GEORGIA INSTITUTUE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING EXAM 2

DATE:18-Oct-19 COURSE: ECE-2026

NAME:	Solutions		CanvasID:	
	LAST,	FIRST		ex: gtJohnA

Circle your correct recitation section number - failing to do so will cost you 2 points						
Recitation time	Mon	Tue	Wed	Thu		
09:30:10:45		L12 Farahmand		L06 Causey		
12:00-13:15		L07 Farahmand		L08 Barry		
13:30-14:45		L09 Farahmand		L10 Barry		
15:00-16:15	L01 Juang	L11 Farahmand	L02 Casinovi			
16:30-17:45			L04 Casinovi			

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8\frac{1}{2}'' \times 11''\right)$ of **HAND-WRITTEN** notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT. PROBLEMS WITH NO WORK AND JUST ANSWERS MAY RECEIVE 0 CREDIT, EVEN IF THE ANSWER IS CORRECT. YOU MUST SHOW SOME NUMERICAL WORK, REASONING, OR EXPLANATION FOR YOUR ANSWER. (I.E., DON'T JUST PUT AN ANSWER AND LEAVE THE WORK AREA BLANK)
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the **boxes/spaces** provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4 π or $\frac{2\pi}{5}$ instead of 1.257)
- ALL RADIAN ANSWERS <u>MUST</u> BE IN THE RANGE $(-\pi, \pi]$ FOR CREDIT.

Problem	Value	Score
1	20	
2	20	
3	20	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1: Parts a and b can be solved independently of each other

(a) A periodic signal x(t) has Fourier Series coefficients a_k that are computed over one period as:

$$a_k = \frac{1}{T_0} \int_{-2}^{4} (4-t) \, e^{-j\frac{\pi}{4}kt} dt$$

(i) Find the fundamental period T_0 and a_0 . (5 points)

$$T_0 = 8$$
 (from the equation); $a_0 = \frac{1}{8} \left(\frac{1}{2}\right) (6)(6) = 2.25$

<i>T</i> ₀ =8 seconds	$a_0 = \2.25 \$
0	0

(ii) A new signal y(t) = 2x(t-3) has Fourier Series coefficients defined as b_k . Express b_k in terms of a_k (Fourier Series of x(t) in the equation above). (NOTE: Your answer will be in the form $b_k = Qa_k$ where you must define Q) (5 points)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{\frac{j\pi}{4}kt}$$

$$y(t) = 2x(t-3) = 2 \sum_{k=-\infty}^{\infty} a_k e^{\frac{j\pi}{4}k(t-3)} = 2 \sum_{k=-\infty}^{\infty} a_k e^{\frac{j\pi}{4}kt} e^{-\frac{j3\pi}{4}k} = \sum_{k=-\infty}^{\infty} 2e^{-\frac{j3\pi}{4}k} a_k e^{\frac{j\pi}{4}kt}$$

$$b_k = 2e^{-\frac{j3\pi}{4}k} a_k$$

$$b_k = \sum_{k=-\infty}^{\infty} 2e^{-\frac{j3\pi}{4}k} a_k$$

(b) Consider the following periodic signal

 $x(t) = -20 - 4\cos(12\pi t + 0.4\pi) + 2\cos(30\pi t - 0.6\pi) - 5\cos(42\pi t - 0.3\pi)$ Find its fundamental frequency f_0 and fill in the table below of its Fourier series coefficients a_k . (10 points)

$$f_0 = GCD(6,15,21) = 3$$

 $k = 2, 5, 7$

$f_0 = 3 \text{ Hz}$

k	0	1	2	3	4	5	6	7	8
<i>a_k</i>	20 <i>e^{-jπ}</i>	0	2e ^{-j0.6π}	0	0	e ^{-j0.6π}	0	2.5 <i>e^{j0.7π}</i>	0

PROBLEM 2: All parts can be solved independently of each other

Consider the ideal C-to-D / D-to-C system in the figure below for all problems below.

(a) If $x(t) = 20 + \cos(68\pi t - 0.2\pi) + \cos(170\pi t - 0.8\pi) - \cos(238\pi t + 0.8\pi)$ and $f_s = 595$ Hz, then $x[n] = x[n + N_0]$ (i.e., is periodic) where its fundamental period is $N_0 = 35$ samples (5 points)

$$f_0 = GCD(34,85,119) = 17 Hz \rightarrow N_0 = \frac{f_s}{GCD(f_0, f_s)} = \frac{595}{GCD(17,595)} = \frac{595}{17} = 35$$
 samples

(b) If $x(t) = \cos(68\pi t - 0.2\pi) + 2\cos(170\pi t - 0.8\pi)\cos(238\pi t)$ and $f_s = 85$ Hz, find y(t). (5 points)

 $y(t) = \cos(68\pi t - 0.2\pi) + \cos(68\pi t + 0.8\pi) + \cos(68\pi t - 0.8\pi) = \cos(68\pi t - 0.8\pi)$

 $y(t) = \cos(68\pi t - 0.8\pi)$

(c) Suppose that $f_s = 1500 \text{ Hz}$ and $y(t) = 2\cos(300\pi t - \pi/5)$. Find three possible inputs for x(t) (i.e., $x_1(t) = A_1\cos(\omega_1 t + \phi_1), x_2(t) = A_2\cos(\omega_2 t + \phi_2), x_3(t) = A_3\cos(\omega_3 t + \phi_3)$) that would have resulted in the same output signal y(t) with the restriction that the **input frequencies be between 0** and 2000 Hz. (10 points)

One is unaliased: $x_1(t) = 2\cos\left(300\pi t - \frac{\pi}{5}\right)$ One is folded: $x_2(t) = 2\cos\left(2700\pi t + \frac{\pi}{5}\right)$ One is aliased: $x_3(t) = 2\cos\left(3300\pi t - \frac{\pi}{5}\right)$

 $x_1(t) = 2\cos\left(300\pi t - \frac{\pi}{5}\right)$

 $x_2(t) = 2\cos\left(2700\pi t + \frac{\pi}{5}\right)$

 $x_3(t) = 2\cos\left(3300\pi t - \frac{\pi}{5}\right)$

PROBLEM 3: All parts can be solved independently of each other

(a) Consider the FM signal $x(t) = 20 \cos(Bt + 10 \cos(50\pi t))$. Find the lower bound on *B* so that the theoretical instantaneous frequency, $f_i(t)$, is greater than zero (i.e., $f_i(t) > 0$). (5 points)

$$f_i(t) = \frac{1}{2\pi} (B - 500\pi \sin(50\pi t)) > 0 \to B > 500\pi \sin(50\pi t) \to B > 500\pi$$

 $B > 500\pi$

(b) Consider the AM signal $x(t) = 10 \cos(300\pi t) \cos(2\pi f_c t)$. If x(t) is sampled with sampling frequency $f_s = 1500 Hz$, what is the upper bound on f_c to avoid aliasing? (5 points)

600

 $f_c \lt 500 Hz$

Max frequency = $f_c + 150 < 750 \rightarrow f_c < 500 Hz$

@t=5 seconds: $f_i(5) = 130(5) + 485 = 1135 Hz$ NO aliasing, so 1135 Hz will be heard @t=50 seconds: $f_i(50) = 130(50) + 485 = 6985 - Aliasing$ (with folding). Aliases are separated by the sampling frequency f_s so the frequency that will be heard is: 6985 - (2)3700 = -415 Hz, so 415 Hz will be heard.

 $f_i(t) = 130t + 485$

