GEORGIA INSTITUTUE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING EXAM 2

DATE: 20-Oct-17 COURSE: ECE-2026

NAME:		SOLUTIONS	TSquareID:	
	LAST,	FIRST	_	ex: gtJohnA

Circle your correct recitation section number - failing to do so will cost you 2 points							
Recitation time	Mon	Tue	Wed	Thu			
09:30:10:45				L06 Harper			
12:00-13:15		L07 Causey		L08 Harper			
13:30-14:45		L09 Yang		L10 Stuber			
15:00-16:15	L01 Juang	L11 Yang	L02 Causey	L12 Stuber			
16:30-17:45	L03 Marenco		L04 Causey				

- Write your name on the front page ONLY. **DO NOT unstaple the test**
- Closed book, but a calculator is permitted.
- Two pages $\left(8\frac{1}{2}'' \times 11''\right)$ of **HAND-WRITTEN** notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the **boxes/spaces** provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π instead of 1.257)
- ALL RADIAN ANSWERS SHOULD BE IN THE RANGE $(-\pi, \pi]$.

Problem	Value	Score
1	16	
2	20	
3	24	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1:

(a) Express the signal y(t) in standard reduced sinusoidal form (i.e., ∑_{i=0}^N A_i cos(ω_it + φ_i) where N is unspecified with A_i ≥ 0 and -π < φ_i ≤ π) (8 points)
y(t) = ℜe{6e^{j(2π(100)t-π/3)}} + 3e^{j200πt+jπ/3} + 3e^{-j200πt-j/3}

$$y(t) = \Re e \left\{ 6e^{j2\pi(100)t - \frac{\pi}{3}} \right\} + 3e^{j200\pi t + \frac{j\pi}{3}} + 3e^{-j200\pi t - \frac{j\pi}{3}} \to 6\cos\left(200\pi t - \frac{\pi}{3}\right) + 6\cos\left(200\pi t + \frac{\pi}{3}\right)$$

Phasor Addition: $6e^{-\frac{j\pi}{3}} + 6e^{\frac{j\pi}{3}} = 6e^{j0} \to y(t) = 6\cos(200\pi t)$

$$y(t) = 6\cos(200\pi t)$$

(b) Express $x(t) = \cos(300\pi t + \pi/9)\cos(2100\pi t)$ as a sum of two sinusoids

$$x(t) = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2)$$

and determine the fundamental frequency $f_0.(8 \text{ points})$

Center the 150 Hz signal on the 1050 hz signal giving two sinusoids at 1200 Hz and 900 Hz. $f_0 = 300 Hz$

$$x(t) = \frac{1}{2}\cos(1800\pi t - \pi/9) + \frac{1}{2}\cos(2400\pi t + \pi/9)$$

 $x(t) = \frac{1}{2}\cos(1800\pi t - \pi/9) + \frac{1}{2}\cos(2400\pi t + \pi/9)$

 $f_0 = 300 \text{ Hz}$

PROBLEM 2: (Parts a and b can be solved independently)

(a) A signal x(t) has Fourier Series coefficients that are computed over one period as:

$$a_k = \frac{1}{4} \int_0^3 \left(1 - \frac{1}{3}t \right) e^{-j\frac{\pi}{2}kt} dt$$

(i) Plot x(t) over the interval $-4 \le t \le 4$. (5 points) (properly label all points)

(ii) Find a_0 (5 points)

 a_0 is the area of a triangle * 1/4: $a_0 = \frac{1}{2}(1)(3) * \frac{1}{4} = 3/8$

 $f_{\rm s} > 1750 \; {\rm Hz}$

(b) A signal x(t) with period of $T_0 = 0.008$ sec is defined as follows

$$x(t) = \sum_{k=-M}^{M} a_k e^{\frac{j2\pi}{T_0}kt}$$

with Fourier series coefficients expressed as:

$$a_{k} = \begin{cases} \frac{j^{k}}{k^{2}} & \text{odd values of } k \\ 0 & \text{even values of } k \end{cases}; \ a_{0} = 2e^{j\pi}$$

(i) If M = 8, what is the minimum sampling rate (f_s) needed for proper reconstruction? (5 points)

$$T_0 = 0.008 \rightarrow f_0 = 125 Hz \rightarrow f_s > 2 * 7f_0 = 2 * (7 * 125) = 1750 H$$

(ii) If M = 2, expand x(t) as a sum of sinusoids with each sinusoid expressed in standard form (i.e., $A\cos(\omega_0 t + \phi)$) (5 points)

$$a_0 = -2; a_{\pm 1} = e^{\pm j\frac{\pi}{2}}; a_{\pm 2} = 0 \rightarrow x(t) = -2 + e^{\frac{j\pi}{2}}e^{j2\pi(125)t} + e^{-\frac{j\pi}{2}}e^{-j2\pi(125)t} = -2 + 2\cos\left(250\pi t + \frac{\pi}{2}\right)$$

$$x(t) = -2 + 2\cos\left(250\pi t + \frac{\pi}{2}\right)$$

PROBLEM 3: (Each part of this problem may be answered independently)

Consider the ideal sampling and reconstruction system shown below for parts (a) and (b):

(a) Suppose that $f_{S_1} = 2000 Hz$ and $x[n] = 6 \cos(0.4\pi n + \pi/3)$. Find two possible inputs for x(t) (i.e., $x_1(t) = A_1 \cos(\omega_1 t + \phi_1)$ and $x_2(t) = A_2 \cos(\omega_2 t + \phi_2)$) that would have resulted in the same discrete-time signal x[n] with the restriction that the **input frequencies be between 0 and 2000 Hz.** (8 points)

One is unaliased: $x_1(t) = 6\cos((0.4\pi * 2000)t + \pi/3) = 6\cos(800\pi t + \frac{\pi}{3})$ One is folded: $x_2(t) = 6\cos((1.6\pi * 2000)t - \pi/3) = 6\cos(3200\pi t - \pi/3)$

 $x_1(t) = 6\cos\left(800\pi t + \frac{\pi}{3}\right)$

$$x_2(t) = 6\cos\left(3200\pi t - \frac{\pi}{3}\right)$$

(b) Suppose that $f_{S_1} = f_{S_2} = f_S$ and $x(t) = \cos(800\pi t) + \cos\left(3400\pi t - \frac{\pi}{3}\right)$. Find the **largest** f_S such that $y(t) = A\cos(800\pi t + \phi)$. Also, find A and ϕ (8 points)

Fold 1700Hz signal into 400 Hz signal: $f_s = 2100Hz$

$$Ae^{j\phi} = 1e^{j0} + 1e^{\frac{j\pi}{3}} = \sqrt{3}e^{\frac{j\pi}{6}} \approx 1.73e^{-j0.167\pi}$$

$$f_s = _2100 \ Hz ___$$
$$A = \sqrt{3} \approx 1.73 __$$
$$\phi = \frac{\pi}{6} \approx 0.167 \pi_-$$

(c) Consider the following MATLAB code: (8 points)
tt=0:1/3000:tstop; % time in seconds
psi=2*pi*(450*tt+250*tt.^2);
xx = cos(psi);
spectrogram(xx, 256, 200, 512, 3000,'yaxis')

(i) What is the instantaneous frequency represented in the spectrogram at 20 seconds (i.e., $f_i(20)$)

$$\psi(t) = 2\pi (450t + 250t^2) \rightarrow f_i(t) = \frac{1}{2\pi} \frac{d\psi(t)}{dt} = 450 + 500t$$
$$f_i(20) = 450 + 500(20) = 10450 \rightarrow 10450 - 9000 = 1450 Hz$$

(ii) What is the largest value the variable tstop can be to avoid seeing folding in the spectrogram?

$$f_i(t_{stop}) = 450 + 500(t_{stop}) < 1500 \rightarrow t_{stop} < 2.1 \text{ sec}$$

tstop <2.1 sec	
----------------	--

 $f_i(20) = _1450 Hz_{--}$