GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2026 - Fall 2014 Quiz 1 (Clicker)

September 12, 2014

Student Name: \qquad SOLUTION KEY \qquad GT ID \#: \qquad Clicker ID: \qquad 000 \qquad
Instructions:

1. A calculator and one sheet of paper of letter size with hand-written notes are allowed;
2. Clear everything other than the single sheet note and a calculator on the desk;
3. Use your clicker to enter your answers;
4. Circle your answers on your test which is to be turned in at the end of test; this is a backup in case your clicker does not function properly;
5. A duration of twenty five minutes has been allocated for this test.

Use Clicker to Enter Test Version \#: This is Version \#1

PROBLEM 1.1

A tonal sound (sinusoid) $x(t)=\sqrt{2} \cos \left(200 \pi t-\frac{\pi}{5}\right)$ is generated at a signal source. It propagates at a speed of $348 \mathrm{~m} / \mathrm{s}$. You stand at a distance of 58 m away from the source. Assume no attenuation occurs during sound propagation. The signal you receive is one of the following; pick your answer.

(A) $x(t)=\sqrt{2} \cos \left(200 \pi t-\frac{\pi}{15}\right)$	(B) $x(t)=\sqrt{2} \cos \left(200 \pi\left(t-\frac{1}{6}\right)+\frac{\pi}{5}\right)$	(C) $x(t)=\sqrt{2} \cos \left(200 \pi t-\frac{\pi}{5}\right)$
(D) $x(t)=\sqrt{2} \cos \left(200 \pi t+\frac{7 \pi}{15}\right)$	(E) $x(t)=\sqrt{2} \cos \left(200 \pi\left(t-\frac{1}{6}\right)+\frac{\pi}{15}\right)$	(F) $x(t)=\sqrt{2} \cos \left(200 \pi t-\frac{7 \pi}{15}\right)$
(G) $x(t)=\sqrt{2} \cos \left(200 \pi t-\frac{4 \pi}{5}\right)$	(H) $x(t)=\sqrt{2} \cos \left(200 \pi\left(t-\frac{1}{6}\right)-\frac{\pi}{15}\right)$	(I) None of the above

PROBLEM 1.2

Some of the following complex numbers may be solutions to the equation: $\left(z^{2}-1\right)^{2}=-1$.
(1) $z=e^{-j \pi / 4}$
(2) $z=\sqrt[4]{2} e^{-j \pi / 8} \quad$ (3) $z=\sqrt[4]{2} e^{-j \pi / 4}$
(4) $z=\sqrt[4]{2} e^{-j 3 \pi / 4}$
(5) $z=\sqrt[4]{2} e^{-j 7 \pi / 8}$
(6) $z=e^{j 3 \pi / 4}$

Which of the following is correct:

(A) (2), (3), and (4) are solutions	(D) (2) and (5) are solutions
(B) (3) and (4) are solutions	(E) (2) and (4) are solutions
(C) (1) and (6) are solutions	(F) (3) and (5) are solutions

PROBLEM 1.3

A sinusoid is generated and plotted by the following MATLAB code:

```
tt = -0.1 : (1/1e4) : 0.6;
xx = 2 + sqrt(3)*cos(pi*(tt + 0.03)/0.03); plot( xx (100:1600) );
```

How many cycles do you see in the plot?
Pick the closest from the table:

(A) 2	(C) 1.5	(E) 3.75	(G) 4.5
(B) 3	(D) 3.33	(F) 2.5	(H) 5

PROBLEM 1.4

$$
\left[\sum_{k=1}^{19}\left(1+e^{j \pi k / 20}\right)\right]+\left[\sum_{k=21}^{39} e^{j \pi k / 20}\right]=? \quad \begin{array}{|l|l|l|l|}
\hline \text { (A) } 0 & \text { (C) } 19 & \text { (E) } e^{j 38 \pi} & \text { (G) } 20 \pi \\
\hline \text { (B) } 20 & \text { (D) } e^{j 19 \pi} & \text { (F) } 38 & \text { (H) } e^{j 19 \pi}+e^{j 38 \pi} \\
\hline
\end{array}
$$

