GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2023

Quiz \#1

June 14, 2023

NAME: \qquad

GT username: \qquad

Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page ($8.5^{\prime \prime} \times 11^{\prime \prime}$) of hand-written notes.
- Calculators are allowed, but no smartphones/readers/watches/tablets/laptops/etc.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su23-Q1.1. Shown below are twelve different diagrams - labeled A through L - that show the locations of the powers $\left\{z^{0}, z^{1}, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}, \ldots z^{89}, z^{90}\right\}$ in the complex plane, for twelve different values of z :

(The horizontal and vertical components represent the real and imaginary parts, respectively.
The axes are not labeled, the different plots are drawn with different scales. Only the shapes matter.)
(a) Match each diagram above to the corresponding value of z listed below. Indicate your answer by writing a letter (from \{A ... L $\}$) into each answer box.

(i)	$z=0.99 e^{j 0.02 \pi}$
(ii)	$z=0.99 e^{-j 0.02 \pi}$
(iii)	$z=1.01 e^{j 0.02 \pi}$
(iv)	$z=1.01 e^{-j 0.02 \pi}$
(v)	$z=0.99 e^{j 0.025 \pi}$
(vi)	$z=0.99 e^{-j 0.025 \pi}$
vii)	$z=1.01 e^{j 0.025 \pi}$
(vii)	$z=1.01 e^{-j 0.025 \pi}$
(ix)	$z=0.99 e^{j 0.03 \pi}$
(x)	$z=0.99 e^{-j 0.03 \pi}$
(xi)	$z=1.01 e^{j 0.03 \pi}$
xii)	$z=1.01 e^{-j 0.03 \pi}$

(b) Explain your approach.

PROB. Su23-Q1.2.

Define three signals as follows:

- Let $x_{1}(t)=2 \cos (20 \pi t+0.5 \pi)+2 \cos (22 \pi t+0.5 \pi)$.
- Let $x_{2}(t)=B \sin (22 \pi t) \cos (2 \pi F t)$, where $B>0$ and $F>0$ are unspecified.
- Let $x_{3}(t)$ be the signal whose spectrum is shown in the sketch below:

If the sum of these three signals is a single sinusoid:

$$
x_{1}(t)+x_{2}(t)+x_{3}(t)=A \cos \left(2 \pi f_{0} t+\varphi\right),
$$

then it must be that:

$$
B=\square>0, \quad F=\square>0,
$$

and where (in standard form)

$$
A=\square>0, \quad f_{0}=\square>0, \quad \text { and } \varphi=\square \in(-\pi, \pi] .
$$

PROB. Su23-Q1.3.

Shown below is a plot of $x(t)=\sum_{k=1}^{4}\left(\frac{60 k}{k+1}\right) \cos \left(\frac{480 \pi t}{k}\right)$:

The scale is not labeled.
(a) The time between nearest peaks is $T=\square$.
(b) The peak value is $A=\square$.
(c) The Fourier series for this signal is $x(t)=\sum_{k} a_{k} e^{j k 2 \pi f_{0} t}$, where the fundamental frequency is $f_{0}=\square \mathrm{Hz}$. Identify which of the following FS coefficients are nonzero with an \mathbf{X} (Hint: only four are nonzero!):

PROB. Su23-Q1.4. (The two parts of this problem are unrelated.)
(a) Find numerical values for the constants A, B, and C so that the spectrogram of the signal

$$
x(t)=2026 \cos (\pi A t+B \cos (\pi C t))
$$

looks like this:

(b) A continuous-time sinusoid $x(t)=\cos \left(2 \pi f_{0} t\right)$ whose unspecified frequency f_{0} is known to be in the range $700<f_{0}<1700 \mathrm{~Hz}$ is sampled with sampling rate $f_{s}=8000 \mathrm{~Hz}$, resulting in a discretetime sequence:

$$
x[n]=x\left(\frac{n}{f_{s}}\right)
$$

Find the unique value for the frequncy f_{0} in the range $f_{0} \in(700,1700)$ for which the resulting discrete-time sequence is periodic with fundamental period $N_{0}=40$,
i.e., so that $N_{0}=40$ is the smallest positive integer N for which $x[n]=x[n+N]$ for all n.

$$
f_{0}=\square \in(700,1700) .
$$

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2023

Quiz \#1

June 14, 2023

NAME: \qquad GT username: \qquad

Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page ($8.5^{\prime \prime} \times 11^{\prime \prime}$) of hand-written notes.
- Calculators are allowed, but no smartphones/readers/watches/tablets/laptops/etc.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su23-Q1.1. Shown below are twelve different diagrams - labeled A through L — that show the locations of the powers $\left\{z^{0}, z^{1}, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}, \ldots z^{89}, z^{90}\right\}$ in the complex plane, for twelve different values of z :

(The horizontal and vertical components represent the real and imaginary parts, respectively. The axes are not labeled, the different plots are drawn with different scales. Only the shapes matter.)
(a) Match each diagram above to the corresponding value of z listed below.

Indicate your answer by writing a letter (from $\{$ A ... L $\}$) into each answer box.

(b) Explain your approach.

PROB. Su23-Q1.2.

Define three signals as follows:

- Let $x_{1}(t)=2 \cos (20 \pi t+0.5 \pi)+2 \cos (22 \pi t+0.5 \pi)$.
- Let $x_{2}(t)=B \sin (22 \pi t) \cos (2 \pi F t)$, where $B>0$ and $F>0$ are unspecified.
- Let $x_{3}(t)$ be the signal whose spectrum is shown in the sketch below:

If the sum of these three signals is a single sinusoid:

$$
x_{1}(t)+x_{2}(t)+x_{3}(t)=A \cos \left(2 \pi f_{0} t+\varphi\right),
$$

then it must be that:

$$
B=\gg 0, \quad F=1^{1} \quad>0
$$

and where (in standard form)

CANCEL WHEN $B=4$

SPECTRUM for $x_{3}(t)$
0

SPECTRUM for $x_{1}(t)$

SPECTRUM for $x_{2}(t)$
WHEN $F=1$

PROB. Su23-Q1.3.

Shown below is a plot of $x(t)=\sum_{k=1}^{4}\left(\frac{60 k}{k+1}\right) \cos \left(\frac{480 \pi t}{k}\right)$:

The scale is not labeled.
(a) The time between nearest peaks is $T=0.05$.

The gcd of contributing frequencies at $\frac{240}{k} \in\{240,120,80,60\}$ is the fundamental freq $\Rightarrow f_{0}=20 \mathrm{~Hz}$

$$
\Rightarrow \text { fundamental period } T_{0}=\frac{1}{f_{0}}=0.05
$$

(b) The peak value is $A=163$.

Evaluate at time $0 \Rightarrow x(0)=\sum_{k=1}^{4}\left(\frac{60 k}{k+1}\right) \cos (0)=\frac{60}{2}+\frac{120}{3}+\frac{180}{4}+\frac{240}{5}$

$$
=30+40+45+48=163
$$

(c) The Fourier series for this signal is $x(t)=\sum_{k} a_{k} e^{j k 2 \pi f_{0} t}$,
where the fundamental frequency is $f_{0}=20 \mathrm{~Hz}$.
Identify which of the following FS coefficients are nonzero with an \mathbf{X} (Hint: only four are nonzero!):
Contributing frequencies $\{240,120,80,60\}=\left\{12 f_{0}, 6 f_{0}, 4 f_{0}, 3 f_{0}\right\}$

PROB. Su23-Q1.4. (The two parts of this problem are unrelated.)
(a) Find numerical values for the constants A, B, and C so that the spectrogram of the signal

$$
x(t)=2026 \cos (\pi A t+B \cos (\pi C t))
$$

looks like this:

Multiply by 2π and integrate

$$
\begin{aligned}
\Rightarrow \varphi(t) & =2000 \pi t-8000 \sin (0.25 \pi t) \\
& =\pi A t+B \cos (\pi C t)
\end{aligned}
$$

(b) A continuous-time sinusoid $x(t)=\cos \left(2 \pi f_{0} t\right)$ whose unspecified frequency f_{0} is known to be in the range $700<f_{0}<1700 \mathrm{~Hz}$ is sampled with sampling rate $f_{s}=8000 \mathrm{~Hz}$, resulting in a discretetime sequence:

$$
x[n]=x\left(\frac{n}{f_{s}}\right)
$$

Find the unique value for the frequncy f_{0} in the range $f_{0} \in(700,1700)$ for which the resulting discrete-time sequence is periodic with fundamental period $N_{0}=40$,
i.e., so that $N_{0}=40$ is the smallest positive integer N for which $x[n]=x[n+N]$ for all n.

Substite $t=\frac{n}{8000} \Rightarrow x[n]=\cos \left(\frac{2 \pi f_{0} n}{8000}\right)$.

$$
f_{0}=\mathrm{H}_{\mathrm{Hz}} \in(700,1700) .
$$

Factor digital frequency as a ratio of integers times 2π :

$$
\hat{\omega}=\frac{2 \pi f_{0}}{8000}=\frac{k}{N}(2 \pi) ;
$$

when fraction is reduced (k, N share no common factors), the denom N is the period.

$$
\Rightarrow f_{0}=k \frac{8000}{N}=200 k, \text { where } k \in\{1,3,(7,9,11 \ldots\} \text { shares no factors with } 40
$$

Of these, only $k=7$ puts f_{0} in desired range $\quad \Rightarrow \quad f_{0}=200(7)=1400 \mathrm{~Hz}$.

