GEORGIA INSTITUTUE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING QUIZ #1

DATE: 16-Sept-13 COURSE: ECE-2026

NAME:		GT#:			
LAST,	FIRST	ex: gtaburDEll			
Circle your correct recitation section number - failing to do so will cost you 3 points					
L01: Mon - (Juang)	L02: Wed - (Bloch)	L03: Mon - (Casinovi)			
L04: Wed - (Bloch)	L05: Tues - (Bhatti)	L06: Thurs - (Coyle)			
L07: Tues - (Bhatti)	L08: Thurs - (Coyle)	L09: Tues - (Alregib)			
L10: Thurs - (Ma)	L11: Tues - (Causey)	L12: Thurs - (Ma)			
L13: Tues - (0	Causey)	L14: Thurs - (Alregib)			

- Write your name on the front page ONLY. DO NOT unstaple the test
- Closed book, but a calculator is permitted.
- One page $\left(8\frac{1}{2}'' \times 11''\right)$ of **HAND-WRITTEN** notes permitted. OK to write on both sides.
- **JUSTIFY** your reasoning clearly to receive partial credit. Explanations are also required to receive full credit for an answer.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. <u>Circle</u> your answers, or write them in the <u>boxes</u> provided. If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	25	
2	25	
3	25	
4	25	

PROBLEM fa-13-Q.1.1:

The sinusoidal signal shown below is in the form:

(a) Determine B, A, ω_0 , and φ (SHOW YOUR WORK)

B	20	$M_{a} = 2T \frac{1}{4} = T/2$
A	10	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000}$
ω ₀	Th	$d_{M} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
φ	-TT/2	

(b) Now suppose that $x(t) + K \cos(\omega_0 t) = C + \frac{20\sqrt{3}}{3} \cos(\omega_0 t + \theta)$. Determine C, K, and θ (C and K are REAL positive numbers and ω_0 is the same as in part (a)) (SHOW YOUR WORK) $\frac{C}{2} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \left(\frac{1}{3} + \frac{1$

(c) Now suppose that $x(t) + Z \cos(\omega_0 t + \beta) = D$. Determine *D*, *Z*, and θ (*Z* and *D* are REAL positive numbers and ω_0 is the same as in part (a)) (SHOW YOUR WORK)

$$\frac{D}{Z} = \frac{20}{10} |0 \cos[\frac{\pi}{2}t - \frac{\pi}{2}] = \frac{2}{2} \cos[wot + \beta]$$

$$= \frac{2}{10} = \frac{2}{10} \cos[w_0t + \beta + \pi]$$

PROBLEM fa-13-Q.1.2:

A real signal x(t) has the following two-sided spectrum.

PROBLEM fa-13-Q.1.3:

A complex plane is represented above with the dashed circle representing a radius of r=1. Match each letter below to the *best* location of each of the following operations on $z = re^{j\varphi}$ (NOTE: There are **more spaces than letters** so many spaces will be **blank**.) $7 = \int e^{2\pi i t} dt$

		21, 21, 2, 31/1
(a)	$1/z^{*}$	$ /_{e^{3}} _{4} \rightarrow +e^{3} _{4}$
(b)	Z/Z^*	rej ⁵ "(, te ³ ", e ² = -)
(c)	Z^2	$(\Gamma e^{\sqrt{31/4}})^{2} = \Gamma^{2} e^{\sqrt{2}} = -\sqrt{2}$
(d)	jz	$j = e^{5/2} r e^{j = 1/2} = r e^{5/2} 4 = r e^{5/4} $
(e)	1/z	$1/z = 1/c e^{-3^{3/4}}$
(f)	z + j	increase imag part by 1
(g)	<i>z</i> + 1	Increase Real part by 1
(h)	ZZ^*	$\binom{2}{2}$
(ris a ceal number less than 1)		

PROBLEM fa-13-Q.1.4:

Consider the following lines of MATLAB code:

(a) If the signal x(t) corresponds to the MATLAB vector xt then it is possible to express x(t) in the form

$$x(t) = \sum_{k=1}^{99} \Re e\{A_k e^{j(\omega t + \varphi_k) + \alpha t}\} = \Re e\{A e^{j(\omega t + \varphi) + \alpha t}\}$$

Find the parameters specified below. (Show your work)

$$\Rightarrow \chi(t) = \bigcup_{k=1}^{\infty} \mathbb{R}e\left\{A_{k}e^{\int [t]_{k}} + [t]_{k}\right\} = e^{\int \frac{1}{2}t} \bigoplus_{k=1}^{9} \mathbb{R}e\left\{e^{\int \frac{1}{2}t}e^{\int \frac{\pi}{2}t}e^{\int \frac{\pi}{2}t}e^{$$

$$x_k(t) = \Re e \{ A_k e^{j(\omega t + \varphi_k) + \alpha t} \}$$

find all values of k within the set of values $\{1, 2, 3, \dots, 99\}$ that result in an equivalent expression to $x_5(t)$.

$$X_{5}(t) = e^{dt} (os (wt + \frac{511}{a5})) \text{ repeats every } 2Tp \text{ change}$$

$$= e^{ot} (os (wt + \frac{511}{25} + 2Tp)) \text{ in phase } 10 \text{ phase$$