GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL \& COMPUTER ENGINEERING
 FINAL EXAM

NAME: Solutions v1
LAST, FIRST

STUDENT \#: \qquad

2 points

2 points

Recitation Section: Circle the date \& time when your Recitation Section meets (not Lab):

L00:Tue-9:30am (Zhang)	L01:Mon-3:00pm (Casinovi)
L03:Mon-4:30pm (Casinovi)	L05:Tue-12:00pm (Zhang)
L06:Thu-12:00pm (Walkenhorst)	L07:Tue-1:30pm (Zajic)
L08:Thu-1:30pm (Walkenhorst)	L09:Tue-3:00pm (Zajic)
L10:Thu-3:00pm (Fekri)	L12:Thu-4:30pm (Fekri)

- Write your name on the front page ONLY. DO NOT unstaple the test.
- Closed book, but a calculator is permitted. However, one page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes permitted. OK to write on both sides.
- Unless stated otherwise, JUSTIFY your reasoning clearly to receive any partial credit. Showing your work is required to receive any partial credit.
- You must write your answer in the space provided on the exam paper itself.

Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.

Problem	Value	Score
1	14	
2	14	
3	16	
4	12	
5	14	
6	14	
7	14	
Rec	2	
Total	100	

Problem F.1:
Sampling and Aliasing

For the following questions, refer to ideal sampling system above.
(a) For a sampling frequency of $f_{s}=400 \mathrm{~Hz}$ and

$$
x(t)=\cos (300 \cdot 2 \pi t+\pi / 3)
$$

determine $x[n]$.

$$
\begin{aligned}
x[n] & =\cos \left(\frac{300}{400} \cdot 2 \pi n+\frac{\pi}{3}\right) \\
& =\cos \left(1.5 \pi n+\frac{\pi}{3}\right)=\cos \left(0.5 \pi n-\frac{\pi}{3}\right)
\end{aligned}
$$

(b) Suppose

$$
x(t)=\cos (400 \pi t+\pi / 2)+\cos (200 \pi t+\pi / 2)
$$

determine one value of f_{s} such that $x[n]=0$.

$$
\begin{aligned}
f_{s} & =200 \mathrm{~Hz} \\
X[n] & =\cos \left(2 \pi n+\frac{\pi}{2}\right)+\cos \left(\pi n+\frac{\pi}{2}\right) \\
& =\varnothing
\end{aligned}
$$

(c) Suppose, as in part b,

$$
x(t)=\cos (400 \pi t+\pi / 2)+\cos (200 \pi t+\pi / 2)
$$

determine a general equation for all values of f_{s} such that $x[n]=0$.

$$
\begin{aligned}
& x[n]=\cos \left(\frac{400}{f_{s}} \pi n+\frac{\pi}{2}\right)+\cos \left(\frac{200}{f_{S}} \pi n+\frac{\pi}{2}\right) \\
&=-\sin \left(\frac{200}{f_{S} 2 \pi n}\right)-\sin \left(\frac{100}{f s} 2 \pi n\right) \\
& \frac{200}{f_{S}}=k \Rightarrow f_{s}=\frac{200}{k} \quad k=1,2, \ldots \\
& x[n]=\cos \left(\frac{200}{f_{S} 2 \pi n} 2 \pi-\frac{\pi}{2}\right)+\cos \left(\frac{100}{\rho_{S}} 2 \pi n+\frac{\pi}{2}\right)=0 \\
& 2 \pi \frac{200}{f_{s}}-2 \pi e=-2 \pi \frac{100}{f_{S}} \rightarrow P_{5}=\frac{300}{e} \quad e=1,2,3 .
\end{aligned}
$$

Problem F.2:

DFT Properties
(a) Suppose the DFT, $X[k]$, of a sequence $x[n]$ below, is real. That is, $X^{*}[k]=X[k]$ for $k=0, \ldots, 7$. Can the unknown values of $x[n]$ be determined? If yes, give the missing values. If no, then justify your answer.

$$
\{1,7, ?, ?, 1,6,5,7\}
$$

(b) Given an unknown length-5 real sequence $x[n]$ with a corresponding 5-point DFT coefficient sequence $X[k]=\{0,1, j,-j, 1\}$, determine $x[0]$.
(c) If $X_{8}[k]$ is the 8 -point DFT of a sequence $\{a, b, c, d, 0,0,0,0\}$, Express $X_{4}[k]$, the 4-point DFT, of the sequence $\{a, b, c, d\}$ in terms of $X_{8}[k]$.

Version 1 for Problem 2

(a) Since $X^{*}[k]=X[k]$, i.e. being real for all k, the IDFT of $X[k]$ will also be conjugate symmetric, i.e., $x[N-n]=x^{*}[n]$, but $x[n]$ is real, so we have $x[N-n]=x *[n]=x[n]$. This can also be shown:

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}=\frac{1}{N} \sum_{k=0}^{N-1} X^{*}[k] e^{j 2 \pi k n / N} ; \\
& x[N-n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k(N-n) / N}=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{-j 2 \pi k n / N} ; \\
& \text { so } x^{*}[N-n]=\frac{1}{N} \sum_{k=0}^{N-1} X^{*}[k] e^{j 2 \pi k n / N}=x[n]=x[N-n] .
\end{aligned}
$$

Therefor if $x[n]=\{1 ; 7 ; ? ; ? ; 1 ; 6 ; 5 ; 7\}$, then the missing $x[2]=x[8-2]=5$, and $x[3]=x[8-3]=6$.
(b) The IDFT of an N-point DFT sequence, $\mathrm{X}[\mathrm{k}]$, can be evaluated as:

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N} ; \\
& \text { so } x[0]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] .
\end{aligned}
$$

Therefor if $x[n]=\{0 ; 1 ; j ;-j ; 1\}$, with $N=5$, then $x[0]=2 / 5$.
(c) Recall that zero-padding of a sequence, $x[n]=\{a ; b ; c ; d\}$, to $y[n]=\{a ; b ; c ; d ; 0 ; 0 ; 0 ; 0\}$, produces the same DTFT for both $\mathrm{x}[\mathrm{n}]$ and $\mathrm{y}[\mathrm{n}]$. Therefore, with 8-point DFT that samples the DTFT of $y[n]$, we end up with twice the number of points than that for a 4-point DFT of $x[n]$. Since there are four sample falling on top of each other, we can deduct that $X[k]=Y[2 k]$, for $\mathrm{k}=0,1,2$, and 3 . This can also be proved as follows:

$$
\begin{aligned}
& Y[k]=X_{8}[k]=\sum_{n=0}^{7} y[n] e^{j 2 \pi k n / 8} ; \\
& \text { and } X[k]=X_{4}[k]=\sum_{n=0}^{3} x[n] e^{j 2 \pi k n / 4}=\sum_{n=0}^{7} y[n] e^{j 2 \pi k n / 4} ; \\
& \text { therefore } X_{4}[k]=X_{8}[2 k] .
\end{aligned}
$$

Problem F.3:

Frequency Response

Below are the pole-zero plots of the z-transforms $(H(z))$ of four discrete-time systems. On the following pages are plots of magnitude frequency responses $\left(\left|H\left(e^{j \hat{\omega}}\right)\right|\right)$ and impulse responses $(h[n])$. The numbers on the pole-zero plots represent the multiplicity of the poles and zeros. For each pole-zero plot, enter the letter of the matching frequency response and impulse response respectively. If it is helpful, you can tear the next two pages out of the exam to facilitate comparison, but turn them in with your exam.

Frequency Response

$$
\mathrm{ANS}=\mathbf{A}
$$

Impulse Response
ANS $=\mathbf{j}$

Frequency Response

$$
\text { ANS }=F
$$

Impulse Response

$$
\text { ANS }=\mathbf{k}
$$

Frequency Response

Impulse Response
ANS $=$ I

Frequency Response
Impulse Response

$$
\text { ANS }=C
$$

ANS $=\mathbf{i}$

(Magnitude) Frequency Responses

Impulse Responses

Problem F.4:

Frequency Response

Pick the correct frequency response characteristic and enter the number in the answer box:
(a) $h[n]=\sum_{k=0}^{3} \delta[n-k]$

1. $\left|H\left(e^{j \hat{\omega}}\right)\right|^{2}=2+2 \cos (\hat{\omega}) \quad$ (mag. squared)

2. $H\left(e^{j \hat{\omega}}\right)=\frac{1}{1+\frac{1}{2} e^{-j \omega}}$
(b) $H(z)=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}$
3. $H\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}(1+2 \cos \hat{\omega})$

(4.) $H\left(e^{j \hat{\omega}}\right)=\frac{1}{1-\frac{1}{2} e^{-j \hat{\omega}}}$
(c) $h[n]=\left(-\frac{1}{2}\right)^{n} u[n]$

4. $H\left(e^{j \hat{\omega}}\right)=1-\frac{1}{2} e^{-j \hat{\omega}}$
5. $\angle H\left(e^{j \hat{\omega}}\right)=-2 \hat{\omega}$
(d) $H(z)=1+z^{-1}+z^{-2}$

6. $H\left(e^{j \hat{\omega}}\right)=\frac{\sin 2 \hat{\omega}}{\sin \frac{1}{2} \hat{\omega}} e^{-j 1.5 \hat{\omega}}$
(e) $y n=$ filter $([1,1], 1, x n)$
7. $H\left(e^{j \hat{\omega}}\right)=\frac{\sin \hat{\omega}}{\sin \frac{1}{2} \hat{\omega}}$

8. $H\left(e^{j \hat{\omega}}\right)=2 e^{-j 2 \hat{\omega}}\left(\frac{1}{2}+\cos \hat{\omega}+\cos 2 \hat{\omega}\right)$
(f) $y[n]=\frac{1}{2} y[n-1]+x[n]$

Problem F.5:

Frequency Response

Two systems are connected in cascade, as shown in the figure above. The first system is described by the following difference equation:

$$
y_{1}[n]=x_{1}[n]+b_{1} x_{1}[n-1]+x_{1}[n-2]
$$

The second system is described by the following difference equation:

$$
y_{2}[n]=a_{2} y_{2}[n-1]+x_{2}[n]
$$

(a) Write an expression for $H(z)$, the system function of the overall cascade system.
(b) When the input to the system is the following:

$$
x_{1}[n]=2(-1)^{n}-\cos (\pi n / 5+\pi / 4)
$$

the corresponding output of the overall system is:

$$
y_{2}[n]=4(-1)^{n}
$$

Determine the numerical values of b_{1} and a_{2}. Show enough work to make it clear how you arrived at your final answer. (Hint: Start by computing b_{1} based on the fact that one of the input components is missing from the output.)

Problem X

Two systems are connected in cascade, as shown in the figure above. The first system is described by the following difference equation:

$$
y_{1}[n]=x_{1}[n]+b_{1} x_{1}[n-1]+x_{1}[n-2]
$$

The second system is described by the following difference equation:

$$
y_{2}[n]=a_{2} y_{2}[n-1]+x_{2}[n]
$$

(a) Write an expression for $H(z)$, the system function of the overall cascade system.
(b) When the input to the system is the following:

$$
x_{1}[n]=2(-1)^{n}-\cos (\pi n / 5+\pi / 4)
$$

the corresponding output of the overall system is:

$$
y_{2}[n]=3.5(-1)^{n}
$$

Determine the numerical values of b_{1} and a_{2}. Show enough work to make it clear how you arrived at your final answer. (Hint: Start by computing b_{1} based on the fact that one of the input components is missing from the output.)

Solution

(a)

$$
H(z)=\frac{1+b_{1} z^{-1}+z^{-2}}{1-a_{2} z^{-1}}
$$

(b)

$$
\begin{aligned}
0 & =1+b_{1} e^{-j \pi / 5}+e^{-j 2 \pi / 5} \\
b_{1} & =-\frac{1+e^{-j 2 \pi / 5}}{e^{-j \pi / 5}}=-\left(e^{j \pi / 5}+e^{-j \pi / 5}\right) \\
& =-2 \cos (\pi / 5)=-1.618 \\
H(-1) & =\frac{1-b_{1}+1}{1+a_{2}}=\frac{3.5}{2}=1.75 \\
1+a_{2} & =\left(2-b_{1}\right) / 1.75=2.067 \\
a_{2} & =1.067
\end{aligned}
$$

Problem F.6:
Frequency Response

Consider the following system for discrete-time filtering of a continuous-time signal.

The system function, $H(z)$, of the discrete-time IIR system can be derived from the difference equation

$$
y[n]=-0.8 \alpha y[n-1]-0.64 y[n-2]+x[n]+\alpha x[n-1]+x[n-2] .
$$

(a) For $\alpha=1$, determine the poles and zeros of the system and plot your answer on the following pole-zero plot.

$$
\begin{aligned}
H(z) & =\frac{1+\alpha z^{-1}+z^{-2}}{1+0.8 \alpha z^{-1}+0.64 z^{-2}}=\frac{\left(z-z_{q}\right)\left(z-z_{q}^{*}\right)}{\left(z-z_{p}\right)\left(z-z_{p}^{*}\right)}\left(z_{q}+z_{p}^{*} \text { ae } \begin{array}{c}
\left.z_{p}+z_{p}^{*} \text { ares }\right) \\
\\
\rightarrow 2
\end{array}\right)
\end{aligned}
$$

$$
=\frac{z^{2}-2 \operatorname{Re}\left\{z_{q}\right\} z+\left|z_{i}\right|^{2}}{z^{2}-2 \operatorname{Re}\left\{z_{p}\right\} z+\left|z_{p}\right|^{2}}=\frac{z^{2}+\alpha z+1}{z^{2}+0.8 \alpha z+0.64}
$$

$$
\begin{array}{ll}
\left|z_{q}\right|=1 & \operatorname{Re}\left\{z_{q}\right\}=-\frac{\alpha}{2}=-\frac{1}{2} \quad \angle z_{q}=\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3} \\
\left|z_{p}\right|=0.8 & \operatorname{Re}\left\{z_{p}\right\}=-0.4 \alpha=00.4 \quad \angle z_{p}=\cos ^{-1}\left(-\frac{0.4}{-0.8}\right)=\frac{2 \pi}{3}
\end{array}
$$

zero locations: $e^{j \pi 1 / 3} e^{-j 211 / 3}$
pole locations: $0.8 e^{j 2 \pi / 3}, 0.8 e^{-j 2 \pi / 3}$
(b) This system is a notch filter with the null frequency determined by α. Sketch the magnitude frequency response of this system for $\alpha=1$ over $-\pi \leq \hat{\omega} \leq \pi$.

(c) For a sampling rate of $f_{s}=2000 \mathrm{~Hz}$, determine a new value of α so that the system will null out a frequency component at 500 Hz .

$$
\begin{array}{lll}
\hat{u}_{\text {null }}=2 \pi \frac{500}{2000}=\frac{\pi}{2} & z_{2}=e^{j \frac{\pi}{2}} \quad z_{p}=0.8 e^{j \frac{\pi}{2}} \\
\operatorname{Re}\left\{z_{7}\right\}=-\frac{\alpha}{2}=0 & \Rightarrow \alpha=0 &
\end{array}
$$

Problem F.7:
Basic Concepts
(a) Find a real, positive amplitude A and a phase ϕ between $-\pi$ and π so that the following equation is true:

$$
\begin{aligned}
& A e^{-j \frac{\pi}{4}}-e^{j \cos (6 \pi t-\pi / 4)-\sin (6 \pi t+\phi)=\cos (6 \pi t)} \\
& =1 \\
& -\frac{\sqrt{3}}{2} A-\sin \phi=1 \\
& -\frac{\sqrt{2}}{2} A+\cos \phi=0
\end{aligned} \quad A=\sqrt{2} \quad \Rightarrow \quad \phi=0
$$

(b) What is the instantaneous frequency of the following signal at time $t=4$?

$$
\begin{gathered}
x(t)=4 \cos (2 \pi t+3 \pi \sqrt{t}+\pi / 5) \\
\omega_{i}(t)=\frac{d}{d t}(2 x t+3 \pi \sqrt{t}+\pi / 5)=2 \pi+\frac{3 \pi}{2} t^{-\frac{1}{2}}
\end{gathered}
$$

At $t=4$,

$$
\begin{aligned}
& \omega_{i}(t=4)=2 \pi+\frac{3}{4} \pi=2.75 \pi \quad \mathrm{rad} / \mathrm{sec} \\
& f_{i}(t=4)=\frac{1}{2 \pi} \omega_{i}(t=4)=1.375 \mathrm{~Hz}
\end{aligned}
$$

(c) Suppose $x(t)=|\cos (2 \pi \cdot 300 t)|$. What is the the fundamental frequency of $x(t)$ in Hertz? (Be sure to notice those absolute value bars!)

$$
600 \mathrm{~Hz}
$$

(d) Sketch the spectrum (not spectrogram) of the following signal.

$$
\begin{aligned}
& x(t)=(1+0.5 \cos (20 \pi t)) \cos (200 \pi t+\pi / 3) \\
&=\cos (200 \pi t+\pi / 3)+\frac{1}{4} \cos (180 \pi t+\pi / 3)+\frac{1}{4} \cos (220 \pi t+\pi / 3) \\
& \frac{1}{2} e^{-j \pi / 3} \frac{1}{2} e^{j \pi / 3} \\
& \left.\frac{1}{8} e^{-1 / 3 / 3} \right\rvert\, \frac{1}{8} e^{-j / 3 / 3} \\
& \hline
\end{aligned}
$$

(e) What is the length of $y[n]=x[n] * h[n]$ if $x[n]$ and $h[n]$ have lengths 19 and 47 respectively?

$$
19+47-1=65
$$

(f) Given $H\left(e^{j \hat{\omega}}\right)=\frac{1}{1+e^{-2 j \omega}}$, find a simplified expression for $\left|H\left(e^{j \hat{\omega}}\right)\right|$. (There should be no j 's in your answer since it is a magnitude!)

$$
\begin{aligned}
\left|H\left(e^{j \omega}\right)\right| & =\sqrt{\frac{1}{(1+\cos 2 \hat{\omega})^{2}+(\sin 2 \hat{\omega})^{2}}} \\
& =\sqrt{\frac{1}{2+2 \cos (2 \hat{\omega})}} \\
& =\sqrt{2 \cos \omega} \\
& =\sqrt{2\left(2 \cos ^{2} \hat{\omega}-1\right)}
\end{aligned}
$$

