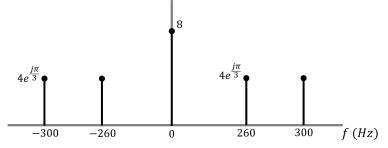
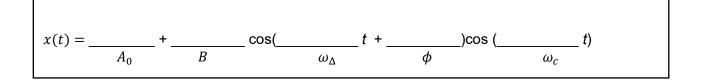
GEORGIA INSTITUTUE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 – Fall 2023 Exam #1


NAME:			GTemail:	
	FIRST	LAST	_	ex: gpburdell@gatech.edu

- Write your name at the top of EACH PAGE.
- DO NOT unstaple the test.
- Closed book, except for one two-sided page $(8.5'' \times 11'')$ of hand-written notes permitted.
- Calculators are allowed, but no smartphones/readers/watches/tablets/laptops/etc.
- JUSTIFY your reasoning CLEARLY to received partial credit.
- Express all angles as a fraction of π . (i.e., write 0.4π or $\frac{2\pi}{5}$ instead of 1.257)
- All angles must be expressed in the range $(-\pi, \pi]$ for full credit.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the **boxes/spaces** provided. DO NOT write on the backs of the pages.
- All exams will be collected and uploaded to gradescope for grading.


Problem	Value	Score
1	20	
2	20	
3	20	
Tota		

PROBLEM 1: Parts a and b (10 points each) can be solved independently of each other.

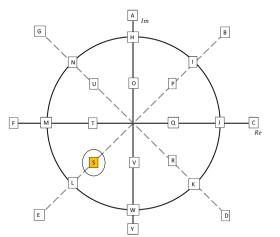
A signal x(t) is described by the spectrum plot below (use this spectrum for parts (a) and (b))

(a) Express x(t) in the form: $x(t) = A_0 + B\cos(\omega_{\Delta}t + \phi)\cos(\omega_c t)$ (i.e., DC term plus AM).

(b) The Fourier series representation of x(t) is $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$.

Find f_0 (in Hz)

List the **non-zero** Fourier series coefficients (a_k) along with their k-index in the table below.


k				
a_k				

$$f_0 =$$

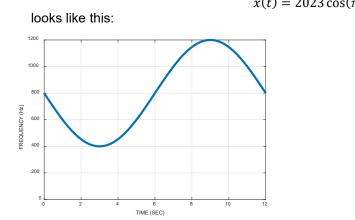
PROBLEM 2:

Parts a and b (10 points each) can be solved independently of each other.

(a) Consider the complex plane below with the unit circle shown and complex numbers labeled with a letter from A to Y. Assume that we start with a complex number $z = re^{j\theta}$ at position **S** as indicated by the black circle and shaded box. We also define a new complex number, z_1 , that relates to z by the set of equations in the table below. Select the letter that best approximates the position of z_1 .

Equations ($\mathbf{Z}_1 = \mathbf{)}$	Letter
Z	S
$\frac{Z^*Z}{r^2}$	
rz^{-1}	
$\frac{1}{z^*}$	
$\frac{1}{4} \frac{(z^* + z)}{(r\cos(\theta))}$	

(b) Find an integer *N* in the range 21 < N < 40, and also find A > 0 and $\phi \in (-\pi, \pi]$, such that the following equation is true for all time *t*:


$$x(t) = 8\cos(50\pi t - \pi/3) + 8\cos(50\pi t - 2\pi/3) + \sum_{k=-11}^{\infty} 6\cos(100\pi t + \pi k/8) = A\cos(50\pi t + \phi)$$

PROBLEM 3:

Parts a and b (10 points each) can be solved independently of each other.

(a) Find numerical values for the constants *A*, *B*, and *C* so that the spectrogram of the signal $x(t) = 2023 \cos(\pi At + B \cos(\pi Ct))$

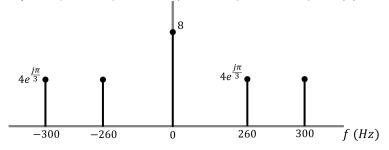
A =	<i>B</i> =	C =

(b) A sinusoid is defined as $x(t) = \Re e \left\{ 6e^{j\theta} e^{-j\frac{\pi}{4}} e^{j10\pi t} \right\} = A \cos(\omega_0(t+0.03)) = A \cos(\omega_0 t+\varphi)$. Find A, ω_0 , and θ .

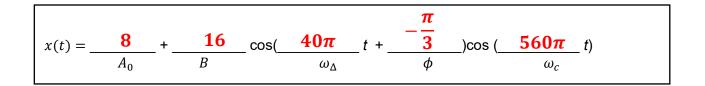
A (> 0) =	$\omega_0 (\geq 0) =$	$\theta \in (-\pi, \pi] = _ \qquad \pi$
-----------	-----------------------	--

GEORGIA INSTITUTUE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 – Fall 2023 Exam #1


NAME:			GTemail:	
	FIRST	LAST	_	ex: gpburdell@gatech.edu

- Write your name at the top of EACH PAGE.
- DO NOT unstaple the test.
- Closed book, except for one two-sided page $(8.5'' \times 11'')$ of hand-written notes permitted.
- Calculators are allowed, but no smartphones/readers/watches/tablets/laptops/etc.
- JUSTIFY your reasoning CLEARLY to received partial credit.
- Express all angles as a fraction of π . (i.e., write 0.4π or $\frac{2\pi}{5}$ instead of 1.257)
- All angles must be expressed in the range $(-\pi, \pi]$ for full credit.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the **boxes/spaces** provided. DO NOT write on the backs of the pages.
- All exams will be collected and uploaded to gradescope for grading.


Problem	Value	Score
1	20	
2	20	
3	20	
Tota		

PROBLEM 1: Parts a and b (10 points each) can be solved independently of each other.

A signal x(t) is described by the spectrum plot below (use this spectrum for parts (a) and (b))

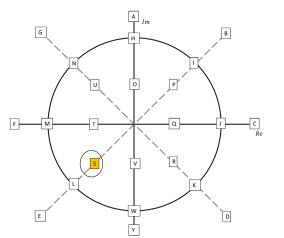
(a) Express x(t) in the form: $x(t) = A_0 + B\cos(\omega_{\Delta}t + \phi)\cos(\omega_c t)$ (i.e., DC term plus AM).

(b) The Fourier series representation of x(t) is $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$.

Find f_0 (in Hz)

gcd(260,300)=20

$$f_0 = 20 \text{ Hz}$$


List the **non-zero** Fourier series coefficients (a_k) along with their k-index in the table below.

k	0	-13	13	-15	15	
a _k	8	$4e^{\frac{j\pi}{3}}$	$\frac{j\pi}{4e^{3}}$	$\frac{j\pi}{4e^{3}}$	$4e^{-j\pi}$	

PROBLEM 2:

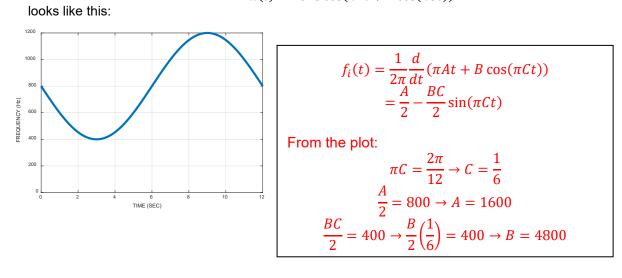
Parts a and b (10 points each) can be solved independently of each other.

(a) Consider the complex plane below with the unit circle shown and complex numbers labeled with a letter from A to Y. Assume that we start with a complex number $z = re^{j\theta}$ at position **S** as indicated by the black circle and shaded box. We also define a new complex number, z_1 , that relates to z by the set of equations in the table below. Select the letter that best approximates the position of z_1 .

Equations ($\mathbf{Z}_1 = \mathbf{)}$	Letter
Z	S
$\frac{Z^*Z}{r^2}$	J
rz^{-1}	N
$\frac{1}{z^*}$	E
$\frac{1}{4} \frac{(z^* + z)}{(r\cos(\theta))}$	Q

(b) Find an integer *N* in the range 21 < N < 40, and also find A > 0 and $\phi \in (-\pi, \pi]$, such that the following equation is true for all time *t*:

$$x(t) = 8\cos(50\pi t - \pi/3) + 8\cos(50\pi t - 2\pi/3) + \sum_{k=-11}^{N} 6\cos(100\pi t + \pi k/8) = A\cos(50\pi t + \phi)$$


$$\sum_{k=-11}^{N} 6\cos(100\pi t + \pi k/8) = 0 \rightarrow 6 \sum_{k=-11}^{N} e^{\frac{j2\pi k}{16}} = 0$$

This function will equal zero for values of $N = 4,20,36,52,...$ etc. But in the given range the answer is $N = 36$
 $8\cos(50\pi t - \pi/3) + 6\cos(50\pi t - 2\pi/3) = A\cos(50\pi t + \phi)$
Use Phasor addition:
 $8e^{-\frac{j\pi}{3}} + 8e^{-\frac{j2\pi}{3}} = 8\sqrt{3}e^{-j0.5\pi}$

$$N = 36 \qquad \qquad A = 8\sqrt{3} \qquad \qquad \phi = \underline{-0.5} \pi$$

PROBLEM 3:

Parts a and b (10 points each) can be solved independently of each other.

(a) Find numerical values for the constants *A*, *B*, and *C* so that the spectrogram of the signal $x(t) = 2023 \cos(\pi At + B \cos(\pi Ct))$

A = 1600	<i>B</i> = 4800	$C = \frac{1}{6}$
----------	-----------------	-------------------

(b) A sinusoid is defined as $x(t) = \Re e \left\{ 6e^{j\theta} e^{-j\frac{\pi}{4}} e^{j10\pi t} \right\} = A \cos(\omega_0(t+0.03)) = A \cos(\omega_0 t + \varphi)$. Find A, ω_0 , and θ .

$$\Re e \left\{ 6e^{j\theta} e^{-j\frac{\pi}{4}} e^{j10\pi t} \right\} = 6 \cos \left(10\pi t - \frac{\pi}{4} + \theta \right) = A \cos(\omega_0 t + \varphi)$$
$$\omega_0 = 10\pi$$
$$A = 6$$
$$\varphi = \omega_0(0.03) = -\frac{\pi}{4} + \theta \rightarrow \theta = (10\pi)(0.03) + 0.25\pi = 0.3\pi + 0.25\pi = 0.55\pi$$
$$\theta = 0.55\pi$$

A (> 0) = 6	$\omega_0(\geq 0) = 10\pi$	$\theta \in (-\pi,\pi] = \underbrace{0.55}_{\pi} \pi$
--------------------	----------------------------	---