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Abstract—Three desirable properties of a four-antenna space-
time block code are full rate, full diversity, and single-symbol
decodability. Previously reported space-time codes that achieve
all three properties do so at the expense of the peak-to-average
power ratio (PAPR). A fourth desirable property of a space-time
block code is that its PAPR be the same as that of the underlying
quadrature-amplitude modulation alphabet. In this letter we
introduce space-time codes for three and four transmit antennas
that achieve all four properties; these codes use a diversity
technique based on constellation stretching. Numerical results for
quasistatic Rayleigh-fading channels show that, despite their low
PAPR, the proposed codes are comparable in SNR performance
to the best-performing single-symbol decodable space-time codes
for three and four transmit antennas.

Index Terms—Quasiorthogonal codes, transmit diversity.

I. INTRODUCTION

HE orthogonal space-time block codes of Alamouti [1]
Tand Tarokh et al. [2] attain full diversity with low
decoding complexity, but they suffer a rate loss when there
are more than two transmit antennas. A quasiorthogonal code
relaxes the orthogonality constraint to enable full rate, at the
expense of an increase in decoding complexity. For exam-
ple, quasiorthogonal codes for four antennas were proposed
independently by Jafarkhani [3], Tirkkonen-Boarin-Hottinen
[4] and Papadias-Foschini [5]; these full-rate codes have two
drawbacks: they are not full diversity, and they require pair-
wise complex symbol decoding. The first drawback can be
eliminated by constellation rotation. For example, full-rate
and full-diversity quasiorthogonal codes with rotation were
proposed by Tirkkonen [6], Sharma-Papadias [7] and Su-Xia
[8]. While these quasiorthogonal codes outperform orthogonal
codes at all spectral efficiencies for four transmit antennas,
they still require pair-wise complex symbol decoding.

Recent work has shown that low decoding complexity is
possible even with nonorthogonal codes. For example, a com-
bination of constellation rotation and coordinate interleaving
was proposed by Yuen et al. [9] and Khan-Rajan [10] to
achieve full rate and full diversity for four transmit antennas
with maximum-likelihood (ML) decoding that requires only
pair-wise decoding of real symbols. Since a pair of real
symbols defines a single complex symbol, these codes are
said to be single-symbol decodable (SSD). It was also shown
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in [10] that full rate and full diversity single-symbol decodable
codes exist for only four antennas or less. Since the codes in
[9] and [10] are full rate and single-symbol decodable, their
worst-case ML decoding complexity for M-ary QAM is 4M
metric computations, the lowest among all previously reported
full rate and full diversity space-time codes for four antennas.

Another important property of a space-time block code is its
peak-to-average power ratio (PAPR). The PAPR is important
for several reasons. First, a high-PAPR signal is susceptible to
clipping and other nonlinear distortion by the power amplifier,
leading to both detection errors and out-of-band interference.
Second, power consumption of the power amplifier depends
mainly on the peak power rather than average power, and
hence, high PAPR results in high power consumption. Finally,
the transmission of a high-PAPR signal requires a power
amplifier with a large back off, making it inefficient, bulky
and expensive [11].

In this letter, we present single-symbol-decodable space-
time block codes based on the coordinate interleaving tech-
nique of [9][10] but coupled with constellation stretching
rather than constellation rotation. The proposed code is not
only single-symbol decodable, but it also maintains the same
PAPR as the underlying QAM alphabet. While this letter was
under review, we discovered that the concept of constellation
stretching was proposed previously and independently by
Marsch et al. in [12], albeit with a different motivation and
construction. Nevertheless, our letter is unique in at least
two respects: we derive the optimal stretching factor that
maximizes the coding gain, and we quantify the PAPR benefits
of the proposed code, which is the main motivation behind our
construction.

The remainder of the letter is organized as follows. Section
IT presents the system model, relevant definitions, and a
brief overview of existing single-symbol-decodable space-time
block codes. Section III describes the proposed code along
with its decoder, and compares it to existing codes. Section
IV presents numerical results and Section V summarizes the
conclusions.

II. SYSTEM MODEL AND PRIOR SSD CODES
A. System Model and Definitions

We consider a transmitter with N antennas transmitting K
complex information symbols over 7' symbol periods, so that
the rate- K /T space-time block code is represented by a T'x N
matrix X. Letting y; denote the sample received at time i by

a receiver with a single antenna, we can write:
T
yr]' = Xh+ w, (1)

where h is a vector of channel gains between the N transmit
antennas and the receive antenna, and where w is complex

[yl,
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Fig. 1. Encoding architecture.

Gaussian noise with i.i.d. CN(0, Ny) entries. We assume a
quasistatic Rayleigh-fading channel, so that the entries of h
are i.i.d. CN(0,1) and constant over the duration of the T
symbol periods. The results are easily extended to the case of
multiple receive antennas.

The PAPR for the m-th transmit antenna of a space-time
code is [13]:

maXge{1,...,T} |X75Jn|2
T 1%,y E(Xem|?)’

where the maximum and the expectation operators are taken
over all possible codeword matrices. In all the space-time
codes considered in this paper, the PAPR is the same for all
the antennas, so that the subscript on PAPR in (2) may be
dropped. The coding gain of a full-diversity space-time code
is [10]:

PAPR,, =

@)

.....

= minXiXdet((X—X)*(X—X))lﬂv, (3)

where the minimum is taken over all distinct codeword matri-
ces X # X, and where X* denotes the Hermitian transpose
of X.

B. Single-Symbol-Decodable Space-Time Codes

Single-symbol-decodable space-time bock codes for four
transmit antennas were proposed in [9] and [10]. In both cases
the encoder decomposes into a concatenation of three steps,
as shown in Fig. 1. The encoder starts with a vector x € A%
of information symbols chosen from a conventional M -ary
QAM alphabet A. The first step is to distort the alphabet in
some way; the codes of [9] and [10] rotate each alphabet by
an angle of ¢, producing a = e/?x, as shown in Fig. 2(b). The
purpose of the rotation is to ensure full diversity. The second
step is to interleave the coordinates of a, yielding s = II(a).
The interleavers of [9] and [10] act on the real and imagi-
nary parts separately, so that [st, s] s& sl sE sl sB sl] =
[af al, af al alt, al, alt, al]TT, where II is an 8 x 8 per-
mutation matrix (so that its columns are a permutation of
the columns of the identity matrix, with the possibility of
sign inversion), and where s and s! denote the real and
imaginary parts, respectively, of s;. For the Yuen-Guan-Tjhung
and Khan-Rajan codes, the interleaver is used to achieve full
diversity while maintaining single-symbol decodability. The
final step is to encode s using a conventional space-time block
encoder G(+), yielding X = G(s).

In terms of Fig. 1, the Khan-Rajan code of [10] is specified
by ¢ = %tan*1(2), IT = [e1, €6, €3, €8, €5, €2, €7, €4, Where
e; is the ¢-th column of the 8 x 8 identity matrix, and:

G(s) = «5( A(si,50) 0 ) |

0 A(Sg, 84) (4)
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Fig. 2. The 16-QAM alphabet: (a) original; (b) rotated; (c) stretched.
where
51 52
A(sy,82) = ( o oF ) (5)
82 51

is the Alamouti space-time code [1]. The constant V2 en-
sures that the average transmit energy per transmitted symbol
(namely the denominator in (2)) is identical to the energy of
the underlying alphabet A. As noted in [9], a drawback of this
code is that half of its entries are zero, which leads to a high
PAPR.

The Yuen-Guan-Tjhung code of [9] can also be defined in
terms of Fig. 1, with a rotation angle of ¢ = m/4—1 tan='(2),
an interleaver of II = [e1, e5, €3, €7, —e2, €5, —€y4, €g], and:

. A(S1,52) A(S ’54)
Gle) = ( Alss 1) Alsis:) ) ‘

Both the Khan-Rajan code and the Yuen-Guan-Tjhung code
require decoding of only two real symbols at a time, or
equivalently, a single complex symbol.

(6)

ITII. PROPOSED CODE CONSTRUCTION AND DECODING
A. Proposed Code Construction and Optimization

We propose a new code based on the same architecture
of Fig. 1 but differing in an important way from [9] and
[10]: rather than distorting the alphabet by a rotation, so that
a; = e/®x;, we instead propose to distort it by stretching it
vertically, using:

/ 2 R 4

where K € (0,1] is a stretching parameter to be specified
later. The constant +/2/(1 + K?2) ensures that the stretched
alphabet has the same energy as the original. Scaling the
real and imaginary parts of the symbol by different amounts
stretches the square constellation into a rectangle, as illustrated
in Fig. 2(c). After stretching, we propose the interleaver
IT = [e1, €6, €3, €3, €2, €5, €4, €7 and the same encoder G(s)
from (6) that is used in the Yuen-Guan-Tjhung code. The pro-
posed interleaver has three desirable properties: it maintains
single-symbol decodability, it guarantees full diversity, and it
results in a PAPR that is identical to that of the underlying
QAM alphabet. (The interleaver choice satisfying these three
properties is not unique.) Thus, the proposed code for four
transmit antennas is:

(N

S1 52 S3 S4

* * * *
X = 2 —S2 51 —S4 83 (8)
1+ K? s3  s4 s1 Ss2 |’
—s; 83 —s3 s8]
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where [s1,52,83,84] = [Kaf + jal, Kol + jal ol +
jKzf ol + jK2f).

Proposition 1: The stretching parameter K € (0,1] that
maximizes the coding gain (3) for the code in (8) with QAM
is K = 1/+/2. The resulting asymptotic coding gain is %dfmn,
where dp,;i, is the minimum distance of the QAM alphabet A.

Proof: Substituting from the definition of G(s) in (6),

the asymptotic coding gain of (3) is:

N(K) = )r(r;gl( det((X — X)*(X — X))1/4
a 0 8 0\
_ . 0 o 0
= mindet 30 a 0
0 B8 0 «
= min(aQ—ﬂQ)l/Q, 9)

where we have introduced o = 31 [As;|2 = 32 |Aai?,
B = 2R{As1Ast + AsgAsi} = 2570 AafAal, As; =
s; — 84, and Aa; = a; — a;. The expressions for a and 3 in
terms of Aa; follow from s = II(a). The minimization in (9)
is over all nonzero vectors [Aaq, ... Aayl. But

a® — 3 (a+ B)(a = B)
_ (Z(|Aai\2+2AaﬁAa{)) X

K2

(Z(|Aaj |2 — 2Aaan§))

J

(Z(Aaf + Aai[)z) X

K3

(Z(Aaf — Aajl-)z).

J

(10)

Because both factors in (10) are the sum of squares, the
nonzero vector [Aaj, ... Aay] that minimizes the product
will have only one nonzero element, say Aa;, so that the gain
(9) reduces to:

I'(K) = min |(Aa}")* — (Ad})?|, (11)

where now the minimization is over all nonzero error symbols
Aa;. But from (7) we can write:

[ 2 .
Aa; = W(Km +]n)dmin

for some pair of integers (m,n) € {—VM +1,...,vV/M —
1}2, where d,;, 1S the minimum Euclidean distance of the
(unstretched) alphabet A. Plugging (12) into (11) yields the
following expression for the coding gain, as a function of K:

O |K?m? — n?|
min —_——
(m,n)eM 1+ K? ’

where we have introduced M £ {—\/M—F 1,..., \/M— 1}2 —
{(0,0)} as the set of all possible integer pairs (m,n), with
the (0,0) pair excluded.

The remaining problem is to find the value of K that max-
imizes (13). We proceed in two steps: first, we establish the
bound T'(K) < 2d2,; then, we show that K = 1/v2
achieves the bound with equality.

To establish the bound, let us introduce £ = {(1,0), (1,1)} C

12)

13)
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M. Because L is a subset of M, it clearly follows that
mina{-} < ming{-}, so that the coding gain of (13) can
be bounded by:

|K2m?2 — n?|

IN(K) < 242, - mi
( ) — min (mI:,[}Ll)nGE 1 +K2

_ 2d2 - min |K212_02| |K212_12|

min 1—|—K2 9 1—|—K2
K? 1— K2
< 243, - n{ ——, ——
< 2d_;, I}{lg}émln{1+[(2, 1+K2} (14)
2
= gdfmn. (15)

The inequality of (14) follows from the fact that g(K) <
maxgso{g(K)} for any function g(K) and for any K > 0.
The equality in (15) follows because, for K > 0, the functions
(K?)/(1+ K?) and (1 — K?)/(1 + K?) are monotonically
increasing and decreasing, respectively, so that the maximum
of the minimum occurs at the intersection, namely at K =

1/V2.
The bound T'(K) < 2d2, of (15) is in fact achievable with
K = 1/4/2, since from (13):
2 2 2
r(1/vV2) = 242, n w
(m,n)eM 1+ 3
2
= ZdZ%. 16
3 min? ( )

where the second equality follows from the fact that |m?—2n?|
must be a nonnegative integer, and it cannot be zero because
V2 is irrational; therefore, min(,, nyem [m? — 2n?| = 1.
|
We make two important remarks regarding the PAPR of
the proposed code. First, stretching the alphabet according to
(7) does not alter its PAPR. Indeed, it is easily verified that
the stretched alphabet has the same PAPR as the original one,
since:

(1+K)H(VM—-1)%, (17)

(M —1)
T

Taking the ratio of these two yields 3(vM —1)/(v'M + 1),

which is precisely the PAPR of the underlying QAM alphabet.

Second, our particular choice for coordinate interleaving
does not alter the PAPR; this latter fact can be seen by
observing that the elements of (8) all have the same PAPR
as the stretched alphabet. Together, these two facts imply that
the PAPR of the proposed code is identical to that of the
underlying QAM alphabet, regardless of the value of K.

The proposed space-time code for three antennas is obtained
by deleting the fourth column of X in (8). The proof that the
space-time code obtained by deleting the fourth column is still
fully diverse follows directly from Theorem 3 and Theorem 4
in [14]. For two antennas, an equivalent form of the Alamouti
code [1] can be obtained by deleting columns three and four
(or two and three) and setting K = 1.

We remark that although the concept of constellation
stretching may be applied to PSK alphabets, it is easily verified
that the PAPR of the resulting code matrix in (8) would be
higher than that of the underlying PSK alphabet. Therefore,
we only consider QAM alphabets.

max(|Kaf + jall?) =

E(Kzf +jzl’) = (1+K?) (18)
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Fig. 3.  The ML decoder for the proposed space-time code decomposes

into a matched filter bank, a deinterleaver, and a bank of four independent
complex-symbol quantizers.

TABLE I
A COMPARISON OF DECODING COMPLEXITY AND PAPR OF
FOUR-ANTENNA SPACE-TIME BLOCK CODES.

Code No. symbols PAPR (dB)

jointly detected | 4-QAM | 16-QAM | 64-QAM
Su-Xia [8] 4 0 2.55 3.68
Yuen et al. [9] 2 1.61 4.16 5.29
Khan-Rajan [10] 2 5.79 8.34 9.47
Proposed 2 0 2.55 3.68

B. Single-Symbol ML Decoding of Proposed Code

Substituting the definition of the proposed code from (8)
into (1), the received vector, after conjugating two of its
elements, can be rewritten as

Y1 hi  ha hs hy 51 w1
ys | _ | ha —hi hi —h3 S2. | w;
Y3 hs hy hi  he 3 w3
Yi hi —h3 h3 —hj S84 w;

or y = Hs+ w. (19)

The ML decision is the symbol vector s that minimizes

Iy —Hs|? = [y|? + s'H'Hs — 2R{s"v},  (20)

where we have introduced the vector v = H*y, which can
be interpreted as the output of a filter matched to H. Let
n = >, |hi|> denote the squared norm of any column of H
and p = 2R{h1h} + hoh}} denote the inner product between
the first and third columns of H (or equivalently, the second
and fourth columns of H). Then H*H is a circulant matrix
given by:

n 0 p O
sxr | 0 m 0 p
H'H = b 0 n 0 2D
0 p 0 g
Substituting (21) into (20) yields:
4
ly —Hs|> = [ly|* +1)_ |si?
i=1

+ 2pR{s185 + sa2si} — 2R{s"v}. (22)

Already we can see that the symbols s; and s3 can be decoded
separately from s, and s4, since there is no interference
between the symbol pair (s1, s3) and the pair (s2, s4). This
result is expected due to the quasiorthogonal structure of the
code matrix (8), where the subspace spanned by the first and
third columns is orthogonal to the subspace spanned by the
second and fourth columns.
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Fig. 4. Performance for three transmit antennas.

The decoding complexity reduces even further when we
; — — [gR 4 4R I R oI R 1T ;
substitute s = II(a) = [af%, a1, a3, a3, a3', ag, ay', a4 |11 into

(22), yielding:

4
ly = Hs||* = [ly[|* + > f(zilai), (23)
i=1
where f(z;|a;) is defined as follows:
f(zilai) = nlail” + p3{ai} — 2R{ajz}, (24

where we have introduced z = IT71(v) = [vff + jolt, vt +
jult vl + jof vl + jul]. Observe that each f(z;]a;) depends
on z and a only through z; and a;. Therefore, after matched
filtering to form the vector v and deinterleaving to form the
vector z, the ML decoder reduces to separate decoding of the
four transmitted symbols. Specifically, as illustrated in Fig. 3,
the ML decision about a; (and ultimately x;) can be found
by minimizing the corresponding f(z;|a;) metric of (24). We
have thus shown that the proposed code is single-complex-
symbol decodable. We note that the cross-interference between
the real and imaginary components of a; in f(z;|a;) prevents
us from achieving single-real-symbol decoding.

In Table I we compare the proposed code with other single-
symbol decodable codes in terms of decoding complexity and
PAPR for four transmit antennas. We see that the PAPR of the
proposed code is significantly smaller than that of the Khan-
Rajan code [10], and that it has the same PAPR as the Su-Xia
code [8] but at a reduced decoding complexity.

IV. NUMERICAL RESULTS

In this section we compare the bit-error rate performance
of the proposed space-time code with the Su-Xia code [8] and
Yuen-Guan-Tjhung code [9] over a quasistatic Rayleigh-fading
channel with additive Gaussian noise. The Khan-Rajan code
[10] performs identically to the Yuen-Guan-Tjhung code with
four transmit antennas, and slightly worse with three antennas.
Therefore, we did not include the performance of Khan-Rajan
code in our comparison. In Fig. 4 we show the performance
for three antennas, while in Fig. 5 we show the performance
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Fig. 5. Performance for four transmit antennas.

for four antennas. Results are shown for 4-QAM, 16-QAM
and 64-QAM Gray-coded alphabets.

Fig. 4 shows that, for three antennas, the proposed code
performs only 0.5 dB worse than the Yuen-Guan-Tjhung code,
and 0.6 dB worse than the Su-Xia code. For four antennas, the
proposed code suffers a 0.7 dB and 0.8 dB loss compared with
the Yuen-Guan-Tjhung code and Su-Xia code, respectively.
The proposed code, however, has a lower decoding complexity
than the Su-Xia code and maintains the same PAPR. The
proposed code has a significantly lower PAPR than the Yuen-
Guan-Tjhung code while suffering only a slight performance
loss.

V. CONCLUSION

We introduced a novel space-time block code for three
and four transmit antennas that combines coordinate inter-
leaving with constellation stretching. The stretching parameter
was chosen analytically to maximize the coding gain. The
resulting code has a quasiorthogonal structure that makes it
single-symbol decodable, meaning that the jointly maximum-
likelihood decoder may be implemented using a bank of

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 5, MAY 2009

independent quantizers, one for each complex information
symbol. The proposed codes for three and four antennas
achieve full rate, full diversity, and single-symbol decodability
without sacrificing the peak-to-average power ratio.
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