# GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

ECE 2026 - Fall 2012
Quiz \#1
September 17, 2012

NAME: $\qquad$ (FIRST) (LAST)

GT username: $\qquad$

Circle your recitation section in the chart below (otherwise you lose 3 points!):

|  | Mon | Tue | Wed | Thu |
| :---: | :---: | :---: | :---: | :---: |
| 9:30-11am |  |  |  | L06 (Fekri) |
| 12-11:30pm |  | L07 (Al-Regib) |  | L08 (Fekri) |
| 1:30-3pm |  | L09 (Al-Regib) |  | L10 (Rozell) |
| 3-4:30pm | L01 (Juang) | L11 (Davenport) | L02 (Zajic) | L12 (Rozell) |
| 4:30-6pm | L03 (Baxley) | L13 (Davenport) | L04 (Zajic) |  |
| 6-7:30pm | L05 (Baxley) |  |  |  |

## Important Notes:

- DO NOT unstaple the test.
- One two-sided page ( 8.5 " $\times 11$ ") of hand-written notes permitted.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If more space is needed for scratch work, use the backs of the previous pages.

| Problem | Value | Score Earned |
| :---: | :---: | :---: |
| 1 | 25 |  |
| 2 | 25 |  |
| 3 | 25 |  |
| 4 | 25 |  |
| No/Wrong Rec | -3 |  |
| Total |  |  |
|  |  |  |

PROB. Fall-12-Q1.1. Suppose $w=0.9 e^{j 0.9 \pi}$ and $z=\cos (0.1 \pi)+j 1.1 \sin (0.1 \pi)$.
(a) The sum in polar form is $w+z=A e^{j \phi}$, where $A=\square$ and $\phi=\square$ radians.
(b) The ratio in rectangular form is $\frac{z}{w}=a+j b$, where $a=\square$ and $b=\square$.

The figure below shows the unit circle of radius one in the complex plane.
Also shown are the locations of $\left\{w, w^{2}, w^{3}, \ldots, w^{7}\right\}$ and $\left\{z, z^{2}, z^{3}, \ldots, z^{7}\right\}$ in the complex plane:

(c) Identify these locations by writing a letter (A, B, C, ... or $N$ ) in each answer box below.
[Hint: Do not consider each point separately. Look for a pattern.]


## PROB. Fall-12-Q1.2.

(a) A sinusoidal signal $x(t)$ achieves a peak value of +3 at time $t=1.705$, and a minimum value of -3 at time 1.755 , as shown below:


In standard form we can write $x(t)=A \cos (\omega t+\theta)$, where:

(b) Consider the following Matlab code:

```
tt = 0:0.001:dur; % dur is the duration in seconds
xt = real((-1-3j)*exp(j*22*pi*tt));
```

The variable xt represents a sinusoidal signal $x(t)=A \cos (\omega t+\theta)$ in standard form, where:

$$
\begin{aligned}
& \omega=\square \geq 0 \\
& A=\square \geq 0 \\
& \theta=\square \in(-\pi, \pi] .
\end{aligned}
$$

PROB. Fall-12-Q1.3. Solve the following equations for the real-valued unknowns $\omega, A$, and $\theta$. To make the answers unique, choose $\omega \geq 0, A \geq 0$, and $-\pi<\theta \leq \pi$.
(a) $3 \cos (30 \pi t+0 \cdot 2 \pi)+\operatorname{Re}\left\{A e^{j \theta} e^{j \omega t}\right\}=3 \cos (30 \pi t+0.3 \pi)$.

$$
\begin{aligned}
& \omega=\square \\
& A=\square \\
& \theta=\square
\end{aligned}
$$

(b) $\cos (\omega t+\theta)+\operatorname{Re}\left\{A e^{j 0.6 \pi} e^{j 88 \pi t}\right\}=A \cos (88 \pi(t-0.1))$.

$$
\begin{aligned}
& \omega=\square \\
& A=\square \\
& \theta=\square
\end{aligned}
$$

## PROB. Fall-12-Q1.4.

Shown below is the two-sided spectrum for a signal $x(t)$ :

(a) We can write $x(t)=A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)+A_{3} \cos \left(\omega_{3} t+\theta_{3}\right)$, where:


| $A_{1}=\square$ | $A_{2}=\square$ | $A_{3}=\square$ |
| :--- | :--- | :--- |
| $\theta_{1}=\square$ | $\theta_{3}=\square$ |  |
|  | $\theta_{2}=\square$ |  |

(b) Carefully sketch the two-sided spectrum for the delayed signal $s(t)=x(t-0.2)$, taking care to label both the frequency and complex amplitude for each spectral line:

# GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL AND COMPUTER ENGINEERING 

ECE 2026 - Fall 2012

## Quiz \#1

September 17, 2012
NAME: $\frac{\text { NEV }}{\text { (FIRST) }} \frac{\text { VERSION A }}{(\text { LAST })}$
GT username: $\qquad$

Circle your recitation section in the chart below (otherwise you lose 3 points!):

| 9:30-11am | Mon | Tue | Wed | Thu |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | L06 (Fekri) |
| $\begin{array}{r} 12-11: 30 \mathrm{pm} \\ 1: 30-3 \mathrm{pm} \end{array}$ |  | L07 (Al-Regib) |  | L08 (Fekri) |
|  |  | L09 (Al-Regib) |  | L10 (Rozell) |
| $\begin{aligned} & 3-4: 30 \mathrm{pm} \\ & 4: 30-6 \mathrm{pm} \end{aligned}$ | L01 (Juang) | L11 (Davenport) | L02 (Zajic) | L12 (Rozell) |
|  | L03 (Baxley) | L13 (Davenport) | L04 (Zajic) |  |
| $\begin{aligned} & 4: 30-6 \mathrm{pm} \\ & 6-7: 30 \mathrm{pm} \end{aligned}$ | L05 (Baxley) |  |  |  |

## Important Notes:

- DO NOT unstaple the test.
- One two-sided page ( $8.5^{\prime \prime} \times 11^{\prime \prime}$ ) of hand-written notes permitted.
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If more space is needed for scratch work, use the backs of the previous pages.

| Problem | Value | Score Earned |
| :---: | :---: | :---: |
| 1 | 25 |  |
| 2 | 25 |  |
| 3 | 25 |  |
| 4 | 25 |  |
| No/Wrong Rec | -3 |  |
| Total |  |  |
|  |  |  |

PROB. Fall-12-Q1.1. Suppose $w=0.9 e^{j 0.9 \pi}$ and $z=\cos (0.1 \pi)+j 1.1 \sin (0.1 \pi)$.
(a) The sum in polar form is $w+z=A e^{j \phi}$, where $A=0.625$ and $\phi=0,45 \pi$ radians.
$=1,42=81.3^{\circ}$
(b) The ratio in rectangular form is $\frac{z}{w}=a+j b$, where $a=-0.888$ and $b=-0.686$

The figure below shows the unit circle of radius one in the complex plane.
Also shown are the locations of $\left\{w, w^{2}, w^{3}, \ldots, w^{7}\right\}$ and $\left\{z, z^{2}, z^{3}, \ldots, z^{7}\right\}$ in the complex plane:

(c) Identify these locations by writing a letter ( $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ or N ) in each answer box below.
[Hint: Do not consider each point separately. Look for a pattern.]


PROB. Fall-12-Q1.2.
(a) A sinusoidal signal $x(t)$ achieves a peak value of +3 at time $t=1.705$, and a minimum value of -3 at time 1.755 , as shown below:


In standard form we can write $x(t)=A \cos (\omega t+\theta)$, where:

$$
T=2(1.755-1.705)
$$

$$
\begin{aligned}
& \omega=20 \pi \geq 0 \\
& A=3 \geq 0 \\
& \theta=-\frac{-0.1 \pi}{}=(-\pi, \pi] \\
& \cos (20 \pi(t-1.705))
\end{aligned}
$$

$$
=2(0,05)
$$

$$
=0.1
$$

(b) Consider the following MATLAB code:

$$
\begin{aligned}
\Rightarrow \theta & =-20 \pi(1.705) \\
& =-34.1 \pi \\
& =-0.1 \pi
\end{aligned}
$$

$$
\begin{aligned}
& t t=0: 0.001: \text { dur; } \% \text { dur is the duration in seconds } \\
& x t=\operatorname{real}((-1-3 j) * \exp (j * 22 * p i * t t))
\end{aligned}
$$

The variable xt represents a sinusoidal signal $x(t)=A \cos (\omega t+\theta)$ in standard form, where:

$$
\begin{aligned}
\omega & =22 \pi \geq 0 \\
A & =\sqrt{10}=3.16 \geq 0 \\
\theta & =-0,6 \pi \in(-\pi, \pi] . \\
& =-1.89=-108,4^{\circ}
\end{aligned}
$$

PROB. Fall-12-Q1.3. Solve the following equations for the real-valued unknowns $\omega, A$, and $\theta$. To make the answers unique, choose $\omega \geq 0, A \geq 0$, and $-\pi<\theta \leq \pi$.
(a) $3 \cos (30 \pi t+0.2 \pi)+\operatorname{Re}\left\{A e^{j \theta} e^{j \omega t}\right\}=3 \cos (30 \pi t+0.3 \pi)$.

$$
\begin{array}{ll}
\omega=30 \pi & \\
A=0.939 & \\
A=A e^{j 0.2 \pi}+A e^{j \theta}=3 e^{j 0.3 \pi}-3 e^{j 0.2 \pi}=0.939 e^{j \frac{3 \pi}{4}} \\
\theta=0.75 \pi &
\end{array}
$$

(b) $\cos (\omega t+\theta)+\operatorname{Re}\left\{A e^{j 0.6 \pi} e^{j 88 \pi t}\right\}=A \cos (88 \pi(t-0.1))$.

$$
\begin{array}{ll}
\omega=88 \pi & \\
A=0.618 & \\
\theta=-0.6 \pi & \\
=-1.89=-108^{\circ} & \\
& \\
& \\
& \\
& \Rightarrow A=\frac{1}{} e^{j \theta}=e^{-j 0.3 \pi}-e^{j 0.6 \pi}=A e^{-j 8.8 \pi} \\
1.618 & =0.618
\end{array}
$$

PROB. Fall-12-Q1.4.
Shown below is the two-sided spectrum for a signal $x(t)$ :

(a) We can write $x(t)=A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)+A_{3} \cos \left(\omega_{3} t+\theta_{3}\right)$, where:

$$
\begin{array}{ll}
\omega_{1}=\square & \omega_{2}=\square \pi \\
A_{1}^{*}=2 & \omega_{3}=4 \pi \\
\theta_{1}=0 & A_{2}=\square \\
A_{3}=4
\end{array}
$$

* $\frac{2}{\cos \theta}$, is OK
(b) Carefully sketch the two-sided spectrum for the delayed signal $s(t)=x(t-0.2)$, taking care to label both the frequency and complex amplitude for each spectral line:


$$
\Delta \theta=-\omega(0.2)=\left\{\begin{array}{lll}
-0.6 \pi & \text { a } & 3 \pi \\
-0.8 \pi & D & 4 \pi
\end{array}\right.
$$

