GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2014 Quiz \#1

June 11, 2014

NAME: \qquad GT username: \qquad

Circle your recitation section (otherwise you lose 3 points!):

	Mon	Tue
$10-11: 45 \mathrm{am}$		L02 (Moore)
$12-1: 45 \mathrm{pm}$		L03 (Moore)
$2: 40-3: 50 \mathrm{pm}$		L04 (Davis)
$4-5: 45 \mathrm{pm}$	L01 (Barry)	

Important Notes:

- DO NOT unstaple the test.
- One two-sided page ($8.5^{\prime \prime} \times 11^{\prime \prime}$) of hand-written notes permitted.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned
1	20	
2	20	
3	20	
4	20	
5	20	
No/Wrong Rec	-3	
Total		

PROB. Su14-Q1.1. (The different parts of this problem are unrelated. All answers are real numbers.)
(a) Solve $\frac{3+j}{r e^{j \theta}}=2 j+1 \quad$ for $r=\square \geq 0$ and $\theta=\square \in(-\pi, \pi]$.
(b) Solve $j e^{j 0.1 \pi}-2=\frac{1}{x-j y}$

$$
\text { for } x=\square \text { and } y=\square \text {. }
$$

(c) Solve $\sum_{k=-1}^{19} e^{j k 0.1 \pi}=r e^{j \theta}$ where $r=\square \geq 0, \theta=\square \in(-\pi, \pi]$.
(d) Solve $z+\frac{1}{z^{*}}=2 e^{-j 0.15 \pi} \quad$ for the unknown complex number $z=r e^{j \theta}$:

$$
\begin{aligned}
& r=\square \geq 0, \\
& \theta=\square \in(-\pi, \pi] .
\end{aligned}
$$

(e) Shown below are the locations of $\left\{z, z^{2}, z^{3}, \ldots, z^{10}\right\}$ in the complex plane, where z is an unspecified complex number:

Identify these locations by writing a letter (A, B, C, ... or J) in each answer box below.

PROB. Su14-Q1.2. The signal $x(t)=A \cos \left(\omega_{0} t+\theta\right)$ is shown below. As illustrated below, it is zero at time $t=0$, and it achieves a minimum value at time $t=0.034$:

(a) Specify numeric values for the following parameters:

$$
\begin{aligned}
& A=\square \geq 0, \\
& \omega_{0}=\square \mathrm{rad} / \mathrm{s}, \\
& \theta=\square \in(-\pi, \pi] .
\end{aligned}
$$

(b) Find a value for t_{0} in the range $0.996<t_{0}<1.004$ so that the signal $x(t)=A \cos \left(\omega_{0} t+\theta\right)$ shown above can be written as the delayed sinusoid $x(t)=A \cos \left(\omega_{0}\left(t-t_{0}\right)\right)$:

$$
0.996 \text { seconds }<t_{0}=\square<1.004 \text { seconds }
$$

PROB. Su14-Q1.3. All parts of this problem pertain to the signal:

$$
x(t)=8+8 \cos (82 \pi t+0.2 \pi)+8 \sin (102.5 \pi t) .
$$

(a) Sketch the spectrum for $x(t)$ in the space below.
(For each line be careful to label both its frequency and its complex amplitude.)

(b) The signal $x(t)$ is periodic with:

Hint: The remaining two parts below can be solved without performing any integration.
(c) Evaluate the integral (where T_{0} is the fundamental period):

$$
\int_{0}^{I_{0}} x(t) d t=\square .
$$

(d) Evaluate the integral (where T_{0} is the fundamental period):

$$
\int_{0}^{I_{0}} x(t) e^{-j 8 \pi t / T_{0}} d t=\square .
$$

PROB. Su14-Q1.4. The two parts of this problem are unrelated.
(a) Consider the equation below, in which two sinusoids are added to yield a third:

$$
2 \cos \left(\omega_{0} t+\theta\right)+A \sin \left(\omega_{0} t+0.2 \pi\right)=A \cos (122 \pi t) .
$$

Solve this equation for the unknown parameters A, ω_{0}, and θ :

(b) Consider the equation below, in which the sum of N sinusoids is zero:

$$
\sum_{k=1}^{N} \cos (2026 \pi t+0.02 \pi k)=0
$$

There are multiple values of N for which this equation is true. Specify three different possible values, all of which are positive:

$$
N=\square, \quad \text { or } \quad N=\square, \quad \text { or } \quad N=\square .
$$

PROB. Su14-Q1.5.

Suppose that a continuous-time signal $x(t)$ is sampled with sampling rate f_{s}, and that the samples are immediately fed to an ideal D-to-C converter (with the same f_{s} parameter), producing the continuous-time output signal $y(t)$, as shown below:

The input signal being sampled is the sum of two sinusoids:

$$
x(t)=\cos (80 \pi t)+\cos (160 \pi t) .
$$

(a) Find a value for the sampling rate f_{s} so that the output $y(t)$ is periodic with fundamental frequency $f_{0}=40 \mathrm{~Hz}$:

$$
f_{s}=\square \text { samples/s. }
$$

(b) Find the largest possible value for the sampling rate f_{s} so that the output $y(t)$ is periodic with fundamental frequency $f_{0}=20 \mathrm{~Hz}$:

(c) Find the largest possible value for the sampling rate f_{s} so that the output is a constant, $y(t)=A$ for all time t :

$$
f_{s}=\square \text { samples/s. }
$$

The corresponding constant is $y(t)=A=\square$.

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2014 Quiz \#1

June 11, 2014

GT username: \qquad

Circle your recitation section (otherwise you lose 3 points!):

	Mon	Tue
$10-11: 45 \mathrm{am}$		L02 (Moore)
$12-1: 45 \mathrm{pm}$		L03 (Moore)
$2: 40-3: 50 \mathrm{pm}$		L04 (Davis)
$4-5: 45 \mathrm{pm}$	L01 (Barry)	

Important Notes:

- DO NOT unstaple the test.
- One two-sided page (8.5 " $\times 11^{\prime \prime}$) of hand-written notes permitted.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned	
1	20		
2	20		
3	20		
4	20		
5	20		
No/Wrong Rec	-3		
Total			

PROB. Su14-Q1.1. (The different parts of this problem are unrelated. All answers are real numbers.)
(a) Solve $\frac{3+j}{r e^{j \theta}}=2 j+1 \quad$ for $r=\square \sqrt{2} \geq 0$ and $\theta=\square-0.25 \pi \quad \in(-\pi, \pi]$.
(b) Solve $\quad j e^{j 0.1 \pi}-2=\frac{1}{x-j y} \quad$ for $\quad x=-0.37 \quad$ and $y=-0.15$.
(c) Solve $\sum_{k=-1}^{19} e^{j k 0.1 \pi}=r e^{j \theta} \quad$ where $r=\square \geq 0, \theta=-0.1 \pi \quad \in(-\pi, \pi]$.

Only the $k=-1$ term; the other terms sum to zero
(d) Solve $z+\frac{1}{z^{*}}=2 e^{-j 0.15 \pi} \quad$ for the unknown complex number $z=r e^{j \theta}$:

$$
\begin{aligned}
r e^{j \theta}+\frac{1}{r e^{-j \theta}}=\left(r+\frac{1}{r}\right) e^{j \theta} & r=\square \\
& =0 \\
\text { equate angles } \Rightarrow \theta=-0.15 \pi & \\
\text { equate magnitudes } \Rightarrow r+1 / r=2 \Rightarrow r=1 . & \theta=-0.15 \pi
\end{aligned} \in(-\pi, \pi] .
$$

(e) Shown below are the locations of $\left\{z, z^{2}, z^{3}, \ldots, z^{10}\right\}$ in the complex plane, where z is an unspecified complex number:

Identify these locations by writing a letter (A, B, C, ... or J) in each answer box below.

PROB. Su14-Q1.2. The signal $x(t)=A \cos \left(\omega_{0} t+\theta\right)$ is shown below. As illustrated below, it is zero at time $t=0$, and it achieves a minimum value at time $t=0.034$:

(a) Specify numeric values for the following parameters:

$$
\begin{array}{ll}
A=0.22 \geq 0, & \begin{array}{l}
\text { Observe } 4.25 \text { cycles in } 0.034 \text { seconds } \\
\\
\end{array} \begin{aligned}
A 0 & =0.034 / 4.25=0.008
\end{aligned} \\
\omega_{0}=250 \pi & \mathrm{rad} / \mathrm{s},
\end{array}
$$

(b) Find a value for t_{0} in the range $0.996<t_{0}<1.004$ so that the signal $x(t)=A \cos \left(\omega_{0} t+\theta\right)$ shown above can be written as the delayed sinusoid $x(t)=A \cos \left(\omega_{0}\left(t-t_{0}\right)\right)$:

$$
0.996 \text { seconds }<t_{0}=0.998<1.004 \text { seconds }
$$

The peak closest to $t=0$ is at time $t_{p}=-T_{0} / 4 \Rightarrow$ we can write $x(t)=A \cos \left(\omega_{0}\left(t-t_{p}\right)\right)$.

Of course, being periodic we can further delay by any multiple of T_{0} with no change \Rightarrow we can also write $x(t)=A \cos \left(\omega_{0}\left(t-t_{0}\right)\right)$, where:

$$
t_{0}=-T_{0} / 4+m T_{0} \quad \text { for any integer } m
$$

Choosing $m=125$ puts this in the desired range:

$$
\begin{aligned}
t_{0} & =-T_{0} / 4+125 T_{0} \\
& =-0.002+1=0.998
\end{aligned}
$$

PROB. Su14-Q1.3. All parts of this problem pertain to the signal:

$$
x(t)=8+8 \cos (82 \pi t+0.2 \pi)+8 \sin (102.5 \pi t) .
$$

(a) Sketch the spectrum for $x(t)$ in the space below.
(For each line be careful to label both its frequency and its complex amplitude.)

(b) The signal $x(t)$ is periodic with:
fundamental frequency $f_{0}=10.25 \mathrm{~Hz}$,
and fundamental period $T_{0}=0.0976$ secs.
$\omega_{0}=\operatorname{gcd}(82 \pi, 102.5 \pi)=0.5 \pi \operatorname{gcd}(164,205)=0.5 \pi(41)=20.5 \pi$
$\Rightarrow f_{0}=\omega_{0} /(2 \pi)=10.25 \mathrm{~Hz}$
$\Rightarrow T_{0}=1 / f_{0}=0.0976$ seconds
Hint: The remaining two parts below can be solved without performing any integration.
(c) Evaluate the integral (where T_{0} is the fundamental period):

$$
\int_{0}^{I_{0}} x(t) d t=0.78
$$

This is almost the formula for a_{0}, which by inspection is 8 , except there is a $1 / T_{0}$ factor missing

$$
\Rightarrow \text { the integral is: } \quad T_{0} a_{0}=(0.0976)(8)=0.78
$$

(d) Evaluate the integral (where T_{0} is the fundamental period):

$$
\int_{0}^{I_{0}} x(t) e^{-j 8 \pi t / T_{0}} d t=0.39 e^{j 0.2 \pi}
$$

This is almost the formula for a_{4}, which by inspection is $4 e^{j 0.2 \pi}$, except there is a $1 / T_{0}$ factor missing

$$
\Rightarrow \text { the integral is: } \quad T_{0} a_{4}=(0.0976)\left(4 e^{j 0.2 \pi}\right)=0.39 e^{j 0.2 \pi}
$$

PROB. Su14-Q1.4. The two parts of this problem are unrelated.
(a) Consider the equation below, in which two sinusoids are added to yield a third:

$$
2 \cos \left(\omega_{0} t+\theta\right)+A \sin \left(\omega_{0} t+0.2 \pi\right)=A \cos (122 \pi t) .
$$

Solve this equation for the unknown parameters A, ω_{0}, and θ :

Since $\sin \left(\omega_{0} t+0.2 \pi\right)=\cos \left(\omega_{0} t+0.2 \pi-0.5 \pi\right)$,
 the corresponding phasor equation is:

$$
\begin{aligned}
& \omega_{0}=\square \mathrm{rad} / \mathrm{s}, \\
& \theta=0.32 \pi \in(-\pi, \pi]
\end{aligned}
$$

$$
\begin{aligned}
& 2 e^{j \theta}+A e^{-j 0.3 \pi}=A \\
\Rightarrow & 2+A e^{-j \theta} e^{-j 0.3 \pi}=A e^{-j \theta} \\
\Rightarrow & A e^{-j \theta}=\frac{2}{1-e^{-j 0.3 \pi}}=2.203 e^{-j 0.35 \pi}
\end{aligned}
$$

(b) Consider the equation below, in which the sum of N sinusoids is zero:

$$
\sum_{k=1}^{N} \cos (2026 \pi t+0.02 \pi k)=0
$$

There are multiple values of N for which this equation is true.
Specify three different possible values, all of which are positive:

$$
N=100 \text {, or } N=200 \text {, or } N=300 \text {. }
$$

The corresponding phasor equation is:

$$
\begin{aligned}
& \sum_{k=1}^{N} e^{j 0.02 \pi k}=0, \\
& \sum_{k=1}^{N} e^{j 2 \pi k / 100}=0
\end{aligned}
$$

This is the sum of N of the $100^{\text {th }}$ roots of unity
\Rightarrow it will be zero whenever N is a multiple of 100 .

PROB. Su14-Q1.5.

Suppose that a continuous-time signal $x(t)$ is sampled with sampling rate f_{s}, and that the samples are immediately fed to an ideal D-to-C converter (with the same f_{s} parameter), producing the continuous-time output signal $y(t)$, as shown below:

The input signal being sampled is the sum of two sinusoids:

$$
x(t)=\cos (80 \pi t)+\cos (160 \pi t) .
$$

(a) Find a value for the sampling rate f_{s} so that the output $y(t)$ is periodic with fundamental frequency $f_{0}=40 \mathrm{~Hz}$:

$$
f_{s}=\begin{gathered}
160^{+} \\
\text {(anything }>160)
\end{gathered} \text { samples/s. }
$$

The input is already periodic like this, so we need only choose sampling rate to avoid aliasing. Any f_{s} bigger than $2 f_{\max }=160 \mathrm{~Hz}$ will do.
(b) Find the largest possible value for the sampling rate f_{s} so that the output $y(t)$ is periodic with fundamental frequency $f_{0}=20 \mathrm{~Hz}$:

$$
f_{s}=140 \text { samples/s. }
$$

The lower-frequency sinusoid is 40 Hz , which is a multiple of 20 Hz . The output will be periodic with fundamental 20 Hz whenever the higher-frequency sinusoid aliases to a frequency that is a multiple of 20 Hz , but not a multiple of 40 Hz . The only possibility is 60 Hz . The 80 Hz sinusoid will alias to 60 Hz when the sample rate is 140 Hz .
(c) Find the largest possible value for the sampling rate f_{s} so that the output is a constant, $y(t)=A$ for all time t :

Substituting n / f_{s} for t yields:

$$
x[n]=\cos \left(80 \pi n / f_{s}\right)+\cos \left(160 \pi n / f_{s}\right)
$$

At $n=0$ this reduces to $x[0]=1+1=2$. To get this for any n, the arguments of both $\cos (\cdot)$ must be integer multiples of 2π; the largest f_{s} that does this is $f_{s}=40 \mathrm{~Hz}$.
The corresponding constant is $y(t)=A=2$

