GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Final Exam

July 29, 2024

NAME:

(FIRST) (LAST) (e.g., gtxyz123)

GT username:

Important Notes:

- \circ Closed book, except for three double-sided pages (8.5" \times 11") of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- \circ Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes.
- Do not write on the backs of pages, only the fronts will be graded.

PROB. Su24-F.1. (The two parts of this problem are unrelated.)

(a) Find values for $A > 0$, $F > 0$, and $t_0 \in [0, 0.01)$ so that: $x(t) = A\cos(120\pi(t - t_0)) + 26\cos(2\pi Ft)\cos(86\pi t)$

is periodic with a fundamental frequency of 26 Hz.

(b) Find the smallest positive integer M and the corresponding value of B so that the following is true for all time t :

$$
B\sin(\pi t) = \sum_{k=0}^{M} \cos(\pi (t-\frac{k}{4})).
$$

Specify numerical values for the unspecified parameters so that running the above code produces the following spectrogram:

PROB. Su24-F.3. Consider the signal $x(t)$ whose spectrum is shown below:

(c) When $f_s = 5$ Hz, the output has the form $y(t) = B + A\cos(2\pi f_0 t + \varphi)$ where (in standard form):

PROB. Su24-F.4. Consider the following cascade of six first-difference filters:

-
- (c) The impulse response of the *overall* system (indicated by the dashed box) satisfies:

(d) If the output satisfies satisfies $y[n] = 0$ for $n < 0$ and $y[0] = y[1] = y[2] = 1$, then the *input* at time 2 must be:

PROB. Su24-F.5. Consider an LTI filter defined by the difference equation:

$$
y[n] = x[n] + x[n-1] + \beta x[n-2] + x[n-3] + x[n-4].
$$

If the output in response to the sum of sinusoids $x[n] = \cos(0.5\pi n) + \cos(2\pi n/3)$ is $y[n] = 0$ (for all *n*), then it must be that:

PROB. Su24-F.6. Shown below is the real-valued frequency response of an LTI filter:

Specify numerical values for the constants $\{A, B, \dots Q\}$ so that the impulse response $h[n]$ can be written in any of the following four different ways:

(simplify as much as possible)

(c)
$$
h[n] = A \frac{\sin(B\pi n)}{\pi n} (\cos(C\pi n) + \cos(D\pi n))
$$
:
\n(d) $h[n] = E \frac{\sin(F\pi n)}{\pi n} \cos(0.2\pi n) \cos(0.4\pi n)$:
\n(e) $h[n] = \frac{\sin(G\pi n)}{\pi n} + \frac{\sin(H\pi n)}{\pi n} - \frac{\sin(J\pi n)}{\pi n} - \frac{\sin(K\pi n)}{\pi n}$:
\n(f) $h[n] = L\left(\frac{\sin(P\pi n)}{\pi n} - \frac{\sin(Q\pi n)}{\pi n}\right) \cos(0.4\pi n)$:
\n
$$
\begin{cases}\nL = \boxed{_{\text{max}}}, \\
L = \boxed{_{\text{max}}}, \\
L
$$

Г

٦

PROB. Su24-F.7. Let $\{X[0], X[1], \dots X[15]\}$ be the 16-point DFT of a length-four signal segment $\{x[0], x[1], x[2], x[3]\}.$

Find $x[0]$ through $x[3]$ if the locations of the DFT coefficients in the complex plane are as indicated below, all on a circle of radius 2, satisfying $X[k]^{16} = 2^{16}$ for all k:

Hint: Direct brute-force calculation not recommended without a calculator!

PROB. Su24-F.8. Consider the following serial cascade of a pair of LTI systems:

$$
x[n] \overrightarrow{y[n]} = x_2[n]
$$
\n
$$
y_1[n] = x_2[n]
$$
\n
$$
SYSTEM #2
$$
\n
$$
T
$$
\n

- The first system has impulse response $h_1[n] = 0.2^{n-1}u[n-1]$.
- The second system has frequency response $H_2(e^{j\hat{\omega}}) = 15 + Ae^{-j\hat{\omega}} + Be^{-2j\hat{\omega}}$, where A and B are real but otherwise unspecified.

Let $h[n]$ denote the impulse response of the *overall* system (dashed box), so that its Z transform $H(z)$ is the *overall* system function.

Find A and B so that the pole-zero plot for $H(z)$ is as shown below, with two poles at the origin and a single zero at $-2/3$:

PROB. Su24-F.9. Shown on the right are the pole-zero plots for 15 LTI systems, labeled A through P. Shown on the left are the corresponding magnitude responses $|H(e^{j\hat{\omega}})|$, but in a scrambled order. Match the pole-zero plot to its corresponding magnitude response by writing a letter (A through P) in each answer box.

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Final Exam

July 29, 2024

Important Notes:

- \circ Closed book, except for three double-sided pages (8.5" \times 11") of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- \circ Express all angles as a fraction of π. For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Write your answers in the provided answer boxes.
- Do not write on the backs of pages, only the fronts will be graded.

PROB. Su24-F.1. (The two parts of this problem are unrelated.)

(a) Find values for $A > 0$, $F > 0$, and $t_0 \in [0, 0.01)$ so that: $x(t) = A\cos(120\pi(t - t_0)) + 26\cos(2\pi Ft)\cos(86\pi t)$

is periodic with a fundamental frequency of 26 Hz.

 $B =$

4

 $1 + \sqrt{2}$

(b) Find the smallest positive integer M and the corresponding value of B so that the following is true for all time t :

$$
B\sin(\pi t) = \sum_{k=0}^{M} \cos(\pi (t - \frac{k}{4})).
$$

Corresponding phasor equation: $M =$

$$
-jB = \sum_{k=0}^{M} e^{-jk0.25\pi}
$$

Since the LHS phasor for $-jB$ points *straight down*, we need $M = 4$ in order for the RHS sum of phasors to also point straight down:

Specify numerical values for the unspecified parameters so that running the above code produces the following spectrogram:

PROB. Su24-F.3. Consider the signal $x(t)$ whose spectrum is shown below:

(c) When $f_s = 5$ Hz, the output has the form $y(t) = B + A\cos(2\pi f_0 t + \varphi)$ where (in standard form):

$$
y(t) = 2\cos(2\pi(12 - (2)(5))t)
$$

+ 2\cos(2\pi(15 - (3)(5))t)
+ 2\cos(2\pi(17 - (3)(5))t)
= 4\cos(2\pi(2)t) + 2

PROB. Su24-F.4. Consider the following cascade of six first-difference filters:

-
- (c) The impulse response of the *overall* system (indicated by the dashed box) satisfies:

 $\overline{}$

(d) If the output satisfies satisfies $y[n] = 0$ for $n < 0$ and $y[0] = y[1] = y[2] = 1$, then the *input* at time 2 must be:

PROB. Su24-F.5. Consider an LTI filter defined by the difference equation:

$$
y[n] = x[n] + x[n-1] + \beta x[n-2] + x[n-3] + x[n-4].
$$

If the output in response to the sum of sinusoids $x[n] = \cos(0.5\pi n) + \cos(2\pi n/3)$ is $y[n] = 0$ (for all *n*), then it must be that:

Null $0.5\pi \Rightarrow [1 -2\cos(0.5\pi) 1] = [1 \ 0 \ 1]$

Null $2\pi/3$ \Rightarrow $[1 -2\cos(2\pi/3) 1] = [1 \ 1 \ 1]$

Null both \Rightarrow convolve:

PROB. Su24-F.6. Shown below is the real-valued frequency response of an LTI filter:

Specify numerical values for the constants $\{A, B, \dots Q\}$ so that the impulse response $h[n]$ can be written in any of the following four different ways:

1) can be written in any of the following four different ways:

\n(c)
$$
h[n] = A \frac{\sin(B\pi n)}{\pi n} (\cos(C\pi n) + \cos(D\pi n))
$$
:

\n
$$
\begin{cases}\nA = \boxed{2} \\
B = \boxed{0.1}, \\
C = \boxed{0.2}, \\
D = \boxed{0.6}, \\
D = \boxed{0.7}, \\
D = \boxed{0.6}, \\
D = \boxed{0.7}, \\
D = \boxed{0.3}, \\
D = \boxed{0.5}, \\
E = \boxed{0.1}, \\
E = \boxed{0.2}, \\
E = \boxed{0.3}, \\
E = \boxed{0.1}, \\
E = \boxed{0.3}, \\
E
$$

Г

PROB. Su24-F.7. Let $\{X[0], X[1], ... X[15]\}$ be the 16-point DFT of a length-four signal segment $\{x[0], x[1], x[2], x[3]\}.$

Find $x[0]$ through $x[3]$ if the locations of the DFT coefficients in the complex plane are as indicated below, all on a circle of radius 2, satisfying $X[k]^{16} = 2^{16}$ for all k:

 $X[0]$ $X[1]$ $X[2]$ $X[3]$ $X[4]$ $X[5]$ $\mathbb{E}[X[6]]$ $X[7]$ $X[8]$ $X[9]$ $\bullet^{X[10]}$ $\mathcal{L}[11]$ $\widetilde{X}[12]$ $X[13]$ $X[\![15]$ $Re\{\ \cdot\ \}$ $\text{Im}\{\ \cdot\ \}$ $X[14]$ RADIUS₂ circle)

Hint: Direct brute-force calculation not recommended without a calculator!

$$
X[k] = 2e^{-j(2\pi k/N)(3)}
$$
 where $N = 16$

PROB. Su24-F.8. Consider the following serial cascade of a pair of LTI systems:

• The first system has impulse response h1[n] = 0.2ⁿ – 1u[n – 1]. • The second system has frequency response H2(e ^jω^ˆ) = 15 + Ae – ^jω^ˆ + Be – ²jω^ˆ , x[n] y y[n] 1[n] = x2[n] LTI SYSTEM #1 h¹ [n] LTI SYSTEM #2 H2(e ^jω^ˆ) [⇒]H1(^z) = z–¹ 1 0.2z–¹ – ------------------------

where A and B are real but otherwise unspecified.

$$
\Rightarrow H_2(z) = 15 + Az^{-1} + Bz^{-2}
$$

Let $h[n]$ denote the impulse response of the *overall* system (dashed box), so that its Z transform $H(z)$ is the *overall* system function.

Find A and B so that the pole-zero plot for $H(z)$ is as shown below, with two poles at the origin and a single zero at $-2/3$:

But $H(z) = H_1(z)H_2(z)$

$$
\Rightarrow G\left(\frac{z+2/3}{z^2}\right) = \frac{z^{-1}}{1-0.2z^{-1}}(15 + Az^{-1} + Bz^{-2})
$$

$$
\Rightarrow 15z^2 + Az + B = G(z + 2/3)(z - 0.2)
$$

= $15(z + 2/3)(z - 0.2)$
= $15z^2 + 7z - 2$ $A = \boxed{7}$

PROB. Su24-F.9. Shown on the right are the pole-zero plots for 15 LTI systems, labeled A through P. Shown on the left are the corresponding magnitude responses $|H(e^{j\hat{\omega}})|$, but in a scrambled order. Match the pole-zero plot to its corresponding magnitude response by writing a letter (A through P) in each answer box.

