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Performance of Alamouti Transmit Diversity Over
Time-Varying Rayleigh-Fading Channels

Antony Vielmon, Ye (Geoffrey) Li, and John R. Barry

Abstract—We analyze the impact of a time-varying Rayleigh-
fading channel on the performance of an Alamouti transmit-di-
versity scheme. We propose several optimal and suboptimal detec-
tion strategies for mitigating the effects of a time-varying channel,
and derive expressions for their bit-error probability as a func-
tion of the channel correlation coefficient . We find that the max-
imum-likelihood detector that optimally compensates for the time-
varying channel is very tolerant to time-varying fading, attaining
full diversity order even for the extreme case of = 0. In contrast,
although lower in complexity, the suboptimal schemes suffer a di-
versity penalty and are thus suitable only for slowly fading chan-
nels.

Index Terms—Alamouti’s approach, performance analysis,
Rayleigh-fading channels, time-varying channels, transmit diver-
sity.

I. INTRODUCTION

T RANSMIT diversity has emerged in the last decade as an
effective means for achieving spatial diversity in fading

channels with an antenna array at the transmitter. In the design
and analysis of such schemes, it is generally assumed that the
channel is static for the duration of one space-time codeword. In
this letter, we investigate the impact of a time-varying channel
on the performance of the transmit-diversity scheme proposed
by Alamouti [1]. We propose various detection strategies that
take into account the time-varying nature of the channel and
assess their performance through analysis and simulation.

II. CHANNEL MODEL AND ASSUMPTIONS

A transmitter with two antennas employing the transmit-di-
versity scheme of Alamouti [1] requires two signaling periods to
conveyapairoffinite-alphabetsymbols and ;during thefirst
symbol period, the symbols transmitted from antenna one and
antenna two, respectively, are and , and during the second
symbol period they are and . Consider a receiver with one
antenna, and assume a flat-fading channel model. Let and
denote the equivalent complex channel coefficients between the
two transmit antennas and the receiver antenna during the first
symbol period, and let and denote the coefficients during
the second period, so that the receiver observations and
corresponding to the two symbol periods are given by

(1)
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Equivalently, by conjugating , the following convenient ma-
trix representation results:

(2)

or with obvious notation

(3)

where represents noise.
In this letter, we make the following assumptions about the

channel model (3):

1) white Gaussian noise, so that is a zero-mean circu-
larly symmetric complex Gaussian random vector satisfying

;
2) spatially symmetric Rayleigh fading, so that ,
and are identically distributed, zero-mean unit-variance
circularly symmetric complex jointly Gaussian random
variables satisfying

;
3) sufficient antenna spacing, so that the pair is in-
dependent of the pair ; relaxing this constraint would
be possible, but it would complicate the analysis and it would
detract from our main aim of studying the impact of time vari-
ations;
4) temporally symmetric Rayleigh fading, so that the corre-
lation between and is the same as that between
and , namely ;
5) perfect knowledge of , and at the receiver;
6) binary phase-shift keying modulation with

, where is the average received energy per
bit, so that the average received signal-to-noise ratio (SNR)
per bit is .

The key parameter in our model is the correlation parameter
, which will be near unity for slowly fading channels, but

which could be small in rapidly varying channels. For ex-
ample, when the maximum Doppler frequency using Jake’s
channel model is 10% of the baud rate, the correlation is

, where is the zeroth-order Bessel
function of the first kind [2]. On the other hand, when and
represent the channel frequency responses of two adjacent tones
in orthogonal frequency-division multiplexing, is determined
by the channel delay profile.

III. STRATEGIES FOR RECEIVER DESIGN

In this section, we propose three methods for detecting an
Alamouti space-time code when the channel is time-varying.
The first is the joint maximum-likelihood (ML), the second is
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the decision-feedback (DF) detector, and the third is a zero-
forcing (ZF) linear detector.

A. ML Detector

Because of the white Gaussian noise, the joint ML detector
chooses the pair of symbols to minimize

(4)

Let denote the cascade of with its matched filter;
since is Hermitian, it possesses a unique Cholesky factoriza-
tion of the form , where is lower triangular with
real diagonal elements. With defined by (2), it is easily ver-
ified that

(5)

Multiplying both and in (4) by the unitary matrix ,
we find that the ML detector can equivalently choose to min-
imize

(6)

where we have introduced

(7)

The linear combiner of (7) represents the whitened-matched
filter (WMF) for the matrix channel (3). Substituting (3), we
find that the output of the WMF is related to by

(8)

where the white Gaussian noise has the same statistics as .

B. DF Detector

The DF detector uses a decision about to help make a
decision about [9]. It builds on the WMF output. In particular,
because the WMF channel model is lower triangular, there is
no crosstalk from to , and thus a suboptimal decision
regarding can be found by quantizing , ignoring . Then,
assuming this decision is correct, the contribution from in

can be recreated and subtracted off, allowing the receiver to
determine the decision by quantizing the resulting difference ,
where

(9)

C. ZF Linear Detector

A linear detector computes the following:

(10)

then makes a decision about based solely on , for .
A zero-forcing linear detector chooses so as to force the
crosstalk to zero, so that the cascade is a real nonnegative
diagonal matrix. Since is square and full rank with proba-

bility one, the ZF detector is clearly of the form
for some real nonnegative diagonal matrix . We can make the
detector unique by adding the additional constraint that the com-
biner does not change the noise variance, so that the noise com-
ponents in have second moment , the same as those in .
In other words, because the autocorrelation matrix of the noise
after a combiner of the form is , we
choose so that has ones on the diagonal. It is easily
verified that the solution leads to the following ZF combiner:

(11)

Substituting (11) and (3) into (10) yields

(12)

where the noise components and are identically dis-
tributed, each being zero-mean complex Gaussian with

. Although and are correlated, the ZF
detector ignores the correlation, and arrives at suboptimal
decisions by independently quantizing and .

Comparing (12) to (8), we see that the first output of the
ZF detector is identical to the first output of the WMF. (The
second outputs differ, however.)

D. All Detectors Are Equivalent if the Channel Is Static

The ML, DF, and ZF detectors operate in distinct ways, and
the performance difference between them can be significant.
However, it is worth emphasizing at this stage that the ZF, DF,
and ML detectors all converge to the same detector in the spe-
cial case of a static channel.

Consider first the ML detector. If the channel is static, so that
and , then of (5) reduces to the diagonal

matrix , and (8) reduces to

(13)

The joint ML detector thus reduces to a pair of independent
scalar detectors, significantly reducing complexity. Indeed, the
desire to diagonalize the channel using a MF was what lead
to the Alamouti transmit-diversity scheme in the first place.
Clearly, because there is no crosstalk after the WMF, the co-
efficient of in (9) reduces to zero and, thus, the DF reduces
to the ML detector for the static case.

Finally, the ZF detector of (12) also reduces to (13) when the
channel is static.

IV. PERFORMANCE ANALYSIS—SPECIAL CASES

Before considering the general case of arbitrary correlation, it
will be instructive to focus first on two extreme cases: the fully



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 5, SEPTEMBER 2004 1371

correlated or static channel, where , and the uncorrelated
channel, where . In the remainder of this section, we de-
rive expressions for the bit-error probability for these extreme
cases, assuming the ZF linear detector of (11). We assume un-
coded binary phase-shift keying modulation. We remark that,
from the symmetry of the channel model, we only need to de-
rive the error probability for the first symbol , knowing that
the second symbol will have the same error probability.

A. Fully Correlated Static Channel

The analysis for the static case is well-known [2]. The first
component in (12) is

(14)

so that the decision has bit-error probability
, where is the instanta-

neous SNR per bit. The average SNR per bit is .
Since and are independent and Gaussian, has a central
chi-square distribution with four degrees of freedom, and prob-
ability density function (pdf)

(15)

Averaging over this distribution yields [2]

(16)

B. Uncorrelated Case

From (12), the first output of the ZF detector is

(17)

The error probability is, thus, again of the form , where
is the effective instantaneous SNR for (17)

(18)

Introducing and

, the effective SNR can equivalently be

expressed as , where
can be interpreted as a projection of in
the direction of the independent unit vector .
Since the pdf of is symmetric, and since is independent of

, it follows that the pdf of will be independent of , and

choosing we find that has the same pdf as .
Thus, the effective SNR has mean value

, exactly half of what it was for the static channel,
and it has a central chi-square distribution with two degrees
of freedom

(19)

Averaging over this distribution yields [2]

(20)

V. PERFORMANCE ANALYSIS—GENERAL CASE

A. Performance of the ZF Linear Detector

The effective instantaneous SNR at the first output of the ZF
linear detector is given by (18). Let us introduce the random
variables and

(21)

where we assume . By construction, and are inde-
pendent and identically distributed with the same pdf as and

, and furthermore, is independent of , and is indepen-
dent of . Plugging (21) into (18) leads to

(22)

To simplify this expression further, observe that the fraction
in (22) can be expressed as an inner product

(23)

where and . Since is symmetric,
the distribution of reduces to the distribution of ,
independent of (and, thus, also independent of ). Thus,
(22) simplifies to

(24)

(25)
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where we have introduced and

. Therefore, given has a noncen-
tral chi-square distribution with two degrees of freedom, and pdf

(26)

where is the zeroth-order Bessel function of the first kind,
and .

However, is Rayleigh dis-
tributed with four degrees of freedom, and pdf

(27)

Integrating the product of (26) and (27) over the variable from
0 to leads to the following density probability for [3]

(28)

where we have introduced the variables
,

and is the confluent hypergeometric function.
Finally, by noticing [4] that , (28)
can be written as

(29)

Averaging over this distribution yields

(30)

As expected, (30) reduces to (16) for the static case ,
and it reduces to (20) for the uncorrelated case .

B. Performance of the DF Detector

The performance of the DF detector is easily approximated
in terms of the performance of the ZF linear detector. Let us
express the average bit-error probability of the DF detector as

, where .
First, let us compute . Comparing (5) and (8) to (12), we see

that the first output of the WMF is identical to the first output
of the ZF linear detector. Hence, the symbol error probability
for is given by (30).

An exact expression for has not been found. Instead, we
will derive a lower bound on by assuming that the decision

is always correct. Under this assumption, the subtraction in

Fig. 1. Performance of the ML detector.

(9) cancels the crosstalk perfectly, leaving a difference given by

(31)

We recognize this as having precisely the same form as (14), the
ideal two-fold diversity case. Hence, it follows immediately that

is given by (16). Combining, we can bound the performance
of the DF detector by

(32)

VI. NUMERICAL RESULTS

In this section, we compare the bit-error probability perfor-
mance for the different detectors proposed in Section III.

It is difficult to analyze the performance of the ML detector
when the channel is not static. Therefore, we rely on computer
simulations instead. In Fig. 1, we present bit-error probability
results for the ML detector for the uncorrelated case and
the static channel , the latter curve computed using (16).
There is very little degradation due to the time-varying channel.
Even when the channel varies so rapidly that the correlation is
zero, the ML detector is able to perform almost as well as for
the static channel.

The performance of the ZF linear detector is given in exact
form by (30), and its behavior is shown in Fig. 2 for different
values of . We see that the performance depends strongly on
the channel correlation characteristics. If the correlation is too
small, the ZF linear detector will actually perform worse than a
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Fig. 2. Performance of the ZF detector.

Fig. 3. Performance of the DF detector.

system with no diversity. Numerical calculations reveal that the
ZF linear detector outperforms a receiver without diversity only
when is approximately greater than 0.75.

The performance of the DF detector is shown in Fig. 3, where
Monte Carlo simulations of bit-error probability are compared
with the lower bound of (32). The simulation results are more
accurate because they account for the effect of occasionally
feeding back erroneous decisions. The small gap between the
lower bound and the simulated performance implies that the DF
detector suffers a small penalty due to error propagation.

In Fig. 4, we compare the performance of all three detectors
for three cases: , and the static case .
When the channel varies with time, the ML detector is far su-
perior to the other detectors. The ML detector suffers less than
1 dB of degradation when as compared to a static channel.
Even when the correlation is as high as , the ML de-
tector significantly outperforms the others. When
and , the ZF and DF detectors suffer a penalty of 2.5
and 1.5 dB, respectively, compared to those in the static case.
At and , the penalties grow to 4 and 6 dB,
respectively.

Fig. 4. Performance comparison for the different detectors.

VII. CONCLUSION

We proposed three strategies for detecting an Alamouti
transmit-diversity scheme when the channel is time-varying:
the ML, DF, and linear detectors. Through analysis and simula-
tion, we assessed their performance over time-varying Rayleigh
fading channels as characterized by the channel correlation
coefficient . The ML detector significantly outperforms the DF
and ZF detectors when the channel varies rapidly and is small.
Only the ML detector is able to attain a diversity order of two.
However, the ML detector can be significantly more complex,
especially when higher-order alphabets are considered. The DF
and ZF linear detectors are thus attractive, especially when the
channel varies slowly.
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