DATE:18-Sept-17 COURSE: ECE-2026

NAME:
LAST,
FIRST

TSquareID:
ex: gtJohnA

Circle your correct recitation section number - failing to do so will cost you 2 points

Recitation time	Mon	Tue	Wed	Thu
$09: 30: 10: 45$				L06 Harper
$12: 00-13: 15$		L07 Causey		L08 Harper
$13: 30-14: 45$		L09 Yang		L10 Stuber
$15: 00-16: 15$	L01 Juang	L11 Yang	L02 Causey	L12 Stuber
$16: 30-17: 45$	L03 Marenco		L04 Causey	

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the boxes/spaces provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4 m instead of 1.257)
- ALL RADIAN ANSWERS SHOULD BE IN THE RANGE (-пा, п].

Problem	Value	Score
1	20	
2	20	
3	10	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1:

The sinusoidal signal shown below is in the form: $x(t)=B+A \cos \left(\omega_{0} t+\varphi\right)$

(a) Find B, A, ω_{0}, and φ (SHOW YOUR WORK) (12 points)

To find $B:(28+-12) / 2=8$
To find $A:(28+12) / 2=20$
To find $\omega_{0}: T=(1+4)=5 \sec \rightarrow \omega_{0}=\frac{1}{5} * 2 \pi=\frac{2 \pi}{5}=0.4 \pi$
To find $\varphi: t_{d}=1 \sec \rightarrow \varphi=-\omega_{0} t_{d}=-0.4 \pi$
\square

$$
A=_20 _\quad B=_8 _\quad \omega_{0}=__0.4 \pi _\quad \varphi=_-0.4 \pi
$$

(b) A sinusoid is defined as $x(t)=\Re e\left\{3 e^{j \theta} e^{-j \frac{2 \pi}{5}} e^{j 80 \pi t}\right\}$. Find θ such that the closest peak to zero for $x(t)$ is located at $\mathbf{- 0 . 0 1}$ seconds. (SHOW YOUR WORK) (8 points) (Make sure that $\theta \in(-\pi, \pi])$

$$
x(t)=\Re e^{\{ }\left\{3 e^{j \theta} e^{-j \frac{2 \pi}{5}} e^{j 80 \pi t}\right\}=3 \cos (80 \pi t+\theta-2 \pi / 5) \rightarrow t_{d}=-\frac{\left(\theta-\frac{2 \pi}{5}\right)}{80 \pi}=-0.01
$$

$t_{d}=-\frac{\left(\theta-\frac{2 \pi}{5}\right)}{80}=-0.01 \rightarrow \theta=0.8 \pi+0.4 \pi=1.2 \pi \rightarrow-0.8 \pi$

PROBLEM 2:

Parts \mathbf{a} and \mathbf{b} can be solved independently of each other.
(a) Consider the plot below where $z=r e^{j \theta}$. Based on the information provided in the plot find all possible values of $\theta \in(-\pi, \pi]$. (NOTE: Assume $\left.j z^{4}=p e^{j \varphi}\right)(10$ points)
$j z^{4}=e^{\frac{j \pi}{2}}\left(r^{4} e^{j 4 \theta}\right)=p e^{j 0}$
$r^{4} e^{j 4 \theta}=p e^{-j \frac{\pi}{2}+j 2 \pi k}$
$r= \pm \sqrt[4]{p} \rightarrow z= \pm \sqrt[4]{p} e^{-\frac{j \pi}{8}+\frac{j 2 \pi k}{4}}$
$r=\sqrt[4]{p} \rightarrow z=\sqrt[4]{p} e^{-\frac{j \pi}{8}+\frac{j 2 \pi k}{4}}$
$\rightarrow k=0,1,2,3: \theta=-\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{7 \pi}{8}, \frac{11 \pi}{8}$
(NOTE: $\theta=\frac{11 \pi}{8} \rightarrow-\frac{5 \pi}{8}$)
$r=-\sqrt[4]{p} \rightarrow z=-\sqrt[4]{p} e^{-\frac{j \pi}{8}+j \pi+\frac{j 2 \pi k}{4}}=\sqrt[4]{p} e^{\frac{j 7 \pi}{8}+\frac{j 2 \pi k}{4}}$
$\rightarrow k=0,1,2,3: \theta=\frac{7 \pi}{8}, \frac{11 \pi}{8},-\frac{\pi}{8}, \frac{19 \pi}{8}$

(NOTE: $\theta=\frac{19 \pi}{8} \rightarrow \frac{3 \pi}{8}$)
Therefore:
$\theta=-\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{7 \pi}{8},-\frac{5 \pi}{8}$

$$
\theta=-\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{7 \pi}{8},-\frac{5 \pi}{8}
$$

(b) Solve the following equation for K (express you answer in the polar form with any potential radian angles bound by $(-\pi, \pi])$. (10 points)

$$
\sum_{k=28}^{39} 10 e^{j\left(\frac{2 \pi}{27} k\right)}+\sum_{k=41}^{54} 10 e^{j\left(\frac{2 \pi}{27} k\right)}=K
$$

The only vector missing from this summation to make it equal 0 is $k=40$. Therefore, the answer is:
$K=-10 e^{\frac{j 2 \pi}{27}(40)}=-10 e^{\frac{j 2 \pi}{27}(13)}=10 e^{\frac{j 2 \pi(13)}{27}-j \pi}=10 e^{\frac{j 2 \pi(13)}{27}-\frac{j 27 \pi}{27}}=10 e^{-\frac{j \pi}{27}}$

$$
K=\ldots 10 e^{\frac{-j \pi}{27}}
$$

PROBLEM 3:

The following MATLAB code is used to generate a plot of a sinusoidal signal $(\boldsymbol{y}(\boldsymbol{t}))$ represented by the MATLAB vector yy. Write a mathematical formula for the signal in standard sinusoidal form (i.e., $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{A} \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\omega}_{0} \boldsymbol{t}+\boldsymbol{\varphi}\right)$ with $\left.\boldsymbol{\varphi} \in(-\boldsymbol{\pi}, \boldsymbol{\pi}]\right)$ inside the box provided and determine how many periods, \boldsymbol{N}, will be plotted by the MATLAB code (note this may not be an integer). (10 points)

```
dt = 1/1000;
tt = -0.04:dt:0.12;
FO = 30;
yy = real(3 + 1.5*exp(j*(2*pi*Fo*(tt +0.02))));
plot( tt, yy );
axis tight;
y(t)=\Ree{3+1.5e j(2\pi30(t+0.02)}}=3+1.5\operatorname{cos}(60\pit+1.2\pi)=3+1.5\operatorname{cos}(60\pit-0.8\pi
N=\frac{0.16}{\frac{1}{30}}=4.8\mathrm{ periods}
```


