DATE: 11-Oct-13 COURSE: ECE-2026

NAME: \qquad GT\#:
LAST, FIRST
ex: gtaburDEll

Circle your correct recitation section number - failing to do so will cost you 3 points
L01: Mon - (Juang)
L02: Wed - (Bloch)
L03: Mon - (Casinovi)
L04: Wed - (Bloch)
L05: Tues - (Bhatti)
L06: Thurs - (Coyle)
L07: Tues - (Bhatti)
L08: Thurs - (Coyle)
L09: Tues - (AlRegib)
L10: Thurs - (Ma)
L11: Tues - (Causey)
L12: Thurs - (Ma)
L13: Tues - (Causey)
L14: Thurs - (AlRegib)

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- JUSTIFY your reasoning sufficiently to receive partial credit. Explanations are also required (as applicable) to receive full credit for an answer. (i.e., show enough work so graders understand your approach to solving the problem)
- You must write your answer in the boxes provided on the exam paper itself. Only answers in these boxes will be graded as the final solution. If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

PROBLEM fa-13-Q.2.1:

Suppose we have a periodic signal $x(t)$ represented through Fourier synthesis as follows:

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j(2 \pi / 6) k t}
$$

It is also known that the Fourier series coefficients for this representation of $x(t)$ are given by the integral:

$$
\begin{gathered}
a_{k}=\frac{1}{6} \int_{-1}^{1}(1-|t|) e^{-j(2 \pi / 6) k t} d t \\
\text { where }|t|=\left\{\begin{array}{c}
t \quad \text { when } t \geq 0 \\
-t \quad \text { when } t<0
\end{array}\right.
\end{gathered}
$$

(a) Determine the fundamental period T_{0} of the signal $x(t)$.

$$
\text { Fromequation } T_{0}=6
$$

$$
T_{0}=6
$$

(b) Determine the DC value of $x(t)$. Give your answer as a number.

Area of triangle
$\frac{1}{6} \cdot \operatorname{area}$ of

(c) In the plot area below, draw a plot of $x(t)$ over the range of $-10 \leq t \leq 10$ seconds. Label your plot carefully.

PROBLEM fa-13-Q.2.2:

The input to an ideal C-to-D converter is a signal $x(t)$ defined as follows:

$$
x(t)=10+\cos (480 \pi t-\pi / 3)+\cos (800 \pi t+\pi / 5)
$$

(a) Determine the Nyquist rate (in hertz) for sampling the signal $x(t)$ in the ideal C-to-D converter.

$$
\begin{aligned}
& 480 \pi=2 \pi(240) \\
& 800 \pi=2 \pi(400) \quad \text { Nbauist } \\
& \text { highest frequency }
\end{aligned} \quad=2 \text {-highest freq. } \quad 800 \mathrm{~Hz} .
$$

(b) If the sampling rate for the C -to-D converter is $f_{s 1}=500 \mathrm{samples} / \mathrm{sec}$., determine the discretetime signal $x[n]$ as a sum of cosines. Make sure that all sinusoidal frequencies in your answer are expressed in the range $0 \leq \omega \leq \pi$ radians.

$$
\begin{aligned}
& \hat{\omega}=\frac{2 \pi f}{5 s} \rightarrow \\
& \hat{\omega}_{1}=\frac{44 v \pi}{500}=\frac{24 \pi}{25} \quad(\text { Not aliased }) \\
& \hat{\omega}_{2}=\frac{800 \pi}{500}=\frac{4 \pi}{25}-2 \pi=\frac{-10 \pi}{25}(\text { folding })
\end{aligned}
$$

$$
x+\left[|l| l|l| l|l| l \left\lvert\,\left(\frac{24}{25} \pi n-\pi / 3\right)+\cos \left(\frac{(2 \pi}{2 \pi} \pi-\pi / 5\right)\right.\right.
$$

(c) If $f_{s 1}=f_{s 2}=500$ samples $/ \mathrm{sec}$, determine the continuous-time signal $y(t)$.

$$
\begin{aligned}
& w=\hat{w} f_{s} \\
& w_{1}=\frac{24 \pi}{25} \cdot 500=480 \pi \\
& w_{2}=\frac{10 \pi}{25} \cdot 500=200 \pi
\end{aligned}
$$

$$
y(t)=10+\cos (480 \pi t-\pi / 3)+\cos (200 \pi t-\pi / 5)
$$

PROBLEM fa-13-Q.2.3:
(a) Suppose the following MATLAB $®$ code is run:

$$
\begin{aligned}
& \mathrm{tt}=0:(1 / 4500): 9 ; \\
& \mathrm{xx}=\cos \left(400^{*} \mathrm{pi}^{*} \mathrm{tt} .^{\wedge} 2+500^{*} \mathrm{pi}^{*} \mathrm{tt}+\mathrm{pi} / 3\right) ; \\
& \text { spectrogram(} \mathrm{xx}, 256,128,512,4500) ;
\end{aligned}
$$

Find the equation for the instantaneous frequency, $f_{i}(t)$ (in Hz), of the signal xx .

$$
\begin{aligned}
& \psi(t)=400 \pi t^{2}+500 \pi t+\pi / 3 \\
& f_{i}(t)=\frac{1}{2 \pi}(800 \pi t+500 \pi)=400 t+250
\end{aligned}
$$

$f_{i}(t)=400 t+250 \mathrm{~Hz}$
(b) Suppose the following MATLAB code is run (on a supercomputer):

If the analog tone that results has a frequency of $3500 \mathrm{H7}$ what is the value of the variable fsamp?

$$
\begin{aligned}
& \hat{\omega}=\frac{2 \pi \epsilon \cdot 0}{\zeta s}=\frac{2 \pi 1100)}{6400}=\frac{\pi}{2} \\
& \hat{s}=\frac{\hat{w} \cdot f \mathrm{fsamp}}{2 \pi} \rightarrow \delta \operatorname{samp} \\
& =\frac{\hat{f} \cdot 2 \pi}{\tilde{\omega}}=\frac{(3500) \cdot 2 \pi}{\pi / 2}=14000 \mathrm{~Hz} \quad 14,000 \mathrm{~Hz}
\end{aligned}
$$

PROBLEM fa-13-Q.2.4:

Consider the periodic square wave $x_{1}(t)$ below with fundamental period $T_{0}=2$ seconds and Fourier Series coefficients a_{k} as shown below.

$$
x_{1}(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j(2 \pi / 2) k t}
$$

Assume we also have a second periodic square wave $x_{2}(t)$ with a fundamental period $T_{0}=2$ seconds shown below:

(a) In the plot area provided below, sketch a plot of the periodic signal $y(t)=x_{1}(t)+x_{2}(t)$ over the range $0 \leq t \leq 8$. (Label your plot carefully)

(b) It can be seen that $x_{2}(t)=x_{1}(t-0.5)$. This implies that the Fourier series coefficients for $x_{2}(t)$ can be expressed in terms of the Fourier series coefficients of $x_{1}(t)$ (i.e., a_{k}). Assuming that b_{k} represents the Fourier series coefficients for $x_{2}(t)$, fill in the box below to determine b_{k} in terms of the Fourier series coefficients for a_{k}. (Hint: DO NOT perform integration here.)

$$
\begin{aligned}
x_{1}(t-0,5) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j(T \pi / 2) k(t-0,5)} \\
& =\sum_{k=-\infty}^{\infty} a_{b_{k}}^{a_{k} e^{-j \frac{\pi}{2} k}} e^{j(2 \pi / 2)<t}
\end{aligned}
$$

$$
b_{k}=a_{k} e^{-j \frac{\pi}{2} k}=q_{k c}(-j)^{k}
$$

(c) The periodic signal (from part (a)) is:

$$
y(t)=x_{1}(t)+x_{2}(t)=x_{1}(t)+x_{1}(t-0.5)
$$

This implies that the Fourier series coefficients for $y(t)$ can be expressed in terms of the Fourier series coefficients for $x_{1}(t)$ (i.e., a_{k}). Assuming that c_{k} represents the Fourier series coefficients for $y(t)$, fill in the box below to determine c_{k} in terms of the Fourier series coefficients for a_{k}.
(Hint: DO NOT perform integration here.)

$$
\begin{aligned}
& =\sum \underbrace{\left(a_{k}+a_{k} e^{j \frac{\pi}{2}} k\right)}_{c_{k}} e^{j\left(\frac{\pi}{2}\right) k t}
\end{aligned}
$$

$$
c_{k}=a_{k}\left(1+e^{-j \frac{\pi}{2} k}\right)=a_{k}\left(1+(-j)^{k}\right)
$$

