DATE: 16-Sept-13 COURSE: ECE-2026

NAME: \qquad GT\#:
LAST,
FIRST
ex: gtaburDEII

Circle your correct recitation section number - failing to do so will cost you 3 points

L01: Mon - (Juang)	L02: Wed - (Bloch)	L03: Mon - (Casinovi)
L04: Wed - (Bloch)	L05: Tues - (Bhatti)	L06: Thurs - (Coyle)
L07: Tues - (Bhatti)	L08: Thurs - (Coyle)	L09: Tues - (Alregib)
L10: Thurs - (Ma)	L11: Tues - (Causey)	L12: Thurs - (Ma)
L13: Tues - (Causey)		L14: Thurs - (Alregib)

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- JUSTIFY your reasoning clearly to receive partial credit. Explanations are also required to receive full credit for an answer.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	25	
2	25	
3	25	
4	25	

PROBLEM fa-13-Q.1.1:
The sinusoidal signal shown below is in the form:

$$
x(t)=B+A \cos \left(\omega_{0} t+\varphi\right)
$$

(a) Determine B, A, ω_{0}, and φ (SHOW YOUR WORK)

B	20
A	10
ω_{0}	$\pi / 2$
φ	$-\pi / 2$

$$
\begin{aligned}
& w_{0}=2 \pi \cdot 1 / 4=\pi / 2 \\
& c_{m}=1=\frac{-\varphi}{\omega_{0}} \Rightarrow \varphi=-\pi / 2
\end{aligned}
$$

(b) Now suppose that $x(t)+K \cos \left(\omega_{0} t\right)=C+\frac{20 \sqrt{3}}{3} \cos \left(\omega_{0} t+\theta\right)$. Determine C, K, and θ (C and K are REAL positive numbers and ω_{0} is the same as in part (a)) (SHOW YOUR WORK)

$$
\begin{aligned}
& \rightarrow X(t)+K \cos \left(\omega_{0} t\right)=C+\frac{20 \sqrt{3}}{3} \cos \left(\omega_{0} t+\theta\right) \\
& \rightarrow 20+10 \cos (\pi / 2 t-\pi / 2)+K \cos \left(\frac{\pi}{2} t\right)=C+\frac{20 \sqrt{3}}{3} \cos \left(\frac{\pi}{2} t+\theta\right)
\end{aligned}
$$

\rightarrow The summation consists of a DC component and sinusoids

$$
\text { @ } w_{0}=\pi / 2 \text {. }
$$

$\rightarrow C$ is a $D C$ component and therefore must equal 20 .
\rightarrow Complex addition can be used on the remaining sinusoids since they are at the same frequency:

$$
\begin{aligned}
& \rightarrow 10 \cos (\pi / 2 t-\pi / 2)+k \cos (\pi / 2 t)=\frac{20 \sqrt{3}}{3} \cos (\pi / 2 t+\theta) \\
& \begin{array}{l}
10 e^{-j \pi / 2}+k=\frac{20 \sqrt{3}}{3} e^{j \theta}=\frac{20 \sqrt{3}}{3} \cos (\theta)+j \frac{20 \sqrt{3}}{3} \sin (\theta) \\
k-j 0=\frac{20 \sqrt{3}}{3} \cos (\theta)+j \frac{20 \sqrt{3}}{3} \sin (\theta)
\end{array} \\
& \therefore-10=\frac{20 \sqrt{3}}{3} \sin (\theta) \rightarrow \theta=-\pi / 3 \\
& k=\frac{20^{3} \sqrt{3}}{3} \cos (\theta) \rightarrow k=10 \sqrt{3} / 3
\end{aligned}
$$

(c) Now suppose that $x(t)+Z \cos \left(\omega_{0} t+\beta\right)=D$. Determine D, Z, and θ (Z and D are REAL positive numbers and ω_{0} is the same as in part (a)) (SHOW YOUR WORK)

$$
\begin{aligned}
10 \cos \left(\frac{\pi}{2} t-\pi / 2\right) & =-z \cos \left(u_{0} t+\beta\right) \\
& =7 \cos \left(u_{0} t+\beta+\pi\right)
\end{aligned}
$$

PROBLEM fa-13-Q.1.2:
A real signal $x(t)$ has the following two-sided spectrum.

(a) Determine A, B, C, θ, and φ (Explain your reasoning)

$$
\begin{aligned}
& \text { an Determine } A, B, C, \theta, \text { and } \varphi \text { (Explain your reasoning) } \\
& x(t)=20+20 \cos (20 \pi t-0,3 \pi)+16 \cos (50 \pi t-0.2 \pi)+30 \cos (22 \pi t+\pi / 2)
\end{aligned}
$$

A	B	C	θ	φ
8	15	$10 e^{-503 \pi}$	$0,5 \pi$	$0,2 \pi$

(b) Plot the spectrum for the signal $x(t)+10+20 \cos (\underline{20 \pi t}+0.7 \pi)+16 \cos (\underline{50 \pi t}+0.2 \pi)$ (Show your work) add components with same frequency.

$$
\begin{aligned}
& D C: 20+10=30 \\
& W=20 \pi: 20 e^{-j 0.3 \pi}+20, e^{0,7 \pi}=20\left(e^{-j 03 \pi}+e^{j \pi} e^{-j 0,3 \pi}\right)=20\left(e^{j 0.3 \pi}-e^{-j 0.3 \pi}\right)=0 \\
& \omega=50 \pi: 16 e^{-j 0.2 \pi}+16 e^{j 0.2 \pi}=16.2 \cos (0.2 \pi)=32 \cos (6.2 \pi) \\
& \Rightarrow 30+(32 \cos (0.2 \pi)) \cos (50 \pi t)+30 \cos (72 \pi t+\pi / 2)
\end{aligned}
$$

PROBLEM fa-13-Q.1.3:
Consider a complex number defined as $z=r e^{j \varphi}$. It has the following properties

- $\sum_{k=0}^{\infty} r^{k}<\infty$
- $\cos (\varphi)<0, \sin (\varphi)>0, \tan (\varphi)=-1 \quad \Gamma<\int=3 \pi / 4$

A complex plane is represented above with the dashed circle representing a radius of $r=1$. Match each letter below to the best location of each of the following operations on $z=r, e^{j \varphi}$ (NOTE: There are more spaces than letters so many spaces will be blank.)

PROBLEM fa-13-Q.1.4:
Consider the following lines of MATLAB code:

```
tt =-5:0.001:5;
xxe=exp(-tt/3);
xt=0;
for k=1:99;
    xt=xt+real(xxe.*exp(j*(6*pi*tt+k*pi/25)));
end
```

(a) If the signal $x(t)$ corresponds to the MATLAB vector $x t$ then it is possible to express $x(t)$ in the form

$$
x(t)=\sum_{k=1}^{99} \Re e^{9}\left\{A_{k} e^{j\left(\omega t+\varphi_{k}\right)+\alpha t}\right\}=\Re e\left\{A e^{j(\omega t+\varphi)+\alpha t}\right\}
$$

$$
\rightarrow X(t)=\sum_{k=1}^{\text {Find the paramgitr specified below. (Sh ww your work) }} \operatorname{Re}\left\{A_{k} e^{\left.j\left(\omega t+P_{k}\right)-1 / 3 t\right)}\right\} \Rightarrow e^{-\frac{1}{3} t \sum_{k=1}^{99} \underbrace{\operatorname{Re}}_{\text {phasor addition }}\left\{e^{\left.-j \frac{\pi k}{25} e^{j 6 \pi t}\right\}}\right.}
$$

$$
\begin{aligned}
& \text { Circle of radius } 2 \pi \text {. Essentially, } \varphi_{1}=\frac{\pi}{25} k=\frac{2 \pi}{50} k \\
& 99
\end{aligned}
$$

$$
\left.\frac{\text { call }}{\frac{2-1}{5} \alpha^{k}=1-\alpha^{N}} \rightarrow \sum_{k=1}^{k=1} e^{j \frac{\pi k}{25}}+\sum_{k=51}^{99} e^{j \frac{j \pi k}{25}}=2 \sum_{(k=1}^{50} e^{j \frac{\pi k}{25}}-e^{j\left(\frac{\pi}{25}\right)}\right)^{50}=-e^{-j 2 \pi}=e^{j \pi}
$$

Recall i

$$
\sum_{k=0}^{N-1} \alpha^{k}=\frac{1-\alpha^{N}}{1-\alpha}
$$

$\sum_{k=1}^{50} e^{j \frac{\pi k}{25}}=\sum_{k=0}^{49} e^{j \frac{\pi k}{26}}=\frac{1-e}{1-e}$
$\begin{aligned} & 30+h \text { represent } \\ & 50 \text { hasps spaced }\end{aligned}=\frac{1-1}{1-e^{i}}$
by $\$ / 2<$ (b) The MATLAB variable k consists of the set of values $\{1,2,3, \ldots, 99\}$. If we define a signal $x_{\mathrm{k}}(\mathrm{t})$ as

$$
x_{k}(t)=\mathfrak{R} e\left\{A_{k} e^{j\left(\omega t+\varphi_{k}\right)+\alpha t}\right\}
$$

find all values of k within the set of values $\{1,2,3, \ldots, 99\}$ that result in an equivalent expression to $x_{5}(\mathrm{t})$.

$$
\begin{aligned}
& x_{5}(t)=e^{\alpha t} \cos \left(\omega t+\frac{5 \pi}{25}\right) \text { repents every } 2 \pi p \text { change } \\
& =e^{a t} \cos \left(\omega t+\frac{5 \pi}{25}+2 \pi \rho\right) \\
& =c^{\alpha t} \cos \left(\omega t+\frac{\pi(5+50 p)}{25}\right) \\
& k=55 \\
& \text { only } p=0,1 \text { fit } K \leqslant 99 \therefore 9
\end{aligned}
$$

