GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Quiz #1

June 17, 2024

(LAST)

GT username:

(e.g., gtxyz123)

Important Notes:

- Do not unstaple the test.
- \circ Closed book, except for one two-sided page (8.5" \times 11") of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π . For example, write 0.1 π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.
 Only these answers will be graded. Write your answers in the provided answer boxes.
- $\circ~$ Do not write on the backs of pages, only the fronts will be graded.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su24-Q1.1. Let $z_1 = 0.9e^{j2\pi/3}$ and $z_2 = 0.9e^{-j\pi/20}$. Match each complex number listed below to its location in the complex plane. Indicate answer by writing a letter (from labeled A through T) into each answer box:

PROB. Su24-Q1.2.

If the following equation is valid for all time *t*:

 $4\cos(230\pi t + 0.2\pi) + B\cos(240\pi t)\cos(2\pi Ft + \theta) = A\cos(2\pi f_0 t + \phi),$

and if the unspecified parameters are all positive, then it must be that:

PROB. Su24-Q1.3.

Shown on the right are ten spectrogram plots, labeled A through J.

Match each spectrogram plot to the corresponding signal listed at the bottom of the page.

Indicate answers by writing a letter (from A to J) into each answer box.

(e) Find f_s so that the output can be written as $y(t) = A\cos(240\pi t + \varphi)$, and specify resulting A and φ :

$$f_s =$$
 $S_{samples/s} > 0, \qquad A =$ $> 0, \qquad \phi =$ $\in (-\pi, \pi].$

(This page left intentionally blank, in case you run out of room.)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Quiz #1

June 17, 2024

	VERSIO	NA		
NAME:			_ GT username:	
	(FIRST)	(LAST)		(e.g., gtxyz123)

Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page (8.5" × 11") of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π . For example, write 0.1 π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.
 Only these answers will be graded. Write your answers in the provided answer boxes.
- Do not write on the backs of pages, only the fronts will be graded.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su24-Q1.1. Let $z_1 = 0.9e^{j2\pi/3}$ and $z_2 = 0.9e^{-j\pi/20}$. Match each complex number listed below to its location in the complex plane. Indicate answer by writing a letter (from labeled A through T) into each answer box:

PROB. Su24-Q1.2.

If the following equation is valid for all time *t*:

 $4\cos(230\pi t + 0.2\pi) + B\cos(240\pi t)\cos(2\pi Ft + \theta) = A\cos(2\pi f_0 t + \phi),$ and if the unspecified parameters are all positive, then it must be that:

Spectrum for left-hand side of equation looks like this:

 $\Rightarrow A = 0.5B = 4$ and $\varphi = \theta = 0.8\pi$

PROB. Su24-Q1.3.

Shown on the right are ten spectrogram plots, labeled A through J.

Match each spectrogram plot to the corresponding signal listed at the bottom of the page.

Indicate answers by writing a letter (from A to J) into each answer box.

Η

Α

F

Е

В

 $x_4(t) = \sin(1000\pi(t-1)^2)$

 $x_5(t) = \cos(500\pi(t-2)^2)$

(c) When $f_s = 330$ Hz, the output y(t) is periodic with fundamental frequency $f_0 = 30$ Hz.

$$f_0 = \gcd(120, 180 - 30)$$

(d) When $f_s = 71$ Hz, the output y(t) is periodic with fundamental frequency $f_0 = 11$ Hz.

$$f_0 = \gcd(|120 - \ell_1 71|, |180 - \ell_2 71|)$$

= $\gcd(|120 - (2)71|, |180 - (3)71|)$
= $\gcd(22, 33)$

(e) Find f_s so that the output can be written as $y(t) = A\cos(240\pi t + \varphi)$, and specify resulting A and φ : There are two solutions, either is acceptable:

$$f_{s} = \boxed{\begin{array}{c}300\\\text{samples/s}\end{array}} > 0, \qquad A = \boxed{\begin{array}{c}2\sqrt{2}\\\end{array}} > 0, \qquad \varphi = \boxed{-0.25\pi} \in (-\pi, \pi],$$
$$f_{s} = \boxed{\begin{array}{c}360\\\text{samples/s}\end{array}} > 0, \qquad A = \boxed{\begin{array}{c}2\\\end{array}} > 0, \qquad \varphi = \boxed{\begin{array}{c}0\\\end{array}} \in (-\pi, \pi].$$