GEORGIA INSTITUTUE OF TECHNOLOGY
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
EXAM 1
DATE:20-Sept-19 COURSE: ECE-2026

NAME: Solutions
LAST,
FIRST
CanvasID:
ex: gtJohnA

Circle your correct recitation section number - failing to do so will cost you 2 points

Recitation time	Mon	Tue	Wed	Thu
$09: 30: 10: 45$		L12 Farahmand		L06 Causey
$12: 00-13: 15$		L07 Farahmand		L08 Barry
$13: 30-14: 45$		L09 Farahmand		L10 Barry
$15: 00-16: 15$	L01 Juang	L11 Farahmand	L02 Casinovi	
$16: 30-17: 45$			L04 Casinovi	

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT. PROBLEMS WITH NO WORK AND JUST ANSWERS MAY RECEIVE 0 CREDIT, EVEN IF THE ANSWER IS CORRECT. YOU MUST SHOW SOME NUMERICAL WORK, REASONING, OR EXPLANATION FOR YOUR ANSWER. (I.E., DON'T JUST PUT AN ANSWER AND LEAVE THE WORK AREA BLANK)
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the boxes/spaces provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π or $\frac{2 \pi}{5}$ instead of 1.257)
- ALL RADIAN ANSWERS MUST BE IN THE RANGE ($-\pi, \pi]$ FOR CREDIT.

Problem	Value	Score
1	20	
2	20	
3	20	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1

Parts a and be can be solved independently of each other
(a) Consider the following complex signal defined as:

$$
z(t)=A e^{j\left(\omega_{0} t+\varphi\right)}
$$

with the following known information

1. $z(6)=A e^{j \frac{\pi}{2}}$ (i.e., @ $t=6$, the equivalent expression for $z(t)$ is $A e^{j \frac{\pi}{2}}$)
2. The rotating phasor portion of $z(t)$ covers 9π radians every 30 seconds.
3. $z(t) z^{*}(t)=64$

Find A, ω_{0}, and φ. (Recall all phase angles must be in the range $(-\pi, \pi]$ for credit) (10 points)
Solution: From (2) $-\omega_{0}=\frac{9 \pi}{30}=\frac{3 \pi}{10}$; From (3) $-z z^{*}=|z|^{2}=A^{2}=64 \rightarrow A=8$;
From (1): $z(6)=A e^{j\left(\frac{3 \pi}{10}(6)+\varphi\right)}=A e^{j\left(\frac{18 \pi}{10}+\varphi\right)}=A e^{j \frac{j \pi}{2}} \rightarrow \varphi=\frac{\pi}{2}-\frac{18 \pi}{10}=-\frac{13 \pi}{10} \rightarrow-\frac{13 \pi}{10}+2 \pi=\frac{7 \pi}{10}$

$$
A=\ldots \quad \omega_{0}=\ldots \quad 3 \pi / 10 _\quad \varphi=\ldots \quad 7 \pi / 10
$$

(b) From the plot below find $A, B, \omega_{0}, \varphi$, and t_{d} such that the sinusoid may be expressed as $x(t)=B+$ $A \cos \left(\omega_{0} t+\phi\right)=B+A \cos \left(\omega_{0}\left(t-t_{d}\right)\right)$ below. (Recall all phase angles must be in the range ($-\pi, \pi]$ for credit) (10 points)

PROBLEM 2:

Parts \mathbf{a} and \mathbf{b} can be solved independently of each other.
(a) Consider the complex plane below with complex numbers marked by an \mathbf{X} and labeled with a letter from A to Y . Assume that we start with a complex number $\mathbf{z}=\boldsymbol{r} \boldsymbol{e}^{\boldsymbol{j \theta}}$ at position \mathbf{S} as indicated by the black arrow and colored box. We also define a new complex number, z_{1}, that relates to \mathbf{z} by the set of equations in the table below. Based on these equations, select the letter that best approximates the position of $\boldsymbol{z}_{\mathbf{1}}$. (You may show work on the picture) (10 points)

Equations $\left(\mathbf{z}_{\mathbf{1}}=\right)$	Letter
\mathbf{z}	\mathbf{S}
$\left(z^{*}\right)(z)\left(r^{-2}\right)$	J
$\frac{r j}{z^{*}}$	K
$-\frac{1}{z}$	D
$0.5(r \sin (\theta))^{-1}\left(z^{*}-z\right)$	W

(b) Consider the following expression for $x(t)$. Simplify the summation terms and rewrite $x(t)$ using as few sinusoids as possible (all radian should be in the range ($-\pi, \pi]$). (10 points)

$$
x(t)=\sum_{k=39}^{55} 2 \cos (300 \pi t+\pi k / 8)+\sum_{k=53}^{77} 2 \cos (300 \pi t+\pi k / 12)
$$

Solution:

$$
\begin{gathered}
x(t)=\sum_{k=39}^{55} 2 \cos \left(300 \pi t+\frac{\pi k}{8}\right)+\sum_{k=53}^{77} 2 \cos \left(300 \pi t+\frac{\pi k}{12}\right) \\
=2 \cos \left(300 \pi t+\frac{55 \pi}{8}\right)+2 \cos \left(300 \pi t+\frac{77 \pi}{12}\right) \\
=2 \cos \left(300 \pi t+\frac{7 \pi}{8}\right)+2 \cos \left(300 \pi t+\frac{5 \pi}{12}\right)(\text { use phasor addition }) \\
\approx 3 \cos (300 \pi t+0.6458 \pi)
\end{gathered}
$$

$$
x(t)=\quad 3 \cos (300 \pi t+0.6458 \pi)
$$

PROBLEM 3:

Parts a and b can be solved independently of each other
(a) The spectrum of a real signal $x(t)$ is shown below. Write the signal $x(t)$ as a sum of sinusoids in the standard form $x(t)=A_{0}+\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} t+\varphi_{k}\right)$ (10 points)

$x(t)=3.5+8 \cos \left(18 \pi t+\frac{\pi}{5}\right)+6 \cos \left(40 \pi t-\frac{\pi}{3}\right)$
(b) Consider the signal $x(t)=\operatorname{Re}\left\{3 j e^{j\left(30 \pi t+\frac{\pi}{3}\right)}\right\}+\operatorname{Re}\left\{3 e^{j\left(30 \pi t-\frac{\pi}{6}\right)}\right\}+\operatorname{Re}\left\{-4 j e^{j\left(40 \pi t+\frac{\pi}{6}\right)}\right\}$. Write the signal $x(t)$ as a sum of sinusoids in the standard form $x(t)=A_{0}+\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} t+\varphi_{k}\right) \quad$ 10 points)

Solution:

$$
\begin{gathered}
x(t)=3 \cos \left(30 \pi t+\frac{5 \pi}{6}\right)+3 \cos \left(30 \pi t-\frac{\pi}{6}\right)+4 \cos \left(40 \pi t-\frac{\pi}{3}\right) \\
x(t)=4 \cos \left(40 \pi t-\frac{\pi}{3}\right)
\end{gathered}
$$

$x(t)=\quad 4 \cos \left(40 \pi t-\frac{\pi}{3}\right)$

