GEORGIA INSTITUTUE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING EXAM 1

DATE:18-Sept-17 COURSE: ECE-2026

NAME:

LAST,

FIRST

TSquareID: _____ex: gtJohnA

Circle your correct recitation section number - failing to do so will cost you 2 points					
Recitation time	Mon	Tue	Wed	Thu	
09:30:10:45				L06 Harper	
12:00-13:15		L07 Causey		L08 Harper	
13:30-14:45		L09 Yang		L10 Stuber	
15:00-16:15	L01 Juang	L11 Yang	L02 Causey	L12 Stuber	
16:30-17:45	L03 Marenco		L04 Causey		

- Write your name on the front page ONLY. **<u>DO NOT unstaple the test</u>**
- Closed book, but a calculator is permitted.
- One page $\left(8\frac{1}{2}'' \times 11''\right)$ of **HAND-WRITTEN** notes permitted. OK to write on both sides.
- SHOW ALL YOUR WORK ON ALL PROBLEMS TO RECEIVE CREDIT
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the **boxes/spaces** provided. If more space is needed for scratch work, use the backs of previous pages.
- WRITE ANY RADIAN ANSWERS AS A FRACTION OF PI. (i.e., write 0.4π instead of 1.257)
- ALL RADIAN ANSWERS SHOULD BE IN THE RANGE $(-\pi, \pi]$.

Problem	Value	Score
1	20	
2	20	
3	10	
No/Wrong Recitation Circled	-2	
Total		

PROBLEM 1:

The sinusoidal signal shown below is in the form: $x(t) = B + A\cos(\omega_0 t + \varphi)$

(a) Find *B*, *A*, ω_0 , and φ (SHOW YOUR WORK) (12 points) To find *B*: (28+-12)/2 = 8 To find *A*: (28+12)/2 = 20 To find ω_0 : $T = (1 + 4) = 5 \sec \rightarrow \omega_0 = \frac{1}{5} * 2\pi = \frac{2\pi}{5} = 0.4\pi$ To find φ : $t_d = 1 \sec \rightarrow \varphi = -\omega_0 t_d = -0.4\pi$

(b) A sinusoid is defined as $x(t) = \Re e \left\{ 3e^{j\theta} e^{-j\frac{2\pi}{5}} e^{j80\pi t} \right\}$. Find θ such that the closest peak to zero for x(t) is located at -0.01 seconds. (SHOW YOUR WORK) (8 points) (Make sure that $\theta \in (-\pi, \pi]$)

$$\begin{aligned} x(t) &= \Re e \left\{ 3e^{j\theta} e^{-j\frac{2\pi}{5}} e^{j80\pi t} \right\} = 3\cos(80\pi t + \theta - 2\pi/5) \to t_d = -\frac{\left(\theta - \frac{2\pi}{5}\right)}{80\pi} = -0.01 \\ t_d &= -\frac{\left(\theta - \frac{2\pi}{5}\right)}{80} = -0.01 \to \theta = 0.8\pi + 0.4\pi = 1.2\pi \to -0.8\pi \end{aligned}$$

$$\theta = __ - 0.8\pi __$$

PROBLEM 2:

Parts a and b can be solved independently of each other.

(a) Consider the plot below where $z = re^{j\theta}$. Based on the information provided in the plot find all possible values of $\theta \in (-\pi, \pi]$. (NOTE: Assume $jz^4 = pe^{j\varphi}$) (10 points)

$$jz^{4} = e^{\frac{j\pi}{2}} (r^{4}e^{j4\theta}) = pe^{j0}$$

$$r^{4}e^{j4\theta} = pe^{-j\frac{\pi}{2} + j2\pi k}$$

$$r = \pm \sqrt[4]{p} \rightarrow z = \pm \sqrt[4]{p} e^{-\frac{j\pi}{8} + \frac{j2\pi k}{4}}$$

$$r = \sqrt[4]{p} \rightarrow z = \sqrt[4]{p} e^{-\frac{j\pi}{8} + \frac{j2\pi k}{4}}$$

$$\rightarrow k = 0, 1, 2, 3: \theta = -\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}$$
(NOTE: $\theta = \frac{11\pi}{8} \rightarrow -\frac{5\pi}{8}$)
$$r = -\sqrt[4]{p} \rightarrow z = -\sqrt[4]{p}e^{-\frac{j\pi}{8} + j\pi + \frac{j2\pi k}{4}} = \sqrt[4]{p}e^{\frac{j7\pi}{8} + \frac{j2\pi k}{4}}$$

$$\rightarrow k = 0, 1, 2, 3: \theta = \frac{7\pi}{8}, \frac{11\pi}{8}, -\frac{\pi}{8}, \frac{19\pi}{8}$$
(NOTE: $\theta = \frac{19\pi}{8} \rightarrow \frac{3\pi}{8}$)
Therefore:

$$\theta = -\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}, -\frac{5\pi}{8}$$

$$\theta = -\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}, -\frac{5\pi}{8}$$

(b) Solve the following equation for *K* (express you answer in the polar form with any potential radian angles bound by $(-\pi, \pi]$). (10 points)

$$\sum_{k=28}^{39} 10e^{j\left(\frac{2\pi}{27}k\right)} + \sum_{k=41}^{54} 10e^{j\left(\frac{2\pi}{27}k\right)} = K$$

The only vector missing from this summation to make it equal 0 is k = 40. Therefore, the answer is:

$$K = -10e^{\frac{j2\pi}{27}(40)} = -10e^{\frac{j2\pi}{27}(13)} = 10e^{\frac{j2\pi(13)}{27}j\pi} = 10e^{\frac{j2\pi(13)}{27}j\pi} = 10e^{\frac{j2\pi(13)}{27}-\frac{j27\pi}{27}} = 10e^{-\frac{j\pi}{27}}$$

$K = \1 0 e^{\frac{-j\pi}{27}}$	

PROBLEM 3:

The following MATLAB code is used to generate a plot of a sinusoidal signal (y(t)) represented by the MATLAB vector yy. Write a mathematical formula for the signal in standard sinusoidal form (i.e.,

 $y(t) = A \cos(\omega_0 t + \varphi)$ with $\varphi \in (-\pi, \pi]$) inside the box provided and determine how many periods, *N*, will be plotted by the MATLAB code (note this may not be an integer). (10 points)

```
dt = 1/1000;
tt = -0.04:dt:0.12;
Fo = 30;
yy = real(3 + 1.5*exp(j*(2*pi*Fo*(tt +0.02))));
plot( tt, yy );
axis tight;
```

 $y(t) = \Re e \left\{ 3 + 1.5 e^{j(2\pi 30(t+0.02))} \right\} = 3 + 1.5 \cos(60\pi t + 1.2\pi) = 3 + 1.5 \cos(60\pi t - 0.8\pi)$

 $N = \frac{0.16}{\frac{1}{30}} = 4.8$ periods

 $y(t) = _3 + 1.5\cos(60\pi t - 0.8\pi)$