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Low-Complexity
Soft-Output Decoding of Polar Codes

Ubaid U. Fayyaz and John R. Barry

Abstract—The state-of-the-art soft-output decoder for polar
codes is a message-passing algorithm based on belief propagation,
which performs well at the cost of high processing and storage
requirements. In this paper, we propose a low-complexity
alternative for soft-output decoding of polar codes that offers
better performance but with significantly reduced processing and
storage requirements. In particular we show that the complexity
of the proposed decoder is only 4% of the total complexity
of the belief propagation decoder for a rate one-half polar
code of dimension 4096 in the dicode channel, while achieving
comparable error-rate performance. Furthermore, we show that
the proposed decoder requires about 39% of the memory
required by the belief propagation decoder for a block length
of 32768.

Index Terms—Polar codes, soft-output decoding, turbo
equalization.

I. INTRODUCTION

THE ERROR correcting code in a magnetic recording
application must meet stringent error-floor and

throughput requirements at a relatively large block length;
the sector size for hard disk drives is typically 32768 bits,
and the throughput can be 2 Gb/s or more. Regularity in
the structure of the encoder/decoder facilitates hardware
implementation by reducing interconnect congestion and
processing requirements [1]. There has been significant
research into finding regularly structured codes. For example,
to avoid the high complexity of the early low-density parity
check (LDPC) codes, which were random, different structured
codes such as quasi-cyclic LDPC codes [2] emerged after
their rediscovery in [3] and secured their place in different
standards such as IEEE802.11n [4] and IEEE 802.16e [5].

An attractive alternative to LDPC codes are polar
codes, discovered by Arikan [6], which feature a highly
structured encoder and decoder that asymptotically achieve
capacity on discrete memoryless channels. Additionally, they
possess the desirable properties of universal rate adaptability,
explicit construction and reconfigurability. As a result, they
naturally demand further exploration for the long-block length
throughput-limited magnetic recording channel. The first
questions that arise are whether polar codes are a good fit
for the magnetic recording application, and if they are, how
well they perform. A typical detector architecture in magnetic
recording channel relies on the turbo equalization principle [7]
that iteratively exchanges soft information between a channel
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detector and an error-control decoder. To make polar codes
feasible for such an iterative receiver, we need a decoder that
can produce soft information about the coded bits. In this
work, we propose a low-complexity soft-output decoder for
polar codes that not only outperforms the existing soft-output
decoder for polar codes, but also performs about 0.3 dB away
from the belief propagation (BP) decoder with LDPC codes
on a dicode channel for an FER = 10−3.

In the seminal paper [6], Arikan proposed a hard-output
successive cancellation (SC) decoder of complexity
O(N logN), where N is the block length, that achieved
capacity in the limit of large block lengths; its performance
with finite-length codes was less promising. Since [6],
improving the performance of the SC decoder has been at
the forefront of the related research while the generation
of soft information with reasonable complexity remained
in background. In [8], the authors proposed a successive
cancellation list decoder that performed better than the
SC decoder at the cost of increased processing and storage
complexity. They also showed that polar codes are themselves
weak at small block lengths (e.g., N = 2048 or 4096), but
if concatenated with a high-rate cyclic redundancy check
(CRC) code (e.g., CRC-16), they perform comparably
to state-of-the-art LDPC codes. Later in [9], the authors
demonstrated that polar codes concatenated with CRC-24
codes can come within 0.2 dB of the information theoretic
limit at as low a block length as N = 2048 using an adaptive
successive cancellation list decoder with a very large list
size. In [10], the authors proposed a successive cancellation
stack decoder that also improved the performance over
the SC decoder, but incurred huge storage requirements.
Although all of these decoders offer better performance than
the SC decoder, none provides the soft outputs essential for
turbo-based receivers.

To the best of our knowledge, the only soft-output decoder
for long polar codes that has appeared in the literature is a
belief propagation (BP) decoder [11], [12]. The BP decoder
has the advantages of having better performance than the SC
decoder and providing soft outputs, but has very high storage
and processing complexity. Consequently, the SC decoder
remained an attractive choice for low-cost decoding of polar
codes [11] for the applications that do not require soft outputs,
and polar codes remained infeasible for turbo-based receivers.
This work aims at making polar codes feasible for applications
that require soft-output decoders. In particular, we develop a
low-complexity soft-output version of the SC decoder called
the soft cancellation (SCAN) decoder that produces reliability
information for both the coded and message bits. SCAN
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significantly reduces complexity. For example, the SCAN
decoder requires only two iterations compared to 60 iterations
of the BP decoder to achieve the same FER performance
over a dicode channel and outperforms the BP decoder with
further increase in the number of iterations. Furthermore, the
SCAN decoder requires only 5N − 2 +

N log2 N
2 memory

elements, significantly less than 2N(log2N + 1) memory
elements required by the BP decoder.

The rest of the paper is organized as follows. In Section II,
we describe the system model and the SC decoder. Section
III explains the transition from the hard-output SC decoder
to the soft-output SCAN decoder. The SCAN decoder in this
form requires as many memory elements as the BP decoder
does. Section IV demonstrates how can we reduce this huge
storage requirement and propose the memory-efficient SCAN
decoder. In Section VI, we present numerical results for the
AWGN channel, the dicode channel and the EPR4 channel.

II. PRELIMINARIES

A. System Model

We consider a polar code of length N , dimension K and
construct it using the generator matrix GN = G⊗n

2 , where
n = log(N), (.)⊗ denotes the nth Kronecker power and

G2 :=

[
1 0
1 1

]
. (1)

We encode a message vector m = [m0 m1, . . . , m(K−1)] of
length K by first forming a vector u = [u0 u1 , . . . , u(N−1)]
such that m appears in u on the index set I ⊆
{0, 1, 2, . . . , N − 1} and then computing v = uΠGN , where
Π is a bit-reversal matrix as defined in [6]. In polar coding
literature, the set I is usually referred to as the set of ’free
indices’ and the complement Ic as the set of ’frozen indices’.
We set to zero the bits in u corresponding to the index
set Ic. The set I is known to both the encoder and the
decoder. The construction of polar codes is equivalent to
constructing I; for a list of available construction methods,
see [6], [13], [14] and [15]. We map v to x ∈ {1,−1}N
and pass the interleaved symbols x through a partial response
channel impulse response h = [h0h1, . . . , hμ−1] followed by
an AWGN channel with noise variance σ2 = N0/2, so that
the k-th element of observation r at the output of the channel
is

rk =

μ−1∑
i=0

hixk−i + nk, (2)

where nk ∼ N (0, σ2) is a Gaussian random variable with
mean zero and variance σ2. The per-bit signal-to-noise ratio
is thus Eb/N0 =

∑
i hi

2/(2Rσ2), where R = K/N .
The receiver exchanges the soft information between the

Bahl, Cocke, Jelinek and Raviv (BCJR) [16] channel equalizer
and a soft-output polar decoder for some fixed number of
iterations and iteratively estimates the transmitted message.

B. The SC Decoder

In [6], the authors proposed a successive cancellation (SC)
decoder for polar codes. This decoder operates on a factor
graph representation of polar codes that consists of N(n+1)

unique nodes, divided into n + 1 columns indexed by λ ∈
{0, . . . , n}. Each column consists of 2λ groups indexed by
φ ∈ {0, . . . , 2λ − 1}, and each group consists of 2n−λ nodes,
represented by ω ∈ {0, . . . , 2n−λ− 1}. Thus, we can pinpoint
any node in this factor graph using the trio (λ, φ, ω). We define
each of these groups, denoted by Φλ(φ), as the set of nodes
at a depth λ in the group φ. Additionally, the factor graph of
polar codes contains a total of 2N − 1 such groups.

Fig.2 shows the factor graph of a rate-1/2 polar code of
length N = 8. This factor graph represents the relationship
between encoded and uncoded bits. For the SC decoder, we
construct two memory locations L and B of size N(n + 1),
where Lλ(φ, ω) is the log-likelihood value corresponding
to the node, defined by the trio (λ, φ, ω). In this notation,
{L0(0, i)}N−1

i=0 denotes the LLRs received from the channel.
In the SC decoder, we estimate the message bits for all
ω ∈ {0, . . . , N − 1} using

m̂i =

{
0 if i ∈ Ic or Ln(i, 0) ≥ 0
1 otherwise (3)

by going from i = 0 to N − 1 in increasing order, where
Ln(i, 0) is computed using the recursion

(4)Lλ(φ, ω) = Lλ−1(ψ, 2ω)� Lλ−1(ψ, 2ω + 1)

for φ even, and

Lλ(φ, ω)

=

{
Lλ−1(ψ, 2ω + 1) + Lλ−1(ψ, 2ω) if Bλ(φ− 1, ω) = 0,

Lλ−1(ψ, 2ω + 1)− Lλ−1(ψ, 2ω) if Bλ(φ− 1, ω) = 1,

(5)

when φ is odd, and � is defined as

(6)a� b � 2 tanh−1

[
tanh

(a
2

)
× tanh

(
b

2

)]
.

Every time we calculate Ln(i, 0) for any i ∈ {0, 1, . . . , (N −
1)}, we set Bn(i, 0) = m̂i, where m̂i is defined as in (3).
When we calculate Lλ(φ, ω) for odd values of φ, we update
B using

(7)Bλ−1(ψ, 2ω) = Bλ(φ− 1, ω)⊕Bλ(φ, ω),

(8)Bλ−1(ψ, 2ω + 1) = Bλ(φ, ω),

where ⊕ is binary XOR operation and ψ = �φ2 �. For a detailed
description of the SC decoder with pseudo-code, see [8].

III. THE SOFT CANCELLATION (SCAN) DECODER

Consider the basic decision element of the factor graph in
Fig.1 that represents polar codes of length two. Since in the SC
decoder, all the processing on the factor graph of any polar
code of length more than two occurs locally on this basic
decision element, we can build our intuition and analysis on
this factor graph of N = 2 and then extend it to the general
case of any N .

Suppose, we encode the bits u0, u1 using this polar code of
length two, map them to x0, x1 ∈ {+1,−1} and send them on
a binary-input DMC W with transition probabilities W (y|x).
The SC decoder first calculates the log-likelihood ratio for
the bit u0 using (4) with channel observations y0, y1 while
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assuming that u1 is equally likely to be 0 or 1. The SC decoder
assumes this about u1, because it does not have an estimate of
u1 yet. Once it has an estimate for the bit u0, it sets B1(0, 0) =
m̂0 using (3) and calculates the log-likelihood ratio for the bit
u1 using (4) with the assumption that u0 has been decoded
with no error. After we calculate m1 using L1(1, 0) in (3),
we set B1(1, 0) = m̂1 and use (5) to estimate the values of
x0, x1. This final operation completes the SC decoding on this
polar code of length two.

The aforementioned process transforms the vector channel
W2(y0, y1|u0, u1) into two separate channels W−

SC and W+
SC

defined by the transition probabilities W−
SC(y0, y1|u0) and

W+
SC(y0, y1, u0|u1), respectively. We reiterate the assumptions

used in the SC decoder as follows:
1) u1 is equally likely to be 0 or 1 for the computation of

likelihood W−
SC(y0, y1, u1|u0).

2) u0 has been decoded with no error for the computation
of likelihood W+

SC(y0, y1, u0|u1).
The first assumption is true only for very high Eb/N0, whereas
the second assumption is an oversimplification. Both of these
assumptions distort LLR estimates, and we expect improved
LLR estimates if we can incorporate soft information about
u0 and u1 in the decoder instead of hard decision and no
information, respectively. We first show in the following
lemma how the likelihood computation changes if we have
access to such soft information, and then we show how we
provide this soft information in the SCAN decoder.

Fig. 1 explains the system model used in this lemma. We
encode bits u0 and u1 to x0 and x1 and transmit on channel
W . On the receiver, the SC decoder has y0 and y1 as channel
observations to estimate transmitted bits. Now assume that
we have information about u0 and u1 through other channels
P0 and P1 in the form of z0 and z1, respectively. Lemma 1
describes the likelihood calculations for u0 and u1 given we
have access to y0, y1, z0 and z1 if we follow the same order
of detection as the SC decoder does.

Algorithm 1: The SCAN decoder

{L0(0, i)}(N−1)
i=0 ← LLRs from channel

{Bn(i, 0)}i∈Ic ←∞, {Bn(i, 0)}i∈I ← 0,
{Bλ(φ)}n−1

λ=0 ← 0, ∀φ ∈ {0, . . . , 2λ − 1}
for i = 1→ I do

for φ = 0→ (N − 1) do
updatellrmap(n, φ)
if φ is odd then updatebitmap(n, φ)

for i = 0→ (N − 1) do
if (Bn(i, 0) + Ln(i, 0)) ≥ 0 then m̂i ← 0
else m̂i ← 1

Lemma 1: Let zi : i ∈ {0, 1} be the output of DMC’s Pi,
defined by the transition probabilities Pi(zi|ui) : ui ∈ {0, 1}
and conditionally independent of yi. If we have access to zi
instead of perfect/no knowledge of ui, the log-likelihood ratio
of ui under the SCAN decoder is given by

L1(0, 0) = L0(0, 0)� [B1(1, 0) + L0(0, 1)] , (13)
L1(1, 0) = L0(0, 1) + [B1(0, 0)� L0(0, 0)] . (14)

The proof is provided in the Appendix.

Algorithm 2: updatebitmap(λ, φ)

if φ is odd then
for ω = 0→ (

2n−λ − 1
)

do

Bλ−1(ψ, 2ω)← Bλ(φ− 1, ω)� [Bλ(φ, ω)

+ Lλ−1(ψ, 2ω + 1)] (9)

Bλ−1(ψ,2ω + 1)← Bλ(φ, ω)

+ [Bλ(φ − 1, ω)� Lλ−1(ψ, 2ω)] (10)

if ψ is odd then updatebitmap(λ− 1, ψ)

Algorithm 3: updatellrmap(λ, φ)

if λ = 0 then return ψ ← �φ2 �
if φ is even then updatellrmap(λ− 1, ψ) for
ω = 0→ (

2n−λ − 1
)

do
if φ is even then

Lλ(φ, ω)← Lλ−1(ψ, 2ω)� [Lλ−1(ψ, 2ω + 1)

+Bλ(φ+ 1, ω)] (11)

else

Lλ(φ, ω)← Lλ−1(ψ, 2ω + 1)

+ [Lλ−1(ψ, 2ω)�Bλ(φ − 1, ω)] (12)

The only problem remains now is to show how can
we provide these additional LLRs B1(0, 0), B1(1, 0) in all
decision elements in a factor graph for any N . In the start of
a decoding cycle, we compute {L0(0, k)}(N−1)

k=0 as we receive
symbols r from the channel. We inform the decoder about
the location of fixed bits by initializing {Bn(k, 0)}k∈Ic to
∞. Suppose, we are interested in finding the LLR Ln(i, 0)

in (4) and (5) with {Ln(k, 0)}(i−1)
k=0 already computed and

no information about {uk}N−1
k=(i+1). Since we cannot have

any information about {uk}N−1
k=(i+1) in the first iteration, we

will keep the assumption that they are equally likely, i.e.,
Bn(k, 0) = 0, ∀(i + 1) ≤ k ≤ (N − 1). It is noteworthy
that we have already populated L partially from left to right
while calculating {Ln(k, 0)}(i−1)

k=0 . Therefore, as we calculate
{Ln(k, 0)}(i−1)

k=0 , we can use the partially calculated L as
a-priori information to update B from right to left using
(13) and (14) on all the decision elements involved. When
i = N − 1, we have B with extrinsic LLRs corresponding to
all the nodes in the decoder’s factor graph.

We once again start computing LLRs {Ln(i, 0)}N−1
i=1 , but

this time we have soft information in B for {uk}N−1
k=(i+1)

unlike the first iteration. Therefore, we can use B to supply
a-priori information to all decision elements in subsequent
iterations. We use this iterative process I times and use the
extrinsic LLRs {Ln(i, 0)}N−1

i=0 and {B0(0, i)}N−1
i=0 calculated

in the last iteration corresponding to message and coded
bits, respectively. We explain all the necessary implementation
details in Algorithms 1, 2 and 3.

Algorithm 1 provides the decoder’s wrapper and calls
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Fig. 1. System model for Lemma: 1

Algorithm 3 to calculate {Ln(φ, 0)}(N−1)
φ=0 . Algorithm 3

updates L from left to right using B as prior information.
Since B is initialized to zero except {Bn(i, 0)}(N−1)

i=0 , Bλ(φ+
1, ω) in (11) has zero value in the first iteration, just like the
SC decoder. On the other hand, the SCAN decoder in the first
iteration uses soft information in Bλ(φ − 1, ω) for (12) in
contrast to the SC decoder which uses hard information about
Bλ(φ − 1, ω) in (5). As we iterate through φ in the inner
loop of Algorithm 1, for the odd values of φ the wrapper
calls Algorithm 2 to update B from right to left. Algorithm 2
populates B using L as prior information, and by the end of
the first iteration, {B0(0, φ)}(N−1)

φ=0 contains extrinsic LLRs for
the coded bits. In the second iteration, (11) uses the values of
Bλ(φ+ 1, ω) from the first iteration, unlike the first iteration
in which Bλ(φ + 1, ω) were initialized to zero. Algorithm
1 repeats this process for I times using the outer loop and
estimates message bits at the end of I-th iteration.

One of the important parameters of polar codes under any
decoding scheme is the rate of channel polarization which
describes how fast the capacity of the transformed bit channels
approaches 1 and 0, respectively as N → ∞. We refer the
interested readers to [6] for further details about this parameter
and mention here the advantage of using the SC decoder in
place of the SCAN decoder with I = 1 for AWGN channels.
We observe that by clipping the LLRs of already detected bits
to +∞,−∞ we can increase the convergence and polarization
rate. Zimmermann et al. [17] observed the same phenomenon
in belief propagation decoder for LDPC codes and called it
’belief pushing’. It is noteworthy here that the SCAN decoder
with I = 1 is different from the SC decoder, because the
SC decoder clips the LLRs of already detected bits in the
factor graph to either +∞ or −∞, whereas the SCAN decoder
uses soft information about these bits. However, both of these
decoders do not use information about the bits yet to be
detected and are similar in this respect. With this in mind, one
can convert the SCAN decoder with I = 1 into the SC decoder
by assigning Bn(k, 0) =∞×sgn(Bn(k, 0)+Ln(k, 0)) as we
calculate {Ln(k, 0)}N−1

k=0 , where sgn(.) is the sign function.
Therefore, we can consider the SC decoder as a particular
instance of the more general SCAN decoder. We conclude
this section by presenting the following proposition.

Proposition 1: The rate of channel polarization is higher
under the SC decoder than the SCAN decoder with I = 1.
The proof is provided in the appendix.

IV. THE MEMORY-EFFICIENT SCAN DECODER

In [8] and [18], a memory-efficient version of the SC
decoder has been proposed by modifying L and B memory

indexing. The proposed modifications reduced the memory
requirement for L and B to 2N − 1 and 4N − 2, respectively.
We show that the modification that [8] proposed for L can
be directly applied to the SCAN decoder, and the memory
requirement for L can be reduced to 2N − 1 from N(n+1).
On the other hand, the modification that [8] proposed for
B is not directly applicable for the reasons explained later.
As one of the contributions of this paper, we propose a
partitioning method forB that reduces its memory requirement
to 4N − 2 +Nn/2 from N(n+ 1).

We first briefly describe the modification proposed for L
and apply it directly to the SCAN decoder. Looking at the
factor graph in Fig.2 and description in Section II, it is clear
that all the Φ-groups on a single λ depth has the same number
of nodes 2n−λ. Let us denote L and B values corresponding
to Φλ(φ) as Lλ(φ) and Bλ(φ), respectively. As we calculate
{Ln(i, 0)}N−1

i=0 , traversing i in ascending order, we use the
Φ-groups at different depths in ascending order as well. With
this schedule of LLR update, when we are updating Lλ(i), we
do not need any of the {Lλ(φ) : φ < i}. Therefore, we can
overwrite the values of previously calculated {Lλ(φ) : φ < i}
and only need 2n−λ memory locations for a depth λ. Hence,
the total number of memory elements required by L is∑n

λ=0N/2
λ = 2N − 1. Keeping in view the similarity of

LLR updates in both the SC decoder and the SCAN decoder,
we propose this modification to the later, and it reduces the
memory requirement for L from N(n + 1) to 2N − 1. It is
noteworthy that this modification is not possible in the similar
fashion to the originally proposed belief propagation decoder
of [11] because of the so-called ’flooding’ nature of LLR
update between L and B.

The modification for B in [8] (where B used binary values)
that is similar to the modification for L described above, is
not applicable to the SCAN decoder, because now, not only
do we need to calculate LLRs in B, but we also need to pass
them onto the next iteration. Therefore, as [8] suggested for
the SC decoder, we cannot overwrite the values of B.

To introduce the modifications to B in the SCAN decoder,
we first present the following notation and lemmas. Consider
Lλ(φ) and Lλ(δ) at any depth λ, ∀φ �= δ and φ, δ ∈
{0, . . . , 2λ − 1}. We denote

Lλ(φ) ≺ Lλ(δ)

to show that the decoder updates Lλ(φ) before Lλ(δ).
Lemma 2: At any depth λ ∈ {0, . . . , n}, the decoder updates

Φ-groups for both L and B in ascending order from φ = 0→
N − 1, i.e.,

Lλ(φ) ≺ Lλ(φ+ 1)

Bλ(φ) ≺ Bλ(φ+ 1)

for all φ ∈ {0, . . . , 2λ − 2}.
Proof: We prove this lemma using mathematical

induction. First we note the following trivial cases:

1) The decoder does not update B and L for λ = n and
λ = 0, respectively.

2) The decoder trivially updates B in ascending order for
λ = 0, because there is only one Φ-group.
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Fig. 2. Memory elements required to store B with corresponding φ displayed
next to a particular Bλ(φ). In any iteration, the SCAN decoder does not need
{Bλ(φ) : φ is even} for the next iteration, and we can overwrite Bλ(0)
(shown with green rectangles) at any depth λ with {Bλ(φ) : φ is even, φ �=
0} (shown with yellow rectangles). On the other hand, the SCAN decoder
requires {Bλ(φ) : φ is odd} (shown with white rectangles) for processing in
the next iteration, and therefore it will keep these memory locations as they
are. In this small example, we save five memory elements corresponding to
B2(2),B3(2),B3(4) and B3(6).

3) The decoder trivially updates L in ascending order for
λ = n because of the schedule of the decoder on this
depth.

First we prove this Lemma for L only. Let us denote
{φλi }2

λ

i=0 as the sequence in which we update L at any depth λ.
From the schedule of the decoder, we know that {φni = i}2ni=0.
Suppose, that {φki = i}2ki=0 is true. From (11) and (12),
we know that the update in Lλ(φ) requires the update in
Lλ−1(�φ/2�). Therefore, {φ(k−1)

i = i}2k−1

i=0 is also true from
the definition of the ’floor’ function. We can use the same
argument for both the base and induction step of the proof.

Similarly, with (9) and (10), we can prove the same results
for B.

Algorithm 4: The memory-efficient SCAN decoder

Result: Extrinsic LLRs {E0(0, ω)}N−1
ω=0

{L0(0, i)}(N−1)
i=0 ← LLRs from channel

{On(i, 0)}i∈Ic,i is odd ←∞
for i = 1→ I do

for φ = 0→ (N − 1) do
updatellrmap(n, φ)
if φ is even then

if φ ∈ Ic then Em(φ, 0)←∞
else Em(φ, 0)← 0

else updatebitmap(n, φ)
0

Lemma 3: At any depth λ ∈ {1, . . . , n− 1},

Lλ(φ) ≺ Bλ(φ) ≺ Lλ(φ+ 1), (15)

where φ ∈ {0, . . . , 2λ − 2}.
Proof: Without loss of generality, consider the calculation

of Lλ(φ) and Lλ(φ+1) for φ even, and λ ∈ {2, . . . , n}. From

Algorithm 5: updatebitmap(λ, φ)

ψ ← �φ2 �
if φ is odd then

for ω = 0→ (
2n−λ − 1

)
do

if ψ is even then

Eλ−1(ψ, 2ω)← Eλ(φ− 1, ω)� [Oλ(φ, ω)

+ Lλ−1(ψ, 2ω + 1)]

Eλ−1(ψ, 2ω + 1)

← Oλ(φ, ω) +Eλ(φ− 1, ω)�Lλ−1(ψ, 2ω)

else

Oλ−1(ψ, 2ω)← Eλ(φ− 1, ω)� [Oλ(φ, ω)

+ Lλ−1(ψ, 2ω + 1)]

Oλ−1(ψ, 2ω + 1)

← Oλ(φ, ω) +Eλ(φ− 1, ω)�Lλ−1(ψ, 2ω)

if ψ is odd then updatebitmap(λ− 1, ψ)

Lemma.2, (11) and (12) we know that

Lλ−1(ψ) ≺ Lλ(φ) ≺ Lλ(φ+ 1),

where ψ = �φ/2�. Also from (9) and (10),

Lλ(φ+ 1) ≺ Bλ−1(ψ).

Therefore, using these two relationships we get

Lλ−1(ψ) ≺ Bλ−1(ψ).

Now considering the calculation of Lλ(φ+2) and Lλ(φ+3),
we get

Lλ−1(ψ + 1) ≺ Bλ−1(ψ + 1).

From Lemma.2, we know that at any λ, the decoder updates
both L and B in ascending order, we conclude

Lλ−1(ψ) ≺ Bλ−1(ψ) ≺ Lλ−1(ψ + 1),

for all λ ∈ {2, . . . , n}, and ψ ∈ {0, . . . , 2λ−1 − 2}. We
complete the proof by changing variables.

Theorem 1: In any iteration i and for any depth λ, the SCAN
decoder requires only {Bλ(φ) : φ is odd} from iteration (i−
1) to update L.

Proof: Consider (11) for the iteration i. From Lemma.3,
we know that

Lλ(φ) ≺ Bλ(φ).

Therefore, when the decoder is updating Lλ(φ), Bλ(φ + 1)
is holding the value from iteration (i− 1). Since it is true for
φ even only, (φ + 1) is odd and we use {Bλ(i) : i is odd}
from (i − 1). Similarly, (12) shows that to update Lλ(φ) for
odd φ, we need Bλ(φ − 1) that, by Lemma 3, the decoder
has already updated.Therefore, Bλ(φ− 1) contains the values
calculated in the current iteration i.
Suppose, we reserve two separate memory locations for B:
one to hold {Bλ(φ) : φ is even}, namely E and one for
{Bλ(φ) : φ is odd}, namelyO. From Theorem 1, we conclude
that we only need to keep O for the next iteration with only
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Algorithm 6: updatellrmap(λ, φ)

if λ = 0 then return ψ ← �φ2 �
if φ is even then updatellrmap(λ− 1, ψ) for
ω = 0→ (

2n−λ − 1
)

do
if φ is even then

Lλ(φ, ω)← Lλ−1(ψ, 2ω)� [Lλ−1(ψ, 2ω + 1)

+ Eλ(φ+ 1, ω)]

else

Lλ(φ, ω)← Lλ−1(ψ, 2ω + 1)

+ Lλ−1(ψ, 2ω)�Oλ(φ− 1, ω)

N/2 elements at a depth λ. In contrast, the decoder will use
E in the current iteration only, and therefore the decoder can
use the same space Bλ(0) for all {Bλ(φ), φ is even} at a
depth λ by overwriting it. The number of memory elements
required for E is exactly the same as required for L, i.e.,
(2N − 1). The decoder also needs to specify the indexing of
both E and O. As noted in [8], for E φ does not convey any
information because the decoder writes all the values to the
same location at a depth λ, similar to L, and therefore it can
use the same indexing for both E and L. One such memory
indexing function is

f(λ, ω) = ω + 2(n+1) − 2(n+1−λ). (16)

Since O is used only for odd values of φ, we can convert these
odd values into the natural numbers by a simple transformation
and then use it to index O. One such indexing function is

g(λ, φ, ω) = ω + (φ− 1)2(n−λ−1) + (λ− 1) 2(n−1). (17)

Fig. 2 presents a small example of a rate 1/2 polar code. In this
example, the SCAN decoder reuses B2(0) and B3(0) (shown
with green rectangles) by overwriting them with the values
of B2(2),B3(2),B3(4) and B3(6) and does not need extra
memory for them. On the other hand, the SCAN decoder keeps
the values for {Bλ(φ), ∀λ, φ is odd} as they are required for
the next iteration.

We summarize the details of the proposed low-complexity
SCAN decoder in Algorithm 4, 6 and 5. Algorithm 4 is the
top-level wrapper for the SCAN decoder, similar to Algorithm
1. The SCAN decoder successively calls Algorithm 6 and 5 as
it traverses all the uncoded bits from i = 0 to N−1. Algorithm
5 updates the two portions of B using L as prior information:
E for the groups with φ even and O for the groups with φ
odd, whereas Algorithm 6 updates L using E and O as prior
information. It is noteworthy that in all the algorithms we have
indexed E and O using (16) and (17), respectively.

V. A COMPARISON WITH THE BP DECODER

In this section, we compare the BP decoder for polar codes
with the SCAN decoder. The prime difference between the two
decoders lies in the schedule of LLR updates. As explained
later, the better dissemination of information in the SCAN
decoder results in a more rapid convergence compared to
the BP decoder. We explain this difference of the schedule
between the two decoders using Fig. 2.

Consider the operation of the BP decoder on the factor
graph shown in Fig. 2. Just like the SCAN decoder, the
BP decoder also uses two memory locations L and B. The
decoder starts by updating LLRs L3(0, 0), L3(1, 0), B2(0, 0)
and B2(0, 1) using L2(0), B3(0, 0) and B3(1, 0). In this way,
the decoder updates the LLRs corresponding to the top-right
protograph and then repeats the same process for all the four
protographs under λ = 2. After the updates in the protographs
under λ = 2, the decoder updates the four protographs under
λ = 1 and then λ = 0 completing its first iteration. Following
points are noteworthy in this schedule :

1) The decoder updates L and B on a
protograph-by-protograph basis.

2) In any iteration to update any LLR in both L and B,
the decoder uses the values in B that are updated in
the current iteration and the values in L updated in the
previous iteration (or in the case of first iteration, the
initialized values of L).

3) When the BP decoder is updating the LLRs under λ = 0
at the end of the first iteration, the information received
from the channel in L0(0) moves from the protographs
under λ = 0 to the protographs under λ = 1. Therefore,
in the first iteration the information from the fixed bits
travels from the right-most end of the factor graph to
the left-most end, but the information received from
the channel moves only to the neighboring protographs,
i.e., the protographs under λ = 1. Following the same
procedure, we can show that in every iteration, the
information about the fixed bits traverses the whole
factor graph, whereas the information received from the
channel moves to the neighboring protographs only, and
it requires n iterations to reach the right-most end of the
factor graph.

The SCAN decoder updates L1(0), L2(0), L3(0) and
L3(1) in this order. After the update in L3(1), the SCAN
decoder updates B2(0) using L2(0) that has just been updated.
In this way, as the SCAN decoder updates L3(i) from i = 0
to 7, it populates B using the updated values in L. At the end
of the first iteration, the information received from the channel
moves from left end of the factor graph to the right while the
information about the fixed bits move from the right end to
the left. Following points are noteworthy in this schedule:

1) The decoder does not update L and B on
protograph-by-protograph basis; instead it is a
node-by-node basis update schedule except in the
protographs under λ = 2. For example, the SCAN
decoder first updates L1(0), L2(0), L3(0) that are
the updates corresponding to the top-right node of the
protographs involved.

2) In any iteration to update any LLR in B, the SCAN
decoder uses B as well as L updated in the current
iteration. To update any LLR in L, the decoder uses
L and {Bλ(φ) : φ even} updated in the current
iteration while {Bλ(φ) : φ odd} updated in the previous
iteration.

3) In any iteration, the information about both the fixed
bits in {B3(i)}7i=0 and the information received from
the channel in L0(0) traverse the entire factor graph.
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Fig. 3. FER performance of the SCAN decoder in partial response channels
for K = 4096 and N = 8192. We have optimized the polar code for
Eb/N0 = 1.4 dB (dicode) and Eb/N0 = 1.55 dB (EPR4) using the method
of [15].

As described above, the BP decoder needs at least n iterations
to disperse the information contained in {Bn(i)}(N−1)

i=0 and
L0(0) in the entire factor graph, whereas the SCAN decoder
achieves this with only one iteration. In this way, the SCAN
decoder achieves a faster convergence by better disseminating
the information in the factor graph than the BP decoder as
pointed out by the last two points of the schedules in both the
decoders.

VI. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

A. AWGN

To demonstrate the improved performance of our algorithm,
we have simulated the SCAN decoder for a block length of
N = 32768 and dimension K = 16, 384 on the AWGN
channel. We have simulated a maximum of 106 frames,
terminating the simulation if 100 or more frames are found
in error. Fig. 4 shows the simulation results, showing that
the SCAN decoder outperforms the SC decoder both in
FER and BER performance with only two and one iteration,
respectively. Additionally, the SCAN decoder exhibits larger
gain in BER performance as compared to FER performance.

B. Partial Response Channels

Fig. 3 shows the performance of the proposed decoder
on the dicode channel with N = 8192 and dimension
K = 4096 under turbo equalization architecture [7]. The
SCAN decoder with only two iterations outperforms the BP
decoder with 60 iterations on the dicode channel. Specifically,
on the dicode channel, the SCAN decoder’s processing and
memory requirements are 4% and 43% of those required
by the BP decoder, respectively. With the further increase
in number of iterations, the performance improves with
increase in the computation complexity. We also compare
the polar code’s performance with the SCAN decoder to that
of an irregular LDPC code of the variable node distribution
λ(x) = 0.2184x+0.163x2+0.6186x3, check node distribution

TABLE I
COMPLEXITY COMPARISON OF DIFFERENT DECODERS

Complexity/Iteration

Operation LDPC BP Polar SCAN/BP
Table Lookups (N −K)(dc + 1) 6Nn

Multiplications (N −K)(dc − 1) 2Nn

Divisions (N −K)dc 0

Additions/Subtractions 2Ndv 2Nn

Total Operations 5Ndv 10Nn

ρ(x) = 0.6821x4 + 0.3173x5 + 0.0006x6, average column
weight dv = 3.4 and row weight dc = 5.31 decoded using the
BP algorithm and constructed using [19], [20] and [21]. The
performance difference between this LDPC code with the BP
algorithm and the polar code with the SCAN decoder (using
four iterations) is approximately 0.3 dB for FER = 10−3 on
a dicode channel. The performance loss in the case of EPR4
channel is larger than that in the case of a dicode channel.
This performance difference between the two families of codes
under message passing decoding is expected, because polar
codes are structured codes and this LDPC code is a random
one. The structure in LDPC codes also, in general, results
in worse performance and increases the complexity of the
decoder [22]. Furthermore, it has been shown that polar codes
outperform LDPC codes if concatenated with very simple
codes [8], [9] in AWGN channel. In this respect, the SCAN
decoder can have potential applications for turbo decoding of
concatenated codes because of their ability to provide soft
outputs needed.

C. Complexity

Table I compares the complexity of different decoders for
LDPC and polar codes. We have used the complexity analysis
for LDPC codes given in [23], where one iteration consists
of variable to check and then check to variable message
passing. We have further assumed that the decoder uses table
lookup method to calculate both tanh(.) and tanh−1(.). The
number of operations required for the SCAN decoder with
four iterations in the dicode channel is approximately equal
to 70% of that required for the BP decoder for the LDPC
code with 50 iterations, as shown in Fig. 3. This highlights
the complexity reduction relative to this LDPC code, along
with other benefits of polar codes with some (about 0.3 dB at
FER= 10−3) loss in performance.

Fig. 5 shows how the normalized memory requirement
decreases with the increase in n. The BP decoder uses
N(n + 1) floating-point elements for each of L and B. The
SCAN decoder uses 2N−1 floating-point elements for L and
4N−2+Nn/2 floating-point elements for B. For the complete
operation of the SCAN decoder, we also need another boolean
memory of size N to hold the information about the set I. As
a numerical example, Fig.5 shows that the memory required
by the SCAN decoder at two practical frame lengths of 4096
and 32768 is 43% and 39% of that required by the BP decoder,
respectively.
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Fig. 4. FER performance of the SCAN decoder in AWGN channel for N =
32768. We have optimized the polar code for Eb/N0 = 2.35 dB using the
method of [15].

VII. CONCLUSION AND FUTURE DIRECTIONS

We have proposed SCAN, a soft-output decoder for
polar codes that offers good performance, low computational
complexity and low memory requirements. We have shown
that the SCAN decoder’s computational complexity with two
iterations is approximately 4% that of the BP decoder with 60
iterations on a dicode channel with comparable performance.
The SCAN decoder’s performance improves with the increase
in the number of iterations. Furthermore, we have proved
that the SCAN requires Nn/2 (unlike N(n + 1) for the BP
decoder) memory elements to pass from one iteration to the
next. Using this fact, we have proposed a memory-splitting
method in which we keep one portion of the memory needed
for the next iterations as it is and optimizes the other one that
we use in the current iteration. With our proposed decoder,
the memory required by the SCAN decoder is approximately
39% of that required by the BP decoder at a block length
N = 32768 in one example. We have performed Monte
Carlo simulations on the AWGN channel as well as partial
response channels to demonstrate the functionality of the
algorithms. With this three facet (complexity, performance
and memory) improvement, the SCAN decoder stands out
as a promising soft-output decoder for polar codes. Our
work is a first step towards the incorporation of polar
codes in magnetic recording channel. Further research is
needed to produce length-compatible polar codes and their
high-throughput decoders.

APPENDIX

Proof of Lemma 1:

W−(y0, y1, z1|u0)
=
∑
u1

W2(y0, y1, z1, u1|u0)

=
1

2

∑
u1

W (y0|u0 ⊕ u1)W (y1|u1)P (z1|u1). (18)

2 4 6 8 10 12 14 16 18
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1

Fig. 5. Memory efficiency improves with increasing block length.

W+(y0, y1, z0|u1)
=
∑
u0

W2(y0, y1, z0, u0|u1)

=
1

2
W (y1|u1)

∑
u0

W (y0|u0 ⊕ u1)P (z0|u0), (19)

where we have used the fact that both the bits u0, u1 are
equally likely to be 0 or 1. Using (18) and (19) with the
definition of an LLR, we get (13) and (14).

Proof of Proposition 1: Consider the problem setup for
(18) and (19). Recall for an SC decoder, we have from [24]

Z(W+
SC) = Z(W )2,

Z(W )
√
2− Z(W )2 ≤ Z(W−

SC) ≤ 2Z(W )− Z(W )2,

where Z(W ) is Bhattacharrya parameter of the DMC W
defined as

Z(W ) �
∑
y

√
W (y|0)W (y|1). (20)

Since, for the SCAN decoder with I = 1, the computation for
the check-node doesn’t change, the relationships for Z(W−)
as described above hold. Therefore, we only need to prove
Z(W+) ≥ Z(W )2.

(21)
Z(W+) =

∑
y0,y1,z0

√
W+(y0, y1, z0|0)W+(y0, y1, z0|1)

=
1

2
Z(W )×A(W,P ),

where

A(W,P ) =
∑
y0,z0

(∑
u0

W (y0|u0)P (z0|u0)
)

×
⎛
⎝∑

u
′
0

W (y0|u′
0 ⊕ 1)P (z0|u′

0)

⎞
⎠ .

From Lemma 3.15 in [24], we have

(22)A(W,P ) ≥ 2
√
Z(W )2 + Z(P )2 − Z(W )2Z(P )2.
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Using (22) in (21), we get

Z(W+) = Z(W )2

√
1 + Z(P )2

(
1

Z(W )2
− 1

)
,

≥ Z(W )2

as by definition 0 ≤ Z(P ), Z(W ) ≤ 1.
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