GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2022

Quiz \#1

June 15, 2022

NAME:

(FIRST)

GT username: \qquad

Important Notes:

- Do not unstaple the test.
- Closed book, except for one two-sided page (8.5 " $\times 11^{\prime \prime}$) of hand-written notes.
- Calculators are allowed, but no smartphones/readers/watches/tablets/laptops/etc.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned
1	25	
2	25	
3	25	
4	25	
Total		

PROB. Su22-Q1.1.

Consider the nine sinusoidal plots shown here, they all have the same amplitudes and frequencies, they differ only in their phases:
(a) The frequency of all nine sinusoids is

$$
f_{0}=10 \mathrm{~Hz}
$$

(b) Below is a list of nine sinusoid equations, labeled A through I. Match each equation to its corresponding plot.

Indicate your answers by writing a letter (from A through I) into each plot's answer box.
(The black dots might be helpful; they highlight the sinusoid peak in each case that is closest to time zero.)
(A) $\quad x(t)=\cos \left(2 \pi f_{0} t-\frac{2 \pi}{3}\right)$
(B) $\quad x(t)=\cos \left(2 \pi f_{0} t-0.5 \pi\right)$

(C) $\quad x(t)=\cos \left(2 \pi f_{0} t-0.4 \pi\right)$
(D) $\quad x(t)=\cos \left(2 \pi f_{0} t-0.2 \pi\right)$
(E) $\quad x(t)=\cos \left(2 \pi f_{0} t\right)$
(F) $\quad x(t)=\cos \left(2 \pi f_{0} t+0.2 \pi\right)$
(G) $\quad x(t)=\cos \left(2 \pi f_{0} t+0.4 \pi\right)$

(H) $\quad x(t)=\cos \left(2 \pi f_{0} t+0.5 \pi\right)$
(I) $\quad x(t)=\cos \left(2 \pi f_{0} t+\frac{2 \pi}{3}\right)$

PROB. Su22-Q1.2.

Define four sinusoids as follows:

- Let $x_{1}(t)=\cos (10 \pi t+\pi)$.
$\Rightarrow X_{1}=-1$
- Let $x_{2}(t)=x_{1}(t-0.1)$.
$\Rightarrow X_{2}=+1$
- Let $x_{3}(t)=\operatorname{Re}\left\{X_{3} e^{j 10 \pi t}\right\}$, where $\quad X_{3}=\frac{1+j}{\sqrt{2}}$.
$\Rightarrow X_{3}=e^{j 0.25 \pi}$
- Let $x_{4}(t)$ be the signal whose spectrum is shown in the sketch below:

The sum of all four sinusoids is a single sinusoid:

$$
x_{1}(t)+x_{2}(t)+x_{3}(t)+x_{4}(t)=A \cos (10 \pi t+\varphi),
$$

where (in standard form)

$$
A=\sqrt{2}>0, \quad \text { and } \varphi=0.5 \pi \quad \in(-\pi, \pi] .
$$

Phasor addition:

$$
\begin{aligned}
A e^{j \varphi} & =X_{1}+X_{2}+X_{3}+X_{4} \\
& =-1+1+e^{j 0.25 \pi}+e^{j 0.75 \pi} \\
& =\sqrt{2} j \\
& =\sqrt{2} e^{j 0.5 \pi}
\end{aligned}
$$

PROB. Su22-Q1.3.

Let $x(t)=30+\cos (120 \pi t) \cos \left(2 \pi f_{c} t\right)$.
The parameter f_{c} is positive but otherwise unspecified, it may be different in each part below.
(a) When $f_{c}=60 \mathrm{~Hz}$, the signal $x(t)$ is periodic with fundamental frequency $f_{0}=120 \mathrm{~Hz}$, and the first few Fourier series coefficients in the expansion $x(t)=\sum_{k} a_{k} e^{j k 2 \pi f_{0} t}$ are:
$a_{-2}=0 \quad a_{-1}=0.25 \quad a_{0}=030.5 \quad a_{1}=0.25 \quad a_{2}=0$
(b) The smallest positive value of f_{c} that makes the signal $x(t)$ periodic with fundamental frequency $f_{0}=8 \mathrm{~Hz}$ is

f_{c}	$f_{0}=\operatorname{gcd}\left(\left\|60-f_{c}\right\|,\left\|60+f_{c}\right\|\right)$
1	$f_{0}=\operatorname{gcd}(59,61)=1$
2	$f_{0}=\operatorname{gcd}(58,62)=2$
3	$f_{0}=\operatorname{gcd}(57,63)=3$
4	$f_{0}=\operatorname{gcd}(56,64)=8 \checkmark$

(c) There are numerous positive values for f_{c} that makes the signal $x(t)$ periodic with fundamental frequency $f_{0}=40 \mathrm{~Hz}$. Name any two:

All answers:
$\ell 120 \pm 20 \mathrm{~Hz}$ for integer ℓ
$\in\{20,100,140,220,260,340,380,460,500, \ldots\}$

PROB. Su22-Q1.4.

Consider the spectrum shown below:

Suppose we sample the signal $x(t)$ having the above spectrum with sampling rate f_{s}, and then feed the samples to an ideal D-to-C converter (with the same f_{s} parameter), producing the continuous-time output $y(t)$, as shown here:

(a) In order for $y(t)=x(t)$, the sampling rate must satisfy $f_{s}>$ \square Hz.
(b) Shown below is the spectrum for the D-C output $y(t)$, for each of five different values of the sampling rate.
Find the largest sampling rate f_{s} that leads to each output spectrum, and write it in the corresponding answer box.
Hint: all answers are integers chosen from the set $f_{s} \in\{1,2,3,4, \ldots 100\} \mathrm{Hz}$.
(i) $f_{s}=17 \mathrm{~Hz}$.

 $f(\mathrm{~Hz})$
(ii)

(iii) $f_{s}=15 \mathrm{~Hz}$.
 $f(\mathrm{~Hz})$
(iv)

Hz.

 $f(\mathrm{~Hz})$
(v)

