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PROB. Su23-F.1. (The two parts of this problem are unrelated.)

(a) There are an infinite number of positive integers N > 0 for which the following is true for all time t:

 sin(100πt) = 
k=0

N
cos 100π(t – ) .

Name any three:

(b) Find positive numeric values for the constants A, B, and C so that a filter with impulse response:

h[n ] =  – Bcos(0.4πn) :

has the following (real-valued) frequency response:

k
200
---------

N = > 0.

N = > 0,

N = > 0,

(0.8πnsin ) (Aπnsin )+
πn

-------------------------------------------------------------- (Cπnsin )
πn

-------------------------

ω̂π−π

1

0

A = > 0,

B = > 0,

C = > 0.

2

0.1π

H(e jω̂ ) 

0.7π 0.8π



PROB. Su23-F.2. Consider an LTI filter whose impulse response is:

h[n ] = δ[n – 2] + δ[n – 3] + δ[n – 4].

(a) The DC gain of this filter is .

(b) This is a nulling filter that nulls any input sinusoid whose digital frequency is ω̂ = .

(c) If a filter input of the form x[n ] = A + Bcos( n) + cos( n) results 
in a filter output y[n ] that satisfies:

y[ 0 ] = 1,
y[ 1 ] = 20

then the positive constants (A, B > 0) must be:

 

 

π
3
--- 2π

3
------

A = 

B = 



PROB. Su23-F.3. Let x( t ) be a continuous-time signal whose spectrum is shown below:

Suppose we feed this signal into the ideal sampling-filtering-reconstruction system shown below, 
where the samples of x( t ) are filtered by an FIR filter, whose output y[n ] is fed to an ideal D-to-C 
converter, resulting in the continous-time output y( t ):

(The sampling rate fs and the FIR filter parameters are unspecified and may be different in each part below.)

(a) The input x( t ) is periodic with fundamental frequency f0 =  Hz.

(b) At time zero, the input evaluates to x( 0 ) = .

(c) To avoid aliasing we need fs >  Hz.
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(d) When the sampling rate is fs = 840 Hz, and when the difference equation for the FIR filter is

y[n ] = x[n ] + Ax[n – 1] + Bx[n – 2] + Ax[n  – 3] + x[n – 4], 

the output y( t ) will be identically zero for all time t when:

(e) When the sampling rate is fs = 350 Hz, and when the difference equation for the FIR filter is

y[n ] = x[n ] + Cx[n – 1] + x[n – 2],

the output y( t ) will be identically zero for all time t when: C = .

A = 

B = 

 



PROB. Su23-F.4. Shown below on the left are the plots of 10 different signal segments [x[ 0 ], ... x[63]], 
labeled A through J, where each x[n ] is plotted versus n∈{0, 1, ... 63}. Let [X[ 0 ], 
... X[63]] be the N = 64-point DFT of [x[ 0 ], ... x[63]]. Shown on the right are the 
corresponding plots of the DFT magnitudes |X[k ]| versus k∈{0, 1, ... 63}, but in a 
scrambled order. Match each DFT magnitude plot to its corresponding signal 
segment by writing a letter (from A through J) into each of the 10 answer boxes. 
(None of the y-axis scales are specified, they are not needed, only the shapes matter.)
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PROB. Su23-F.5. Consider the following serial cascade of a pair of LTI systems:

As shown in the figure, an input sequence x[n ] is fed to a first LTI system, whose output is fed as an 
input to a second LTI system, producing an overall output sequence y[n ].

• The first sytem has impulse response h1[n ] = βnu[n ], where the real parameter β is unspecified.
• The second system has frequency response H2(e

jω̂ ) = 12 – 2e – jω̂  – 4e – 2jω̂.
If the difference equation relating the overall output to the overall input is

y[n ] = 12x[n ] + 6x[n – 1],

then it must be that:

x[n ] y[n ]y1[n ] = x2[n ]LTI
SYSTEM #1

h1 [n ]

LTI
SYSTEM #2

H2(e
jω̂ )

β = . 



PROB. Su23-F.6. Consider an IIR filter with system function H( z ) =  + .

(a) Sketch the pole-zero plot for this filter:

(b) The dc gain of this filter is .

(c) The impulse response evaluated at time zero is h[ 0 ] = .

(d) The filter’s difference equation has the form y[n ] = b0x[n ] + b1x[n – 1] + a2y[n – 2], where:

9

1 0.5z 1––
------------------------- 3

1 0.5z 1–+
--------------------------

Im{z}
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(un
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b0 = 

b1 = 

a2 = 



PROB. Su23-F.7. Shown on the left are the pole-zero plots for 12 LTI systems, labeled A through L. 
Shown on the right are the corresponding magnitude responses |H(e jω̂ )|, but in a 
scrambled order. Match the pole-zero plot to its corresponding magnitude response 
by writing a letter (A through L) in each answer box.
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PROB. Su23-F.1. (The two parts of this problem are unrelated.)

(a) There are an infinite number of positive integers N > 0 for which the following is true for all time t:

 sin(100πt) = 
k=0

N
cos 100π(t – ) .

Name any three:

(b) Find positive numeric values for the constants A, B, and C so that a filter with impulse response:

h[n ] =  – Bcos(0.4πn) :

has the following (real-valued) frequency response:

k
200
---------

N = > 0.

N = > 0,

N = > 0,Corresponding phasor equation:

e–j0.5π = k=0

N
e–jk0.5π

N = 2 works: e–j0.5π = 1 +  e–j0.5π – 1 

Adding any integer multiple of 4 will also work

⇒ N = 2 + 4 ∈{2, 6, 10, 14, 18, 22, ...}

2

6

10

(0.8πnsin ) (Aπnsin )+
πn

-------------------------------------------------------------- (Cπnsin )
πn

-------------------------

ω̂π−π

1

0

A = > 0,

B = > 0,

C = > 0.

2

0.1π

H(e jω̂ ) 

0.7π 0.8π

0.1

2

0.3

This shape can be achieved by subtracting the bottom BPF shape below 
from the sum of the first two rectangles:

⇒ A = 0.1

⇒ B = 2, C = 0.3

0.4π

0.3π

1

1

1

0.8π

0.1π



PROB. Su23-F.2. Consider an LTI filter whose impulse response is:

h[n ] = δ[n – 2] + δ[n – 3] + δ[n – 4].

(a) The DC gain of this filter is .

(b) This is a nulling filter that nulls any input sinusoid whose digital frequency is ω̂ = .

(c) If a filter input of the form x[n ] = A + Bcos( n) + cos( n) results 
in a filter output y[n ] that satisfies:

y[ 0 ] = 1,
y[ 1 ] = 20

 3 

H(e jω̂ ) =  e –j2ω̂ + e –j3ω̂ + e –j4ω̂

⇒ H(e j0 ) = 1 + 1 + 1

 
2π
3

------

H(e jω̂ ) =  e –j2ω̂ + e –j3ω̂ + e –j4ω̂

=  e –j3ω̂ (1 + 2cos(ω̂))

=  0 when ω̂ = 2π/3

π
3
--- 2π

3
------

then the positive constants (A, B > 0) must be: A = 

B = H(ejπ/3) =  e–j3π/3 (1 + 2cos(π/3)) = –2 

H(ej2π/3) = 0

⇒ y[n ] = 3A – 2Bcos(πn/3) + 0cos(2πn/3)

H(ej0) = 3

⇒ y[ 0 ] = 3A – 2B = 1 

y[ 1 ] = 3A – B = (2B + 1) – B = 20 ⇒ B = 19

13

19

⇒ A = (2B + 1)/3  = 13

From this we get two equations, two unknowns:



PROB. Su23-F.3. Let x( t ) be a continuous-time signal whose spectrum is shown below:

Suppose we feed this signal into the ideal sampling-filtering-reconstruction system shown below, 
where the samples of x( t ) are filtered by an FIR filter, whose output y[n ] is fed to an ideal D-to-C 
converter, resulting in the continous-time output y( t ):

(The sampling rate fs and the FIR filter parameters are unspecified and may be different in each part below.)

(a) The input x( t ) is periodic with fundamental frequency f0 =  Hz.

(b) At time zero, the input evaluates to x( 0 ) = .

(c) To avoid aliasing we need fs >  Hz.
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 70

gcd(140, 210) 

 4

Evaluate FS x( t ) = 
∞
k =–∞

ake
j2πkf0 t at time 0

⇒ x( 0 ) = 
∞
k =–∞

ak 

= (1 + j) + (1 – j) + (1 + j) + (1 – j) = 4

 420

fs > 2fmax



(d) When the sampling rate is fs = 840 Hz, and when the difference equation for the FIR filter is

y[n ] = x[n ] + Ax[n – 1] + Bx[n – 2] + Ax[n  – 3] + x[n – 4], 

the output y( t ) will be identically zero for all time t when:

(e) When the sampling rate is fs = 350 Hz, and when the difference equation for the FIR filter is

y[n ] = x[n ] + Cx[n – 1] + x[n – 2 ],

the output y( t ) will be identically zero for all time t when C = .

A = 

B = 

To null ω̂1 = = ⇒ h1 = [1, –1, 1]  
140

fs/2
---------π π

3
---

210
fs/2
------------π π

2
---

Concatenate filters of the form [1, –2cos(ω̂0), 1]  

To null ω̂2 = = ⇒ h2 = [1, 0 , 1 ]  

Convolve h1 ∗ h2: 1 -1 1
0 0 0

1 -1 1

1 -1 2 -1 1

A B

–1

2

ω̂1 = = 0.8π   
140

fs/2
---------π

210
fs/2
------------πω̂2 = = 1.2π →  0.8π 

The second sinusoid aliases to the same digital frequency as the first:

⇒ A single filter [1, –2cos(0.8π), 1]  = [ 1, 1.618, 1 ] does the job

C

 1.618



PROB. Su23-F.4. Shown below on the left are the plots of 10 different signal segments [x[ 0 ], ... x[63]], 
labeled A through J, where each x[n ] is plotted versus n∈{0, 1, ... 63}. Let [X[ 0 ], 
... X[63]] be the N = 64-point DFT of [x[ 0 ], ... x[63]]. Shown on the right are the 
corresponding plots of the DFT magnitudes |X[k ]| versus k∈{0, 1, ... 63}, but in a 
scrambled order. Match each DFT magnitude plot to its corresponding signal 
segment by writing a letter (from A through J) into each of the 10 answer boxes. 
(None of the y-axis scales are specified, they are not needed, only the shapes matter.)
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PROB. Su23-F.5. Consider the following serial cascade of a pair of LTI systems:

As shown in the figure, an input sequence x[n ] is fed to a first LTI system, whose output is fed as an 
input to a second LTI system, producing an overall output sequence y[n ].

• The first sytem has impulse response h1[n ] = βnu[n ], where the real parameter β is unspecified.
• The second system has frequency response H2(e

jω̂ ) = 12 – 2e – jω̂  – 4e – 2jω̂.
If the difference equation relating the overall output to the overall input is

y[n ] = 12x[n ] + 6x[n – 1],

then it must be that:

x[n ] y[n ]y1[n ] = x2[n ]LTI
SYSTEM #1

h1 [n ]

LTI
SYSTEM #2

H2(e
jω̂ )

β = . 

The overall system function is

1

1 βz 1––
--------------------

12 + 6z–1 = H1( z )H2( z )

= ( )(12 – 2z–1 – 4z–2)

⇒ 12 – 2z–1 – 4z–2 = (12 + 6z–1)(1 – βz–1)

= 12 – (12β – 6) – 6βz–2 

2 4

Solve either one ⇒ β = 2/3

2
3
---



PROB. Su23-F.6. Consider an IIR filter with system function H( z ) =  + .

(a) Sketch the pole-zero plot for this filter:

(b) The dc gain of this filter is .

(c) The impulse response evaluated at time zero is h[ 0 ] = .

(d) The filter’s difference equation has the form y[n ] = b0x[n ] + b1x[n – 1] + a2y[n – 2], where:

9
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Im{z}
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H( z ) =
12 3z 1–+

(1 0.5z 1–+ )(1 0.5z 1–– )
---------------------------------------------------------------

12z(z 0.25)+
(z 0.5+ )(z 0.5– )
---------------------------------------------= 

zeros at 0, – 0.25

poles at ±0.5

roots

roots

 20

H(ej0) = H( 1 ) = + = 18 + 2 = 209
1 0.5–
---------------- 3

1 0.5+
------------------

 12

Inverse Z transform via Table:

h[n ] = 9(0.5)nu[n ] +  3(–0.5)nu[n ]

⇒ h[ 0 ] = 9 +  3

b0 = 

b1 = 

a2 = 

12 3z 1–+

(1 0.5z 1–+ )(1 0.5z 1–– )
--------------------------------------------------------------- Y(z)

X(z)
-------------=Equate 

Cross multiply 

⇒ Y( z ) – 0.25z–2Y( z ) = 12X( z ) + 3z–1X( z )

Inverse transform
⇒ y[n ] – 0.25y[n  – 2] = 12x[n ] + 3x[n  – 1]

⇒ y[n ] = 12x[n ] + 3x[n  – 1] + 0.25y[n  – 2] 

b0 b1 a2

12

3

0.25



PROB. Su23-F.7. Shown on the left are the pole-zero plots for 12 LTI systems, labeled A through L. 
Shown on the right are the corresponding magnitude responses |H(e jω̂ )|, but in a 
scrambled order. Match the pole-zero plot to its corresponding magnitude response 
by writing a letter (A through L) in each answer box.
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