GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2013 Quiz \#1

June 10, 2013

NAME: \qquad $\overline{(\text { LAST })}$

GT username: \qquad

Circle your recitation section (otherwise you lose 3 points!):	$\begin{array}{r} 10-11: 45 \mathrm{am} \\ 12-1: 45 \mathrm{pm} \end{array}$	Mon	Tue
			L02 (Moore)
			L03 (Moore)
	4-5:45pm	L01 (Barry)	

Important Notes:

- DO NOT unstaple the test.
- One two-sided page ($8.5^{\prime \prime} \times 11^{\prime \prime}$) of hand-written notes permitted.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned
1	20	
2	20	
3	20	
4	20	
5	20	
No/Wrong Rec	-3	
Total		

PROB. Su13-Q1.1. The figure below shows the locations of twelve points in the complex plane, along with the unit circle:

Match each point above to one of the functions of an unspecified complex number z shown in the table below, by arranging the letters $\{\mathrm{A}, \mathrm{B}, \ldots \mathrm{M}\}$ in the second column of the table below:
(1)
(2)
(3)

z	
$1 / z$	
z^{*}	
$1 / z^{*}$	
$z+z^{*}$	
$z-z^{*}$	
$z z^{*}$	
z / z^{*}	
z^{2}	
$j z$	
$z+j$	
$z+1$	

PROB. Su13-Q1.2. The signal $x(t)=B+A \cos \left(2 \pi f_{0} t+\theta\right)$ achieves a peak value of zero at time $t=0.02$ and again at time $t=0.04$, as shown below:

(a) Specify numeric values for the following parameters:

$$
\begin{aligned}
& B=\square \\
& A=\square \mathrm{Hz} \\
& f_{0}=\square \in(-\pi, \pi] . \\
& \theta=\square
\end{aligned}
$$

(b) Consider the following MATLAB code:

$$
\begin{aligned}
& t \mathrm{t}=0: 0.001: \text { dur; } \% \text { dur is the duration in seconds } \\
& \mathrm{xx}=\operatorname{real}((1-j) * \exp (j * 16 * \operatorname{pi*tt)})+\operatorname{real}((2-j) * \exp (j * 16 * p i * t t)) ;
\end{aligned}
$$

The variable xx represents a sinusoidal signal $x(t)=A \cos (\omega t+\theta)$ in standard form, where:

$$
\begin{aligned}
& \omega=\square \geq 0 \mathrm{rad} / \mathrm{s} \\
& A=\square \geq 0 \\
& \theta=\square \in(-\pi, \pi] .
\end{aligned}
$$

PROB. Su13-Q1.3. Several signals are plotted below along with their corresponding spectra.
However, they are in a scrambled order. For each of the signals below, identify its corresponding spectrum by writing a letter $\{\mathrm{A}, \mathrm{B}, \ldots \mathrm{G}\}$ into each answer box:

(1)

(2)

\square
(3)

(5)

PROB. Su13-Q1.4. Consider the periodic signal $x(t)$ shown below:

(a) The fundamental period of $x(t)$ is $T_{0}=$ \square seconds.
(b) The fundamental frequency is $f_{0}=\square \mathrm{Hz}$.
(c) In the Fourier series representation $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k 2 \pi t / T_{0}}$, the DC component is $a_{0}=$

(d) The spectrum for $x(t)$ will have a line at 90 Hz .
(Check one.)
Explain.
YES \square
\squareNOT ENOUGH INFORMATION

PROB. Su13-Q1.5. Suppose a sinusoidal signal $x(t)=\cos \left(2 \pi f_{0} t\right)$ with frequency f_{0} is sampled with a sampling rate of $f_{s}=3200$ samples $/ \mathrm{sec}$, and suppose that the resulting discrete-time sequence is as sketched below:

There are many possible values for the frequency f_{0}. Name any two.

$$
f_{0}=\square \mathrm{Hz}, \quad \text { or } \quad f_{0}=\square \mathrm{Hz}
$$

The remainder of this problem concerns the following piece of MATLAB code:

```
fsamp = 8000;
dt = 1/fsamp;
dur = 0.05;
A3 =
phi3 = _-----
tt = 0 : dt : dur;
x1 = cos(200*pi*tt );
x2 = cos(200*pi*tt + 0.25*pi);
x3 = A3*cos(200*pi*tt + phi3 );
x = x1 + x2 + x3;
```

(a) The length of the vector x 1 is length $(\mathrm{x} 1)=$ \square
(b) The sum $\mathrm{x}=\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3$ represents the sum of three sinusoids. In order for this sum to zero, the variables A3 and phi3 need to be:

$$
\text { A3 }=\square \geq 0, \quad \text { phi3 }=\square \in(-\pi, \pi] .
$$

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 - Summer 2013 Quiz \#1

June 10, 2013

GT username: \qquad

Circle your recitation section (otherwise you lose 3 points!):

	Mon	Tue
10-11:45am		L02 (Moore)
12-1:45pm		L03 (Moore)
4-5:45pm	L01 (Barry)	

Important Notes:

- DO NOT unstaple the test.
- One two-sided page (8.5 " $\times 11^{\prime \prime}$) of hand-written notes permitted.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score Earned	
1	20		
2	20		
3	20		
4	20		
5	20		
No/Wrong Rec	-3		
Total			

PROB. Su13-Q1.1. The figure below shows the locations of twelve points in the complex plane, along with the unit circle:

Match each point above to one of the functions of an unspecified complex number z shown in the table below, by arranging letters $\{\mathrm{A}, \mathrm{B}, \ldots \mathrm{M}\}$ in the second column of the table below:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(9)
(9)
(10)

z	G
$1 / z$	E
z^{*}	B
$1 / z^{*}$	H
$z+z^{*}$	A
$z-z^{*}$	J
$z z^{*}$	L
z / z^{*}	F
z^{2}	C
$j z$	K
$z+j$	D
$z+1$	I

PROB. Su13-Q1.2. The signal $x(t)=B+A \cos \left(2 \pi f_{0} t+\theta\right)$ achieves a peak value of zero at time $t=0.02$ and again at time $t=0.04$, as shown below:

(a) Specify numeric values for the following parameters:

$$
\begin{aligned}
& B=\begin{array}{|}
-2 \\
A & =\square \mathbf{H z} \\
f_{0}=\square & =\square(-\pi, \pi] .
\end{array} \\
& \boldsymbol{\theta}=\square \frac{0}{2}=\square
\end{aligned}
$$

(b) Consider the following Matlab code:

$$
\begin{aligned}
& t \mathrm{t}=0: 0.001: \text { dur } ; \% \text { dur is the duration in seconds } \\
& \mathrm{xx}=\operatorname{real}((1-\mathrm{j}) * \exp (\mathrm{j} * 16 * \mathrm{pi} * \mathrm{tt}))+\text { real }((2-\mathrm{j})) \exp (\mathrm{j} * 16 * \mathrm{pi} * t t)) ;
\end{aligned}
$$

The variable xx represents a sinusoidal signal $x(t)=A \cos (\omega t+\theta)$ in standard form, where:

$$
\begin{aligned}
& \omega=\frac{16 \pi}{}=0 \mathrm{rad} / \mathrm{s}(1-j)+(2-j)=3-2 j \approx 3.6 e^{-j 0.19 \pi} \\
& A=\sqrt{13} \approx 3.6 \geq 0 \\
& \boldsymbol{\theta}=--0.19 \pi \in(-\pi, \pi] .
\end{aligned}
$$

PROB. Su13-Q1.3. Several signals are plotted below along with their corresponding spectra. However, they are in a scrambled order. For each of the signals below, identify its corresponding spectrum by writing $\{A, B, \ldots . G\}$ into each answer box:

(1)

C
(2)

$$
\left.\right|_{1} ^{0.5 e^{j \pi}} \begin{aligned}
& 0.25 e^{j \pi} \\
& \left.\right|_{1} \\
& l
\end{aligned}
$$

(3)

E

(4)

A

(6)

D

PROB. Su13-Q1.4. Consider the periodic signal $x(t)$ shown below:

(a) The fundamental period of $x(t)$ is $T_{0}=0.06$ seconds.
(b) The fundamental frequency is $f_{\mathbf{0}}=16.67 \mathbf{H z}$.

$$
f_{0}=1 / T_{0}
$$

(c) In the Fourier series representation $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k 2 \pi t / T_{0}}$, the DC component is $a_{0}=$ 3

By inspection, or by integration: $a_{0}=\left(1 / T_{0}\right)$ (area under one period) $=(1 / 0.06)(0.18)=3$
(d) The spectrum for $x(t)$ will have a line at 90 Hz .
(Check one.)
Explain.

90 Hz is not an integer multiple of f_{0}.

PROB. Su13-Q1.5. Suppose a sinusoidal signal $x(t)=\cos \left(2 \pi f_{0} t\right)$ with frequency f_{0} is sampled with a sampling rate of $f_{s}=3200$ samples $/ \mathrm{sec}$, and suppose that the resulting discrete-time sequence is as sketched below:

There are many possible values for the frequency f_{0}. Name any two.

$$
f_{0}=200 \mathrm{~Hz}, \quad \text { or } \quad f_{0}=200+3200 \ell \mathrm{~Hz} . \quad \text { for any integer } \ell
$$

From the stem plot we can write $x[n]=\cos (2 \pi n / 16)$. Since this is a sinusoid whose digital frequency is less than π, we can convert to continuous time via the substitution $n=t f_{s}$

$$
\Rightarrow x(t)=\cos \left(2 \pi\left(f_{s} / 16\right) t\right) \Rightarrow f_{0}=f_{s} / 16=200 \mathrm{~Hz}
$$

Other solutions can be found by adding ℓf_{s} for any integer ℓ.
The remainder of this problem concerns the following piece of MATLAB code:

```
fsamp = 8000;
dt = 1/fsamp;
dur = 0.05;
A3 =
phi3 = _-----
tt = 0 : dt : dur;
x1 = cos(200*pi*tt );
x2 = cos(200*pi*tt + 0.25*pi);
x3 = A3*cos(200*pi*tt + phi3 );
x = x1 + x2 + x3;
```

(a) The length of the vector x 1 is length $(\mathrm{x} 1)=401$

$$
\text { length }=\text { dur } / \mathrm{dt}+1=(0.05)(8000)+1=401
$$

(b) The sum $x=x 1+x 2+x 3$ represents the sum of three sinusoids.

In order for this sum to zero, the variables A3 and phi3 need to be:

$$
\begin{aligned}
& \text { A3 }=\frac{1.848}{} \geq 0, \quad \text { phi3 }=-0.875 \pi \quad \in(-\pi, \pi] . \\
& 1+e^{j 0.25 \pi}+A_{3} e^{j \varphi_{3}}=0 \quad \Rightarrow \quad A_{3} e^{j \varphi_{3}}=-\left(1+e^{j 0.25 \pi}\right) \approx 1.848 e^{-j 0.875 \pi}
\end{aligned}
$$

