GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Final Exam

July 29, 2024

NAME:

(LAST)

GT username: _______(e.g., gtxyz123)

Important Notes:

- $\circ~$ Closed book, except for three double-sided pages (8.5" \times 11") of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.

(FIRST)

- Express all angles as a fraction of π . For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.
 Only these answers will be graded. Write your answers in the provided answer boxes.
- Do not write on the backs of pages, only the fronts will be graded.

Problem	Points	Score
1	10	
2	10	
3	10	
4	15	
5	10	
6	15	
7	10	
8	10	
9	10	
TOTAL:	100	

	0°	30°	45°	60°	90°
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

PROB. Su24-F.1. (The two parts of this problem are unrelated.)

(a) Find values for A > 0, F > 0, and $t_0 \in [0, 0.01)$ so that: $x(t) = A\cos(120\pi(t - t_0)) + 26\cos(2\pi Ft)\cos(86\pi t)$

is periodic with a fundamental frequency of 26 Hz.

(b) Find the smallest positive integer M and the corresponding value of B so that the following is true for all time t:

$$B \sin(\pi t) = \sum_{k=0}^{M} \cos\left(\pi (t - \frac{k}{4})\right).$$

Specify numerical values for the unspecified parameters so that running the above code produces the following spectrogram:

PROB. Su24-F.3. Consider the signal x(t) whose spectrum is shown below:

(c) When $f_s = 5$ Hz, the output has the form $y(t) = B + A\cos(2\pi f_0 t + \varphi)$ where (in standard form):

PROB. Su24-F.4. Consider the following cascade of six first-difference filters:

- (b) Which of the following best describes the *overall* filter? [LPF][HPF][BPF][NOTCH][ALL-PASS].
- (c) The impulse response of the *overall* system (indicated by the dashed box) satisfies:

(d) If the output satisfies satisfies y[n] = 0 for n < 0 and y[0] = y[1] = y[2] = 1, then the *input* at time 2 must be:

PROB. Su24-F.5. Consider an LTI filter defined by the difference equation:

$$y[n] = x[n] + x[n-1] + \beta x[n-2] + x[n-3] + x[n-4].$$

If the output in response to the sum of sinusoids $x[n] = \cos(0.5\pi n) + \cos(2\pi n/3)$ is y[n] = 0 (for all n), then it must be that:

PROB. Su24-F.6. Shown below is the real-valued frequency response of an LTI filter:

Specify numerical values for the constants $\{A, B, \dots Q\}$ so that the impulse response h[n] can be written in any of the following four different ways:

$$(c) \ h[n] = A \frac{\sin(B\pi n)}{\pi n} (\cos(C\pi n) + \cos(D\pi n)) :: \begin{cases} A = \\ B = \\ C = \\ D = \\ \end{bmatrix}$$

$$(d) \ h[n] = E \frac{\sin(F\pi n)}{\pi n} \cos(0.2\pi n) \cos(0.4\pi n) : \begin{cases} E = \\ F = \\ \end{bmatrix}$$

$$(e) \ h[n] = \frac{\sin(G\pi n)}{\pi n} + \frac{\sin(H\pi n)}{\pi n} - \frac{\sin(J\pi n)}{\pi n} - \frac{\sin(K\pi n)}{\pi n} : \begin{cases} G = \\ H = \\ J = \\ K = \\ \end{bmatrix}$$

$$(f) \ h[n] = L\left(\frac{\sin(P\pi n)}{\pi n} - \frac{\sin(Q\pi n)}{\pi n}\right) \cos(0.4\pi n) : \begin{cases} L = \\ P = \\ Q = \\ \end{bmatrix}$$

Г

PROB. Su24-F.7. Let $\{X[0], X[1], ..., X[15]\}$ be the 16-point DFT of a length-four signal segment $\{x[0], x[1], x[2], x[3]\}$.

Find x[0] through x[3] if the locations of the DFT coefficients in the complex plane are as indicated below, all on a circle of radius 2, satisfying $X[k]^{16} = 2^{16}$ for all k:

Hint: Direct brute-force calculation not recommended without a calculator!

PROB. Su24-F.8. Consider the following serial cascade of a pair of LTI systems:

- The first system has impulse response $h_1[n] = 0.2^{n-1}u[n-1]$.
- The second system has frequency response $H_2(e^{j\hat{\omega}}) = 15 + Ae^{-j\hat{\omega}} + Be^{-2j\hat{\omega}}$, where A and B are real but otherwise unspecified.

Let h[n] denote the impulse response of the *overall* system (dashed box), so that its Z transform H(z) is the *overall* system function.

Find A and B so that the pole-zero plot for H(z) is as shown below, with two poles at the origin and a single zero at -2/3:

PROB. Su24-F.9. Shown on the right are the pole-zero plots for 15 LTI systems, labeled A through P. Shown on the left are the corresponding magnitude responses $|H(e^{j\hat{\omega}})|$, but in a scrambled order. Match the pole-zero plot to its corresponding magnitude response by writing a letter (A through P) in each answer box.

Table of DTFT Pairs		
Time-Domain: x[n]	Frequency-Domain: $X(e^{j\hat{\omega}})$	
δ[n]	1	
$\delta[n-n_0]$	$e^{-j\hat{\omega}n_0}$	
u[n] - u[n - L]	$\frac{\sin(\frac{1}{2}L\hat{\omega})}{\sin(\frac{1}{2}\hat{\omega})}e^{-j\hat{\omega}(L-1)/2}$	
$\frac{\sin(\hat{\omega}_b n)}{\pi n}$	$u(\hat{\omega} + \hat{\omega}_b) - u(\hat{\omega} - \hat{\omega}_b) = \begin{cases} 1 & \hat{\omega} \le \hat{\omega}_b \\ 0 & \hat{\omega}_b < \hat{\omega} \le \pi \end{cases}$	
$a^n u[n] (a < 1)$	$\frac{1}{1 - ae^{-j\hat{\omega}}}$	

Table of DTFT Properties			
Property Name	Time-Domain: x[n]	Frequency-Domain: $X(e^{j\hat{\omega}})$	
Periodic in $\hat{\omega}$		$X(e^{j(\hat{\omega}+2\pi)}) = X(e^{j\hat{\omega}})$	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(e^{j\hat{\omega}}) + bX_2(e^{j\hat{\omega}})$	
Conjugate Symmetry	x[n] is real	$X(e^{-j\hat{\omega}}) = X^*(e^{j\hat{\omega}})$	
Conjugation	$x^*[n]$	$X^*(e^{-j\hat{\omega}})$	
Time-Reversal	x[-n]	$X(e^{-j\hat{\omega}})$	
Delay (<i>d</i> =integer)	x[n-d]	$e^{-j\hat{\omega}d}X(e^{j\hat{\omega}})$	
Frequency Shift	$x[n]e^{j\hat{\omega}_0 n}$	$X(e^{j(\hat{\omega}-\hat{\omega}_0)})$	
Modulation	$x[n]\cos(\hat{\omega}_0 n)$	$\frac{1}{2}X(e^{j(\hat{\omega}-\hat{\omega}_0)}) + \frac{1}{2}X(e^{j(\hat{\omega}+\hat{\omega}_0)})$	
Convolution	x[n] * h[n]	$X(e^{j\hat{\omega}})H(e^{j\hat{\omega}})$	
Parseval's Theorem	$\sum_{n=-\infty}^{\infty} x[n] ^2$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\hat{\omega}}) ^2 d\hat{\omega}$	

Table of Pairs for N-point DFT			
<i>Time-Domain:</i> $x[n], n = 0, 1, 2,, N - 1$	<i>Frequency-Domain:</i> $X[k], k = 0, 1, 2,, N - 1$		
If $x[n]$ is finite length, i.e., $x[n] \neq 0$ only when $n \in [0, N-1]$ and the DTFT of $x[n]$ is $X(e^{j\hat{\omega}})$	$X[k] = X(e^{j\hat{\omega}})\Big _{\hat{\omega}=2\pi k/N}$ (frequency sampling the DTFT)		
$\delta[n]$	1		
$\delta[n-n_0]$	$e^{-j(2\pi k/N)n_0}$		
$e^{-j(2\pi n/N)k_0}$	$N\delta[k-k_0]$, when $k_0 \in [0, N-1]$		
$u[n] - u[n-L]$, when $L \le N$	$\frac{\sin(\frac{1}{2}L(2\pi k/N))}{\sin(\frac{1}{2}(2\pi k/N))}e^{-j(2\pi k/N)(L-1)/2}$		
$\frac{\sin(\frac{1}{2}L(2\pi n/N))}{\sin(\frac{1}{2}(2\pi n/N))}e^{j(2\pi n/N)(L-1)/2}$	$N(u[k] - u[k - L])$, when $L \le N$		

Table of z-Transform Pairs			
Signal Name	Time-Domain: x[n]	z-Domain: X(z)	
Impulse	δ[<i>n</i>]	1	
Shifted impulse	$\delta[n-n_0]$	z^{-n_0}	
Right-sided exponential	$a^n u[n]$	$\frac{1}{1-az^{-1}}, a < 1$	
Decaying cosine	$r^n \cos(\hat{\omega}_0 n) u[n]$	$\frac{1 - r\cos(\hat{\omega}_0)z^{-1}}{1 - 2r\cos(\hat{\omega}_0)z^{-1} + r^2z^{-2}}$	
Decaying sinusoid	$Ar^n\cos(\hat{\omega}_0 n + \varphi)u[n]$	$A \frac{\cos(\varphi) - r\cos(\hat{\omega}_0 - \varphi)z^{-1}}{1 - 2r\cos(\hat{\omega}_0)z^{-1} + r^2 z^{-2}}$	

Table of z-Transform Properties			
Property Name	Time-Domain x[n]	z-Domain X(z)	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	
Delay (<i>d</i> =integer)	x[n-d]	$z^{-d}X(z)$	
Convolution	x[n] * h[n]	X(z)H(z)	

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 — Summer 2024 Final Exam

July 29, 2024

NAME:	ANSW	ER KEY	GT username:	
	(FIRST)	(LAST)		(e.g., gtxyz123)

Important Notes:

- $\circ~$ Closed book, except for three double-sided pages (8.5" \times 11") of hand-written notes.
- No calculators or other electronics (no smartphones/readers/watches/tablets/laptops/etc.)
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π . For example, write 0.1 π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.
 Only these answers will be graded. Write your answers in the provided answer boxes.
- Do not write on the backs of pages, only the fronts will be graded.

Problem	Points	Score
1	10	
2	10	
3	10	
4	15	
5	10	
6	15	
7	10	
8	10	
9	10	
TOTAL:	100	

	0°	30°	45°	60°	90°
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

PROB. Su24-F.1. (The two parts of this problem are unrelated.)

Find values for A > 0, F > 0, and $t_0 \in [0, 0.01)$ so that: (a) $x(t) = A\cos(120\pi(t - t_0)) + 26\cos(2\pi Ft)\cos(86\pi t)$

is periodic with a fundamental frequency of 26 Hz.

M =

B =

4

 $1 + \sqrt{2}$

leaving only a 26-Hz sinusoid

Find the smallest positive integer M and the corresponding value of B so that (b) the following is true for all time *t*:

$$B\sin(\pi t) = \sum_{k=0}^{M} \cos\left(\pi(t-\frac{k}{4})\right).$$

Corresponding phasor equation:

$$-jB = \sum_{k=0}^{M} e^{-jk0.25\pi}$$

Since the LHS phasor for -jB points *straight down*, we need M = 4 in order for the RHS sum of phasors to also point straight down:

Specify numerical values for the unspecified parameters so that running the above code produces the following spectrogram:

PROB. Su24-F.3. Consider the signal x(t) whose spectrum is shown below:

$$\int_{-17}^{1} \int_{-15}^{1} \int_{-12}^{1} \int_{-$$

(c) When $f_s = 5$ Hz, the output has the form $y(t) = B + A\cos(2\pi f_0 t + \varphi)$ where (in standard form):

$$y(t) = 2\cos(2\pi(12 - (2)(5))t) + 2\cos(2\pi(15 - (3)(5))t) + 2\cos(2\pi(17 - (3)(5))t) = 4\cos(2\pi(2)t) + 2$$

PROB. Su24-F.4. Consider the following cascade of six first-difference filters:

- (b) Which of the following best describes the *overall* filter? [LPF (HPF) BPF][NOTCH][ALL-PASS].
- (c) The impulse response of the *overall* system (indicated by the dashed box) satisfies:

(d) If the output satisfies satisfies y[n] = 0 for n < 0 and y[0] = y[1] = y[2] = 1, then the *input* at time 2 must be:

PROB. Su24-F.5. Consider an LTI filter defined by the difference equation:

$$y[n] = x[n] + x[n-1] + \beta x[n-2] + x[n-3] + x[n-4].$$

If the output in response to the sum of sinusoids $x[n] = \cos(0.5\pi n) + \cos(2\pi n/3)$ is y[n] = 0 (for all n), then it must be that:

Null 0.5π \Rightarrow $\begin{bmatrix} 1 & -2\cos(0.5\pi) & 1 \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

Null $2\pi/3 \implies [1 - 2\cos(2\pi/3) \ 1] = [1 \ 1 \ 1]$

Null both \Rightarrow convolve:

1	0	1		
	1	0	1	
		1	0	1
1	1	2	1	1

PROB. Su24-F.6. Shown below is the real-valued frequency response of an LTI filter:

Specify numerical values for the constants $\{A, B, ..., Q\}$ so that the impulse response h[n] can be written in any of the following four different ways:

$$(a) \ h[n] = A \frac{\sin(B\pi n)}{\pi n} (\cos(C\pi n) + \cos(D\pi n)) : \begin{cases} A = 2 \\ B = 0.1 \\ C = 0.2 \\ D = 0.6 \\ C = 0.2 \\ D = 0.6 \\ C = 0.2 \\$$

PROB. Su24-F.7. Let $\{X[0], X[1], ..., X[15]\}$ be the 16-point DFT of a length-four signal segment $\{x[0], x[1], x[2], x[3]\}$.

Find x[0] through x[3] if the locations of the DFT coefficients in the complex plane are as indicated below, all on a circle of radius 2, satisfying $X[k]^{16} = 2^{16}$ for all k:

Hint: Direct brute-force calculation not recommended without a calculator!

$$X[k] = 2e^{-j(2\pi k/N)(3)}$$
 where $N = 16$

From DFT table:

PROB. Su24-F.8. Consider the following serial cascade of a pair of LTI systems:

• The second system has frequency response $H_2(e^{j\hat{\omega}}) = 15 + Ae^{-j\hat{\omega}} + Be^{-2j\hat{\omega}}$, where A and B are real but otherwise unspecified. $\Rightarrow H_2(z) = 15 + Az^{-1} + Bz^{-2}$

Let h[n] denote the impulse response of the *overall* system (dashed box), so that its Z transform H(z) is the *overall* system function.

Find A and B so that the pole-zero plot for H(z) is as shown below, with two poles at the origin and a single zero at -2/3:

But $H(z) = H_1(z)H_2(z)$

$$\Rightarrow G\left(\frac{z+2/3}{z^2}\right) = \frac{z^{-1}}{1-0.2z^{-1}}(15 + Az^{-1} + Bz^{-2})$$

$$\Rightarrow 15z^{2} + Az + B = G(z + 2/3)(z - 0.2)$$
$$= 15(z + 2/3)(z - 0.2)$$
$$= 15z^{2} + 7z - 2$$

A =	7
B =	-2

PROB. Su24-F.9. Shown on the right are the pole-zero plots for 15 LTI systems, labeled A through P. Shown on the left are the corresponding magnitude responses $|H(e^{j\hat{\omega}})|$, but in a scrambled order. Match the pole-zero plot to its corresponding magnitude response by writing a letter (A through P) in each answer box.

