GEORGIA INSTITUTUE OF TECHNOLOGY
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
EXAM 1
DATE: 2-October-15 COURSE: ECE-2026

NAME: SOLUTIONS LAST,

FIRST

TSquareID:
ex: gtAyellow

Circle your correct recitation section number - failing to do so will cost you 3 points

Recitation time	Mon	Tue	Wed	Thu
$09: 35: 10: 55$				L06 Altaf
$12: 05-13: 25$		L07 Altaf		L08 Bloch
$13: 35-14: 55$		L09 Barry		L10 Bloch
$15: 05-16: 25$	L01 Juang	L11 Barry	L02 Rozell	L12 Yeredor
$16: 35-17: 55$	L03 Causey		L04 Rozell	L14 Yeredor

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK TO RECEIVE CREDIT
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Circle your answers, or write them in the boxes/spaces provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4 m instead of 1.257)
- ALL RADIAN ANSWERS SHOULD BE IN THE RANGE (-т, т].

Problem	Value	Score
1	25	
2	25	
3	25	
4	25	
No/Wrong Recitation Circled	-3	
Total		

PROBLEM 1:

Parts a, b, and c can be solved independently of each other.
(a) Consider a complex number defined as $z=r e^{j \theta}$ (where $\left.\theta \in(-\pi, 0]\right)$. The location of $-j z^{2}$ is shown on the complex plane below (where the circle represents the unit circle of radius 1). Consider the following lettered operations on the complex number z (A-E). Place the appropriate letter on the provided complex plane in the approximate location that it should be. (They do not have to be exact, but they should still be correct relative to the position of $-j z^{2}$). (10 points)

A. (5 points)	z
B. (1.25 points)	$1 / z^{*}$
C. (1.25 points)	$z^{*} e^{-j \pi}$
D. (1.25 points)	$z^{*}+e^{-j \pi}$
E.(1.25 points)	z / z^{*}

The most critical part is finding z. We know $r<1$ and $\theta \in(-\pi, 0]$

$$
\begin{gathered}
-j z^{2}=p e^{j 0} \\
e^{-\frac{j \pi}{2}} r^{2} e^{j 2 \theta}=p e^{j 0} \\
r^{2} e^{j 2 \theta}=p e^{\frac{j \pi}{2}} \\
r=\sqrt{p}, \quad \theta=\frac{\pi}{4} \text { OR } r=\sqrt{p}, \quad \theta=\frac{-3 \pi}{4}
\end{gathered}
$$

For our conditions: $r=\sqrt{p}, \theta=\frac{-3 \pi}{4}$
(b) Let $2 \cos \left(10 \pi t+\frac{\pi}{3}\right)=A \cos \left(\omega_{0} t+\varphi\right)+2 \cos \left(10 \pi t-\frac{\pi}{4}\right)+3 \sin (10 \pi t)$. Find A, ω_{0}, and φ. (9 points)

Use phasor addition (calculator): $A e^{j \varphi}=2 e^{\frac{j \pi}{3}}-3 e^{-\frac{j \pi}{2}}-2 e^{-\frac{j \pi}{4}} \approx 6.16 e^{j 0.52 \pi}$
$A=$ \qquad 6.16 \qquad $\omega_{0}=\ldots 10 \pi$
(c) Solve the following equation for A and ϕ. (6 points) $\varphi=_0.52 \pi$ \qquad

$$
\begin{aligned}
& \sum_{k=2}^{7} \sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15} k\right)}+\sum_{k=8}^{13} \sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15} k\right)}+A \cos \left(\omega_{0} t+\phi\right)+\sqrt{2} e^{j \omega_{0} t}=0 \\
& \left.\sum_{k=0}^{7} \sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15} k\right.}\right)-\sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15}\right)}+\sum_{k=8}^{14} \sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15} k\right)}-\sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi(14)}{15}\right)}+A \cos \left(\omega_{0} t+\phi\right)=0 \quad e^{j \omega_{0} t} A \cos (\phi) \\
& \sum_{k=0}^{14} \sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15} k\right)}-\left(\sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15}\right)}+\sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi(14)}{15}\right)}\right)+A \cos \left(\omega_{0} t+\phi\right)=0 \\
& \sum_{k=0}^{14} \sqrt{2} e^{j\left(\omega_{0} t+\frac{2 \pi}{15} k\right)}-e^{j \omega_{0} t} 2 \sqrt{2} \cos \left(\frac{2 \pi}{15}\right)+A \cos \left(\omega_{0} t+\phi\right)=0 \\
& e^{j \omega_{0} t} 2 \sqrt{2} \cos \left(\frac{2 \pi}{15}\right)=e^{j \omega_{0} t} A \cos (\phi) \quad e^{j \omega_{0} t} A \cos (\phi)
\end{aligned}
$$

$$
A=_\quad 2 \sqrt{2} _\quad \phi_{-} 2 \pi / 15
$$

\qquad

PROBLEM 2:
Match the spectrums to the appropriate sinusoidal plots. Write your answers in the boxes provided.

PROBLEM 3:

Assume that the Fourier series coefficients for $x(t)$ are given by the integral:

$$
a_{k}=\frac{1}{6} \int_{-2}^{2}(1+|t|) e^{-\frac{j \pi}{3} k t} d t
$$

Put your answers in the boxes provided.
(a) Determine the fundamental period T_{0} of the signal $x(t)$. (4 points)

Can be read from the equation $a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}}(1+|t|) e^{-\frac{j 2 \pi}{T_{0}} k t} d t$

$$
T_{0}=6 \mathrm{sec}
$$

(b) Determine the DC value $\left(a_{0}\right) x(t)$. Give your answer as a number. (4 points)

$$
a_{0}=\frac{1}{6} \int_{-2}^{2}(1+|t|) d t=4 / 3
$$

$$
a_{0}=4 / 3
$$

(c) In the plot area below, draw a plot of $x(t)$ over the range of $-10 \leq t \leq 10$ seconds. Label your plot carefully. (8 points)

(d) Assume that a new signal is created from $x(t)$ as follows:

$$
y(t)=3 x(t-0.2)
$$

Determine the fundamental period T_{0} of $y(t)$ and the DC value of $y(t)$. (4 points)
Scaling and shifting has NO impact on T_{0}
Scaling increases DC by a factor of 3

$$
T_{0}=6
$$

PROBLEM 4:

Parts \mathbf{a} and \mathbf{b} can be solved independently of each other.

(a) Assume we have an input signal defined as $x(t)=\cos (2 \pi f t)$.
(a.1) If the input frequency is $f=300 \mathrm{~Hz}$, what is the lower bound on the sampling rate $\left(f_{s}\right)$ to avoid aliasing as we have discussed in class? (3 points)
$2 X$ the highest frequency $=2 * 300=600$

$$
f_{s}>600
$$

(a.2) Assume that input frequency f is unknown and the sampling rate is set to $f_{s}=300 \mathrm{~Hz}$ resulting in the discrete signal $x[n]=\cos (0.3 \pi n)$. List three possible input frequencies for f in the range of $0<f \leq 500 \mathrm{~Hz}$. (9 points)

$$
\widehat{\omega}=\frac{2 \pi f}{f_{s}} \rightarrow 0.3 \pi=\frac{2 \pi f}{300} \rightarrow f=45 \mathrm{~Hz}
$$

Other aliases are found by adding/subtracting
$f_{s}=300$ to 45 Hz , therefore: $f=45+300=345 \mathrm{~Hz}$

$$
f=_45 _ \text {or } _255 _ \text {or } _345 _\mathrm{Hz}
$$

$\mathrm{OR} f=-45+300=255 \mathrm{~Hz}$ in the range $0<f \leq 500$
Hz.
(b) Suppose the following MATLAB code is run:

$$
\begin{aligned}
& \mathrm{tt}=0:(1 / 4050): 3 ; \\
& \mathrm{xx}=\cos \left(600^{*} \mathrm{pi}^{*} \mathrm{tt} . \wedge 2+400^{*} \mathrm{pi}^{*} \mathrm{tt}+\mathrm{pi} / 3\right) ;
\end{aligned}
$$

(b.1) How many samples (N) are contained in the vector $x x$? (4 points)

Sampling rate is 4050 Samples/sec. The time vector is computed over 3 seconds so: N=4050*3+1 (we add one because Matlab includes the point at 0)

```
N= 12151
```

(b.2) Find the equation for the instantaneous frequency, $f_{i}(\mathrm{t})$ (in Hz) of the signal represented by the vector xx. (6 points)

$$
\begin{gathered}
f_{i}(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(600 \pi t^{2}+400 \pi t+\frac{\pi}{3}\right) \\
f_{i}(t)=600 t+200
\end{gathered}
$$

$$
f_{i}(t)=600 t+200
$$

(b.3) Will the signal $x x$ alias at any point during the interval from 0 to 3 seconds? If NO, explain why it will NOT alias. If YES, explain why it WILL alias and find the time (in seconds) at which point it will alias. (Circle one and then provide your explanation) (YES OR NO) (3 points)

No. The max frequency obtained in 3 seconds is (600)* $3+200=2000 \mathrm{~Hz}$. The Nyquist frequency in this case is 2025 Hz so no aliasing occurs.

