GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 Spring 2025 Final Exam

April 25, 2025

NAME: _		GT username:				
_	(FIRST)	(LAST)	<u> </u>		(e.g.,	gtxyz123)
	Circle your	recitation section:	L01 (Daniela)	L05 (Chun-Wei)	L07 (Chun-Wei)	L09 (Daniela)
			L02 (Greg)	L06 (Kennedy)	L08 (Kennedy)	L10 (Greg)

Important Notes:

- You may tear off the tables from the back of the exam, but otherwise do not unstaple the rest.
- Do not unstaple the test.
- Closed book, except for one two-sided page (8.5"×11") of hand-written notes.
- Calculators are allowed, but no other electronics (no sphones/watches/readers/tablets/laptops/etc).
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π . For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.

 Only these answers will be graded. Write your answers in the provided answer boxes.
- Only the fronts of the each page will be scanned and graded.

Problem	Value	Score
1	15	
2	16	
3	17	
4	9	
5	16	
6	16	
7	11	
Total		_

PROB. Sp25-F.1. Consider the signal $s(t) = 4\cos(16\pi t) + 2\sin(24\pi t)$.

The signal s(t) is periodic with fundamental frequency (a)

- Hz.
- In the space below, carefully sketch the two-sided spectrum for s(t); (b) full credit requires that the <u>frequency</u> and <u>complex coefficient</u> for each line be clearly labeled:

Construct a new signal according to $x(t) = 2\cos(4\pi t)s(t)$.

The Fourier series representation for this new signal is $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}$, where:

$$f_0 = oxed{f Hz}, \quad a_0 = oxed{f Hz}$$

$$a_1 =$$

$$a_2 =$$
,

$$a_3 =$$

$$a_4 =$$

$$a_5 =$$

$$a_6 =$$

$$a_7 =$$

PROB. Sp25-F.2. Shown below are the stem plots of four input sequences $x_1[n]$ through $x_4[n]$, along with three impulse responses $h_1[n]$ through $h_3[n]$:

Match each convolution below to one of the nine stem plots shown to the right. Answer by writting a letter from {A, ... I} into each answer box. (Some letters used more than once.) (Hint: Pay close attention to the durations of the signals.)

(a)
$$x_1[n] * h_1[n]$$

(g)
$$x_3[n] * h_2[n]$$

(b)
$$x_2[n] * h_1[n]$$

(h)
$$x_4[n] * h_2[n]$$

(c)
$$x_3[n] * h_1[n]$$

(i)
$$x_1[n] * h_3[n]$$

(j)
$$x_2[n] * h_3[n]$$

(e)
$$x_1[n] * h_2[n]$$

(k)
$$x_3[n] * h_3[n]$$

(f)
$$x_2[n] * h_2[n]$$

(1)
$$x_4[n] * h_3[n]$$

PROB. Sp25-F.3.

Consider the FIR filter defined by the difference equation: y[n] = x[n] + x[n-1] + x[n-2].

Suppose the sinusoid $x(t) = 24\cos(24\pi t + \varphi)$ with unspecified phase φ is fed to an ideal sampling/filtering/reconstruction system using the above FIR filter, producing an output y(t):

- (a) To avoid aliasing we need $f_s>$ Hz.
- (b) For the case when $\varphi = 0$, there are many sampling rates for which the D-to-C output y(t) is zero for all time t.

(c) For the case when $\varphi = -\pi/2$, there are again many sampling rates for which y(t) is zero for all t, and the largest of these is the same as in (b), but now the second-largest is $f_s =$ Hz.

PROB. Sp25-F.4. Shown below are nine plots of $\left|\sum_{n=0}^{49}\cos(\hat{\omega}n)\,e^{-jk2\pi n/50}\right|$ versus $k\in\{0,\dots49\}$, labeled A through I. (The y-axis scales are not labeled, only the shapes matter.) Match each plot to the corresponding value (in units of radians) of the parameter $\hat{\omega}$. Answer by writing a letter (from A through I) into each answer box.

49

PROB. Sp25-F.5. An LTI filter's impulse response h[n] is defined in terms of $g[n] = \frac{\cos(\hat{\omega}_0 n)\sin(\hat{\omega}_1 n)}{\pi n}$ according to:

$$h[n] = 5g[n] + g[n - N] + g[n + N].$$

Shown on the right are eight different frequency response plots for this filter, each resulting from a different set of values for the parameters $\hat{\omega}_0$, $\hat{\omega}_1$, and N. Match each plot to one of the eight parameter sets listed below.

(2)
$$\hat{\omega}_0 = 0.4\pi$$
 $\hat{\omega}_1 = 0.4\pi$ $N = 2$

$$\hat{\omega}_0 = 0.6\pi \\ \hat{\omega}_1 = 0.3\pi \\ N = 2$$

$$\begin{array}{|c|c|c|}\hline &\hat{\omega}_0=0.6\pi\\ &\hat{\omega}_1=0.4\pi\\ &N=2\\ \end{array}$$

(5)
$$\hat{\omega}_0 = 0.4\pi \\ \hat{\omega}_1 = 0.3\pi \\ N = 3$$

(6)
$$\hat{\omega}_0 = 0.4\pi \\ \hat{\omega}_1 = 0.4\pi \\ N = 3$$

$$\hat{\omega}_0 = 0.6\pi$$

$$\hat{\omega}_1 = 0.3\pi$$

$$N = 3$$

$$\hat{\omega}_0 = 0.6\pi \\ \hat{\omega}_1 = 0.4\pi \\ N = 3$$

PROB. Sp25-F.6. An LTI filter is defined by the following difference equation, with parameters a and b that differ in the different parts below:

$$y[n] = x[n] + ay[n-2] + bx[n-2].$$

(a) If the output is y[n] = 0 (for all n) when the filter parameters are a = 0.2 and b = 1 and when the input is $x[n] = 0.3\cos(\hat{\omega}_0 n + 0.3\pi)$, the input frequency must be

$$\hat{\omega}_0 =$$

(b) Find a and b so that the pole-zero plot for the system function H(z) is as shown below, with the zeros falling on the intersection of the vertical axis and a circle of radius 0.25, and the poles falling on the intersection of the horizontal axis and a circle of radius 0.5:

$$a = \boxed{ }$$

$$b = \boxed{ }$$

(c) Find a and b so that the output in response to $x[n] = 8 + 10\cos(0.5\pi(n-2))$

is
$$y[n] = 40 + 40\cos(0.5\pi(n-2))$$
:

b =

PROB. Sp25-F.7. Shown on the left are the pole-zero plots for eleven LTI systems, labeled A through K. Shown on the right are the corresponding magnitude responses $|H(e^{j\hat{\omega}})|$, but in a scrambled order. Match the pole-zero plot to its corresponding magnitude response by writing a letter (A through K) in each answer box.

Table of DTFT Pairs				
$Time-Domain: \ x[n]$	Frequency-Domain: $X(e^{j\hat{\omega}})$			
$\delta[n]$	1			
$\delta[n-n_0]$	$e^{-j\hat{\omega}n_0}$			
$r_L[n] = u[n] - u[n - L]$	$\frac{\sin(\frac{1}{2}L\hat{\omega})}{\sin(\frac{1}{2}\hat{\omega})} e^{-j\hat{\omega}(L-1)/2}$			
$r_L[n]e^{j\hat{\omega}_0n}$	$\frac{\sin(\frac{1}{2}L(\hat{\omega}-\hat{\omega}_0))}{\sin(\frac{1}{2}(\hat{\omega}-\hat{\omega}_0))}e^{-j(\hat{\omega}-\hat{\omega}_0)(L-1)/2}$			
$\frac{\sin(\hat{\omega}_b n)}{\pi n}$	$u(\hat{\omega} + \hat{\omega}_b) - u(\hat{\omega} - \hat{\omega}_b) = \begin{cases} 1 & \hat{\omega} \le \hat{\omega}_b \\ 0 & \hat{\omega}_b < \hat{\omega} \le \tau \end{cases}$			
$a^n u[n] (a < 1)$	$\frac{1}{1 - ae^{-j\hat{\omega}}}$			

Table of DTFT Properties				
Property Name	Time-Domain: $x[n]$	Frequency-Domain: $X(e^{j\hat{\omega}})$		
Periodic in $\hat{\omega}$		$X(e^{j(\hat{\omega}+2\pi)}) = X(e^{j\hat{\omega}})$		
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(e^{j\hat{\omega}}) + bX_2(e^{j\hat{\omega}})$		
Conjugate Symmetry	x[n] is real	$X(e^{-j\hat{\omega}}) = X^*(e^{j\hat{\omega}})$		
Conjugation	$x^*[n]$	$X^*(e^{-j\hat{\omega}})$		
Time-Reversal	x[-n]	$X(e^{-j\hat{\omega}})$		
Delay $(n_d = integer)$	$x[n-n_d]$	$e^{-j\hat{\omega}n_d}X(e^{j\hat{\omega}})$		
Frequency Shift	$x[n]e^{j\hat{\omega}_0n}$	$X(e^{j(\hat{\omega}-\hat{\omega}_0)})$		
Modulation	$x[n]\cos(\hat{\omega}_0 n)$	$ \frac{1}{2}X(e^{j(\hat{\omega}-\hat{\omega}_0)}) + \frac{1}{2}X(e^{j(\hat{\omega}+\hat{\omega}_0)}) $		
Convolution	x[n] * h[n]	$X(e^{j\hat{\omega}})H(e^{j\hat{\omega}})$		
Autocorrelation	x[-n] * x[n]	$ X(e^{j\hat{\omega}}) ^2$		
Parseval's Theorem	$\sum_{n=-\infty}^{\infty} x[n] ^2$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\hat{\omega}}) ^2 d\hat{\omega}$		

Date: 28-Apr-2013

Table of Pairs for N -point DFT				
Time-Domain: $x[n], n = 0, 1, 2,, N - 1$	Frequency-Domain: $X[k], k = 0, 1, 2, \dots, N-1$			
If $x[n]$ is finite length, i.e., $x[n] \neq 0$ only when $n \in [0, N-1]$ and the DTFT of $x[n]$ is $X(e^{j\hat{\omega}})$	$X[k] = X(e^{j\hat{\omega}})\Big _{\hat{\omega}=2\pi k/N}$ (frequency sampling the DTFT)			
$\delta[n]$	1			
1	$N\delta[k]$			
$\delta[n-n_0]$	$e^{-j(2\pi k/N)n_0}$			
$e^{j(2\pi n/N)k_0}$	$N\delta[k-k_0]$, when $k_0 \in [0, N-1]$			
$r_L[n] = u[n] - u[n-L], \text{ when } L \leq N$	$\frac{\sin(\frac{1}{2}L(2\pi k/N))}{\sin(\frac{1}{2}(2\pi k/N))} e^{-j(2\pi k/N)(L-1)/2}$			
$r_L[n]e^{j(2\pi k_0/N)n}$, when $L \leq N$	$\frac{\sin(\frac{1}{2}L(2\pi(k-k_0)/N))}{\sin(\frac{1}{2}(2\pi(k-k_0)/N))}e^{-j(2\pi(k-k_0)/N)(L-1)/2}$			
$\frac{\sin(\frac{1}{2}L(2\pi n/N))}{\sin(\frac{1}{2}(2\pi n/N))}e^{j(2\pi n/N)(L-1)/2}$	$N(u[k] - u[k - L])$, when $L \le N$			

Table of DFT Properties				
Property Name	$Time-Domain: \ x[n]$	Frequency-Domain: $X[k]$		
Periodic	x[n] = x[n+N]	X[k] = X[k+N]		
Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$		
Conjugate Symmetry	x[n] is real	$X[N-k] = X^*[k]$		
Conjugation	$x^*[n]$	$X^*[N-k]$		
Time-Reversal	x[N-n]	X[N-k]		
Delay (PERIODIC)	$x[n-n_d]$	$e^{-j(2\pi k/N)n_d}X[k]$		
Frequency Shift	$x[n]e^{j(2\pi k_0/N)n}$	$X[k-k_0]$		
Modulation	$x[n]\cos((2\pi k_0/N)n)$	$\frac{1}{2}X[k-k_0] + \frac{1}{2}X[k+k_0]$		
Convolution (PERIODIC)	$x[n] * h[n] = \sum_{m=0}^{N-1} h[m]x[n-m]$	X[k]H[k]		
Parseval's Theorem $\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$				

Table of z-Transform Pairs					
Signal Name	Time-Domain: $x[n]$	z-Domain: $X(z)$			
Impulse	$\delta[n]$	1			
Shifted impulse	$\delta[n-n_0]$	z^{-n_0}			
Right-sided exponential	$a^n u[n]$	$\frac{1}{1 - az^{-1}}, a < 1$			
Decaying cosine $r^n \cos(\hat{\omega}_0 n) u$		$\frac{1 - r\cos(\hat{\omega}_0)z^{-1}}{1 - 2r\cos(\hat{\omega}_0)z^{-1} + r^2z^{-2}}$			
Decaying sinusoid	$Ar^n\cos(\hat{\omega}_0 n + \varphi)u[n]$	$A \frac{\cos(\varphi) - r\cos(\hat{\omega}_0 - \varphi)z^{-1}}{1 - 2r\cos(\hat{\omega}_0)z^{-1} + r^2z^{-2}}$			

Table of z -Transform Properties				
Property Name	$Time\text{-}Domain\ x[n]$	z-Domain $X(z)$		
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$		
Delay (d=integer)	x[n-d]	$z^{-d}X(z)$		
Convolution	x[n] * h[n]	X(z)H(z)		

Date: 28-April-2013

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2026 Spring 2025 Final Exam

April 25, 2025

NAME:	SOLUTIONS			GT usernar		VERSION A	
_	(FIRST)	(LAST)				gtxyz123)	
	Circle your	recitation section:	L01 (Daniela)	LOS (Chup Woi)	L07 (Chun-Wei)	L09 (Daniela)	
	2		L01 (Daniela)	L05 (Chun-wei)	L07 (Chun-wei)	L10 (Greg)	

Important Notes:

- You may tear off the tables from the back of the exam, but otherwise do not unstaple the rest.
- Do not unstaple the test.
- Closed book, except for one two-sided page $(8.5" \times 11")$ of hand-written notes.
- Calculators are allowed, but no other electronics (no sphones/watches/readers/tablets/laptops/etc).
- JUSTIFY your reasoning CLEARLY to receive partial credit.
- Express all angles as a fraction of π . For example, write 0.1π as opposed to 18° or 0.3142 radians.
- You must write your answer in the space provided on the exam paper itself.

 Only these answers will be graded. Write your answers in the provided answer boxes.
- Only the fronts of the each page will be scanned and graded.

Problem	Value	Score
1	15	
2	16	
3	17	
4	9	
5	16	
6	16	
7	11	
Total		

PROB. Sp25-F.1. Consider the signal $s(t) = 4\cos(16\pi t) + 2\sin(24\pi t)$.

- (a) The signal s(t) is periodic with fundamental frequency $f_0 = \gcd(8, 12) = 4$ Hz.
- (b) In the space below, carefully sketch the two-sided spectrum for s(t); full credit requires that the <u>frequency</u> and <u>complex coefficient</u> for *each line* be clearly *labeled*:

(c) Construct a new signal according to $x(t) = 2\cos(4\pi t)s(t)$.

The Fourier series representation for this new signal is $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}$, where:

$$f_0 = egin{bmatrix} 2 & & & \\ & \mathbf{1} & & \\ & & \mathbf{1} & \\ & & \mathbf{2} & \\ & & \mathbf{1} &$$

$$x(t) = 8\cos(4\pi t)\cos(16\pi t) + 4\cos(4\pi t)\sin(24\pi t)$$

$$=4\cos(20\pi t)+4\cos(12\pi t)+2\sin(28\pi t)+2\sin(20\pi t)$$

$$= A\cos(20\pi t + \varphi) + 4\cos(12\pi t) + 2\sin(28\pi t)$$

where phasor addition $\Rightarrow Ae^{j\phi} = 4 - 2j$

$$f_0 = \gcd(6, 10, 14) = 2$$

$$a_2 = \boxed{ }$$
 ,

Length after convolution is $L_y = L_x + L_h - 1$

Shown below are the stem plots of four input sequences $x_1[n]$ through $x_4[n]$, PROB. Sp25-F.2. along with three impulse responses $h_1[n]$ through $h_3[n]$:

Match each convolution below to one of the nine stem plots shown to the right. Answer by writting a letter from $\{A, ... I\}$ into each answer box. (Some letters used more than once.) (Hint: Pay close attention to durations of the signals.)

D (g)
$$x_3[n] * h_2[n]$$

$$F \qquad \qquad L_y = 8 \qquad \qquad 40$$

E (b)
$$x_2[n] * h_1[n]$$

B (h)
$$x_4[n] * h_2[n]$$

(i) $x_1[n] * h_3[n]$

$$G \qquad \bigcup_{0} \qquad \bigcup_{y=14} \qquad U_{y} = 14$$

H (c)
$$x_3[n] * h_1[n]$$

(d) $x_4[n] * h_1[n]$

$$lacksquare{A}$$
 (j) $x_2[n] * h_3[n]$

G

Α

B (k)
$$x_3[n] * h_3[n]$$

H (f)
$$x_2[n] * h_2[n]$$

C (1)
$$x_4[n] * h_3[n]$$

PROB. Sp25-F.3.

Consider the FIR filter defined by the difference equation: y[n] = x[n] + x[n-1] + x[n-2].

Suppose the sinusoid $x(t) = 24\cos(24\pi t + \varphi)$ with unspecified phase φ is fed to an ideal sampling/filtering/reconstruction system using the above FIR filter, producing an output y(t):

- (a) To avoid aliasing we need $f_s>$ Hz.
- (b) For the case when $\varphi = 0$, there are many sampling rates for which the D-to-C output y(t) is zero for all time t.

The
$$\{b_k\}=\{1\ 1\ 1\}$$
 filter nulls $\ \hat{\omega}_0=\frac{2\pi}{3}$

$$\Rightarrow$$
 Smallest digital frequency nulled is $\frac{24\pi}{f_s}=\frac{2\pi}{3}$ $\Rightarrow f_s=36~{\rm Hz}$

$$\Rightarrow$$
 second-smallest is $\frac{24\pi}{f_s} = \left| \frac{2\pi}{3} - 2\pi \right| = \frac{4\pi}{3} \Rightarrow f_s = 18 \text{ Hz}$

(c) For the case when $\varphi = -\pi/2$, there are again many sampling rates for which y(t) is zero for all t, and the largest of these is the same as in (b), but now the second-largest is $f_s = 24$ Hz.

In this case the input is $24\sin(24\pi t)$, a pure sine, which can be sampled at its zero crossings to get a zero signal even before the FIR filter:

when $f_s = 24$ Hz:

Reduce digital frequencies to $\in (-\pi, \pi)$ and express in terms of π :

PROB. Sp25-F.4.

Shown below are nine plots of $\left|\sum_{n=0}^{49}\cos(\hat{\omega}n)\,e^{-jk2\pi n/50}\right|$ versus $k{\in}\{0,\dots49\}$, labeled A through I. (The y-axis scales are not labeled, only the shapes matter.) Match each plot to the corresponding value (in units of radians) of the parameter $\hat{\omega}$. Answer by writing a letter (from A through I) into each answer box.

$$\begin{array}{c|c}
\text{(3)} & \mathbf{F} & \hat{\omega} = 6 \\
& = -0.1\pi
\end{array}$$

$$\begin{array}{c|c}
\text{(4)} & C & \hat{\omega} = 9 \\
& = 0.86\pi
\end{array}$$

$$\begin{array}{|c|c|c|}
\hline
\text{A} & \hat{\omega} = 17 \\
= -0.59\pi
\end{array}$$

(7)
$$\begin{array}{|c|c|} \hline H & \hat{\omega} = 22 \\ = -0.997\pi \end{array}$$

$$\begin{array}{c|c}
\text{(9)} & \hat{\omega} = 333 \\
= -0.003\pi
\end{array}$$

PROB. Sp25-F.5. An LTI filter's impulse response h[n] is defined in terms of $g[n] = \frac{\cos(\hat{\omega}_0 n)\sin(\hat{\omega}_1 n)}{\pi n}$ according to:

$$h[n] = 5g[n] + g[n - N] + g[n + N].$$

Shown on the right are eight different frequency response plots for this filter, each resulting from a different set of values for the parameters $\hat{\omega}_0$, $\hat{\omega}_1$, and N. Match each plot to one of the eight parameter sets listed below.

(2)
$$\begin{array}{|c|c|c|c|c|} \hat{\omega}_0 &= 0.4\pi \\ \hat{\omega}_1 &= 0.4\pi \\ N &= 2 \end{array}$$

(4)
$$\begin{array}{|c|c|} \hat{\omega}_0 = 0.6\pi \\ \hat{\omega}_1 = 0.4\pi \\ N = 2 \end{array}$$

(5)
$$\begin{array}{|c|c|c|} \hat{\omega}_0 = 0.4\pi \\ \hat{\omega}_1 = 0.3\pi \\ N = 3 \end{array}$$

(7)
$$\begin{array}{|c|c|c|} & \hat{\omega}_0 = 0.6\pi \\ & \hat{\omega}_1 = 0.3\pi \\ & N = 3 \end{array}$$

(8)
$$\begin{array}{|c|c|} \hat{\omega}_0 = 0.6\pi \\ \hat{\omega}_1 = 0.4\pi \\ N = 3 \end{array}$$

PROB. Sp25-F.6. An LTI filter is defined by the following difference equation, with parameters a and b that differ in the different parts below:

$$y[n] = x[n] + ay[n-2] + bx[n-2].$$

If the output is y[n] = 0 (for all n) when the filter parameters are a = 0.2 and b = 1(a) and when the input is $x[n] = 0.3\cos(\hat{\omega}_0 n + 0.3\pi)$, the input frequency must be

The system function is
$$H(z) = \frac{1+z^{-2}}{1-az^{-2}} = \frac{z^2+1}{z^2-a}$$

$$\hat{\omega}_0 = \begin{vmatrix} 0.5\pi \end{vmatrix}$$

 \Rightarrow zeros at $\pm j = e^{\pm j0.5\pi}$, on the unit circle \Rightarrow nulls corresponding sinusoid

Find a and b so that the pole-zero plot for the system function H(z) is as shown below, with the zeros falling on the intersection of the vertical axis and a circle of radius 0.25, and the poles falling on the intersection of the horizontal axis and a circle of radius 0.5:

$$a = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{6} \end{bmatrix},$$

$$b = \begin{bmatrix} \frac{1}{16} \\ \frac{1}{6} \end{bmatrix}.$$

Find a and b so that the output in response to $x[n] = 8 + 10\cos(0.5\pi(n-2))$ is

$$y[n] = 40 + 40\cos(0.5\pi(n-2))$$
:

$$a = \boxed{}$$

gain at $\hat{\omega} = 0$ is $H(0) = \frac{1+b}{1-a}$

$$b = \boxed{-31}$$

gain at $\hat{\omega} = 0.5\pi$ is $H(j) = \frac{1-b}{1+a}$

Set first to 5, second to 4, solve system of equations

PROB. Sp25-F.7. Shown on the left are the pole-zero plots for eleven LTI systems, labeled A through K. Shown on the right are the corresponding magnitude responses $|H(e^{j\hat{u}})|$, but in a scrambled order. Match the pole-zero plot to its corresponding magnitude response by writing a letter (A through K) in each answer box.

