GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 Spring 2022
Quiz \#1
February 11, 2022

NAME: \qquad $\overline{\text { (LAST) }}$

GT username: \qquad

To earn 2 points, circle your recitation section:

L01 (Tai)	L07 (Tai)	L09 (Hessler)	L11 (Hessler)
L02 (Duan)	L08 (Sadiq)	L10 (Sadiq)	L12 (Duan)

Important Notes:

- Do not unstaple the test.
- One two-sided page (8.5 " $\times 11^{\prime \prime}$) of hand-written notes permitted.
- Calculators are allowed, but no smartphones/tablets/readers/etc.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score
1	30	
2	33	
3	35	
RECITATION	2	
Total		

PROB. Sp22-Q1.1. Let $z=0.8 e^{-j 0.7 \pi}$. Here is a list of fifteen numbers that are all dependent on z :

z

$z+1$

$z+j$

$j z$

Shown below are the locations of these fifteen numbers in the complex plane. Match each number above to its corresponding location in the complex plane below; indicate your answer by writing a letter from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots \mathrm{O}\}$ in each answer box above. (Use each letter once.)

PROB. Sp22-Q1.2.

Let $x(t)=\cos \left(2 \pi f_{0} t\right)$ be a sinusoid whose period is $\frac{1}{f_{0}}=1.2$ seconds.
Define a new signal as the sum of two different delayed versions of this sinusoid, according to:

$$
y(t)=x(t-\tau)+x(t-2 \tau),
$$

where the delay parameter τ is unspecified. (The first is delayed by τ, the second by 2τ.)
(a) The smallest positive value of τ for which the sum is $y(t)=0($ for all $t)$ is $\tau=$ \square secs.
(b) The smallest positive (nonzero!) value of τ for which the sum is $y(t)=2 \cos \left(2 \pi f_{0} t\right)$ is $\tau=$ \square secs.
(c) The smallest positive value of τ for which the sum is $y(t)=\underset{(\text { not } \cos)}{\sqrt{3} \sin \left(2 \pi f_{0} t\right) \text { is } \tau=\square}$ secs.

PROB. Sp22-Q1.3. Match each signal plotted on the left (labeled A through G) to its corresponding spectrum on the right; indicate your answer by writing a letter (from A through G) into each answer box:

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 Spring 2022
Quiz \#1
February 11, 2022

NAME: $\frac{\text { ANSWER KEY }}{\text { (FIRST) }} \frac{\text { (LAST) }}{\text { KE }}$
GT username: $\frac{\mathbf{A}}{(\text { e.g., gtxyz123) }}$

To earn 2 points, circle your recitation section:

L01 (Tai)	L07 (Tai)	L09 (Hessler)	L11 (Hessler)
L02 (Duan)	L08 (Sadiq)	L10 (Sadiq)	L12 (Duan)

Important Notes:

- Do not unstaple the test.
- One two-sided page (8.5 " $\times 11^{\prime \prime}$) of hand-written notes permitted.
- Calculators are allowed, but no smartphones/tablets/readers/etc.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes. If more space is needed for scratch work, use the backs of the previous pages.

Problem	Value	Score
1	30	
2	33	
3	35	
RECITATION	2	
Total		

PROB. Sp22-Q1.1. Let $z=0.8 e^{-j 0.7 \pi}$. Here is a list of fifteen numbers that are all dependent on z :

$z+1$

Shown below are the locations of these fifteen numbers in the complex plane. Match each number above to its corresponding location in the complex plane below; indicate your answer by writing a letter from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots \mathrm{O}\}$ in each answer box above. (Use each letter once.)

PROB. Sp22-Q1.2.

Let $x(t)=\cos \left(2 \pi f_{0} t\right)$ be a sinusoid whose period is $\frac{1}{f_{0}}=1.2$ seconds.
corresponding phasor equation:

- $A e^{j \varphi}=e^{-j \theta}+e^{-j 2 \theta}$ where $\theta=2 \pi f_{0} \tau$
Define a new signal as the sum of two different delayed versions of this sinusoid, according to:

$$
y(t)=x(t-\tau)+x(t-2 \tau),
$$

where the delay parameter τ is unspecified. (The first is delayed by τ, the second by 2τ.)
(a) The smallest positive value of τ for which the sum is $y(t)=0$ (for all t) is $\tau=$

Start with above picture, increase θ until the two phasors cancel eachother

$$
\begin{aligned}
& \Rightarrow \text { until } e^{-j \theta} \text { points left }(\theta=\pi) \text {, so that } e^{-j 2 \theta} \text { points right } \\
& \Rightarrow \theta=\pi=2 \pi f_{0} \tau \\
& \Rightarrow \tau=\frac{1}{2 f_{0}}=0.6
\end{aligned}
$$

(b) The smallest positive (nonzero!) value of τ

$$
\begin{aligned}
& \text {) value of } \tau \\
& \text { for which the sum is } y(t)=2 \cos \left(2 \pi f_{0} t\right) \text { is } \tau=1.2 \text { secs. }
\end{aligned}
$$

Start with above picture, increase θ until the two phasors point in the same direction

$$
\begin{aligned}
& \Rightarrow \text { until } e^{-j \theta} \text { points right }(\theta=2 \pi) \text { and } e^{-j 2 \theta} \text { also points right } \\
& \Rightarrow \theta=2 \pi=2 \pi f_{0} \tau \\
& \Rightarrow \tau=\frac{1}{f_{0}}=1.2
\end{aligned}
$$

(c) The smallest positive value of τ for which the sum is $y(t)=\underset{\text { (not cos) }}{\sqrt{3} \sin \left(2 \pi f_{0} t\right)}$ is $\tau=0.2$ secs.

The complex phasor for $\sqrt{3} \sin \left(2 \pi f_{0} t\right)$ is $A e^{j \varphi}=-j \sqrt{3}$, which points straight down
\Rightarrow Start with above picture, increase θ until the sum of the two phasors points down:

$$
\begin{aligned}
& \Rightarrow \theta=\frac{\pi}{3}=2 \pi f_{0} \tau \\
& \Rightarrow \tau=\frac{1}{6 f_{0}}=0.2
\end{aligned}
$$

PROB. Sp22-Q1.3. Match each signal plotted on the left (labeled A through G) to its corresponding spectrum on the right; indicate your answer by writing a letter (from A through G) into each answer box:

5 Hz
sin

5 Hz
-COS

10 Hz

10 Hz

10 Hz
-sin

\sin

-cos

