.e., is periodic) where its fundamental period is $N_{0}=35$ samples (5
points)

$$
f_{0}=G C D(34,85,119)=17 \mathrm{~Hz} \rightarrow N_{0}=\frac{f_{s}}{G C D\left(f_{0}, f_{s}\right)}=\frac{595}{G C D(17,595)}=\frac{595}{17}=35 \text { samples }
$$

(b) If $x(t)=\cos (68 \pi t-0.2 \pi)+2 \cos (170 \pi t-0.8 \pi) \cos (238 \pi t)$ and $f_{s}=85 \mathrm{~Hz}$, find $y(t)$. points)

$$
y(t)=\cos (68 \pi t-0.2 \pi)+\cos (68 \pi t+0.8 \pi)+\cos (68 \pi t-0.8 \pi)=\cos (68 \pi t-0.8 \pi)
$$

$$
y(t)=\cos (68 \pi t-0.8 \pi)
$$

(c) Suppose that $f_{s}=1500 \mathrm{~Hz}$ and $y(t)=2 \cos (300 \pi t-\pi / 5)$. Find three possible inputs for $x(t)$ (i.e., $\left.x_{1}(t)=A_{1} \cos \left(\omega_{1} t+\phi_{1}\right), x_{2}(t)=A_{2} \cos \left(\omega_{2} t+\phi_{2}\right), x_{3}(t)=A_{3} \cos \left(\omega_{3} t+\phi_{3}\right)\right)$ that would have resulted in the same output signal $y(t)$ with the restriction that the input frequencies be between 0 and 2000 Hz . (10 points)
One is unaliased: $x_{1}(t)=2 \cos \left(300 \pi t-\frac{\pi}{5}\right)$
One is folded: $x_{2}(t)=2 \cos \left(2700 \pi t+\frac{\pi}{5}\right)$
One is aliased: $x_{3}(t)=2 \cos \left(3300 \pi t-\frac{\pi}{5}\right)$

$$
x_{1}(t)=2 \cos \left(300 \pi t-\frac{\pi}{5}\right)
$$

$$
x_{2}(t)=2 \cos \left(2700 \pi t+\frac{\pi}{5}\right)
$$

$$
x_{3}(t)=2 \cos \left(3300 \pi t-\frac{\pi}{5}\right)
$$

PROBLEM 3: All parts can be solved independently of each other

(a) Consider the FM signal $x(t)=20 \cos (B t+10 \cos (50 \pi t))$. Find the lower bound on B so that the theoretical instantaneous frequency, $f_{i}(t)$, is greater than zero (i.e., $f_{i}(t)>0$). (5 points)

$$
f_{i}(t)=\frac{1}{2 \pi}(B-500 \pi \sin (50 \pi t))>0 \rightarrow B>500 \pi \sin (50 \pi t) \rightarrow B>500 \pi
$$

$$
B>500 \pi
$$

(b) Consider the AM signal $x(t)=10 \cos (300 \pi t) \cos \left(2 \pi f_{c} t\right)$. If $x(t)$ is sampled with sampling frequency $f_{s}=1500 \mathrm{~Hz}$, what is the upper bound on f_{c} to avoid aliasing? (5 points)
Max frequency $=f_{c}+150<750 \rightarrow f_{c}<500 \mathrm{~Hz}$

(c) A chirp signal is defined as $x(t)=\cos (\psi(t))$ where $\psi(t)=130 \pi t^{2}+970 \pi t-\frac{\pi}{6}$ for $t \geq 0$. Assume we input this signal into MATLAB with a sampling frequency $f_{s}=3700 \mathrm{~Hz}$ and then play the audio back at the same frequency $f_{s}=3700 \mathrm{~Hz}$. What frequencies would be heard at the following times $t=5$ seconds (i.e., $f_{@ t=5}$) and $t=50$ (i.e., $f_{@ t=50}$) seconds. Explain your reasoning. (10 points)

$$
f_{i}(t)=130 t+485
$$

$@ \mathrm{t}=5$ seconds: $f_{i}(5)=130(5)+485=1135 \mathrm{~Hz} \mathrm{NO}$ aliasing, so 1135 Hz will be heard $@ \mathrm{t}=50$ seconds: $f_{i}(50)=130(50)+485=6985-$ Aliasing (with folding). Aliases are separated by the sampling frequency f_{s} so the frequency that will be heard is: $6985-(2) 3700=-415 \mathrm{~Hz}$, so 415 Hz will be heard.

Explanation:

No Aliasing @t=5.
Aliasing (with folding) @t=50. Compute the frequency heard by subtracting the sampling rate f_{s} until it is under $\frac{f_{s}}{2}$.

